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Abstract: In this study, an effective numerical method based on Taylor expansions is presented for boundary value
problems. This method is arbitrary directional and called as implicit-explicit local differential transform method
(IELDTM). With the completion of this study, a reliable numerical method is derived by optimizing the required degrees
of freedom. It is shown that the order refinement procedure of the IELDTM does not affect the degrees of freedom. A
priori error analysis of the current method is constructed and order conditions are presented in a detailed analysis. The
theoretical order expectations are verified for nonlinear BVPs. Stability of the IELDTM is investigated by following
the analysis of approximation matrices. To illustrate efficiency of the method, qualitative and quantitative results are
presented for various challenging BVPs. It is tested that the current method is reliable and accurate for a broad range
of problems even for strongly nonlinear and singularly perturbed BVPs. The produced results have revealed that the
IELDTM is more accurate than the existing ones in literature.
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1. Introduction
Boundary value problems (BVPs) of differential equations arise in many disciplines such as physics, chemistry,
engineering, finance, mathematical biology and so on. Analytical solutions are often not available for most of
those problems. While some series-based techniques are capable of producing semianalytical solutions for BVPs,
convergence of those methods is largely dependent on the global smoothness of exact solutions, as observed from
examples discussed in the literature [38, 42]. In addition, some BVPs involving significant local behaviors such
as sharp discontinuities or boundary layers are areas where various notable difficulties are encountered [36, 37].
In such cases, any analytical or numerical approach to such problems should be well defined.

Numerical methods for boundary value problems are mainly divided into two categories: direct methods
and shooting methods [1]. The shooting strategies are important for using IVP algorithms to solve BVPs, but
the computational mechanisms involve additional costs to find out high order initial conditions [2–4]. A well-
known direct method for BVPs is the finite difference method widely used in the literature [5–10]. Even finite
difference methods produce acceptable results for many BVPs, their local order refinement (p-refinement) is not
easy task due to the direct disconnection of the higher order formulations. Another kind of direct method is
the collocation methods which are based on direct substitutions of approximate solutions and getting algebraic
equations at collocation points [11–16]. These types of methods are suitable for local order refinement and
can also be used in either local form or global form. Besides these widely used techniques, local discontinuous
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Galerkin method [17], spline interpolation based numerical methods [18–20], Adomian decomposition methods
[21, 22] and reproducing kernel methods [22–24] have been applied to solve various kinds of BVPs.

Classical structure of the differential transform method (DTM) is semianalytic and leads to nonlocal
series approximation [39–41]. The BVPs can be solved by the differential transform method (DTM) even the
original structure of the method is designed for IVPs. Thus, DTM based methods for BVPs can be considered
to be shooting methods [25–32]. Various kinds of BVPs were solved by DTMs in literature [25–32]. Generally,
those semianalytic approaches give good agreement with exact solution only about one of the boundaries due to
the structure of the Taylor series expansion. The idea of discretization of finite domain and then applying DTM
procedure numerically is known as local DTM (LDTM) or multistep DTM [34, 35, 43]. Although the LDTM is
better than the DTM in terms of convergence, as will be shown later, the LDTM does not lead to stable results
as a shooting method [43] for especially stiff problems. Thus, the development of a higher order and stability
preserved method that can be used in solving boundary value problems will fill the gap in this area.

In this study, we have proposed a new implicit-explicit local differential transformation method (IELDTM)
to solve various BVP types. In this sense, a Taylor series based high-order numerical method has been created
here, which is flexible in terms of accuracy, stability and local adaptability. In the way of developing this
idea, the presented method here eliminates the well-known disadvantages of the DTMs such as divergence and
numerical instability. The IELDTM has advantage over the finite difference method as it provides p-refinement
convenience, and the finite element method as it minimizes the degrees of freedom. The present technique is
seen to be suitable for stiff and nonstiff BVPs as well as for strongly nonlinear BVPs as will be shown in the
following sections. A priori error analysis of the present method has been done, and order conditions have been
produced. Stability results are discussed together with the selection of the direction parameter that determines
whether the method is explicit or implicit. In numerical experiments, various types of BVPs, particularly high-
order BVPs, singular BVPs, singularly perturbed BVPs, and strongly nonlinear BVPs have been studied to
test the derived method.

2. Local differential transformation
The following propositions and definitions are needed to construct a numerical algorithm, and are the localized
forms of the semianalytical forms presented in literature [33].

Definition 2.1 When y(x) is analytic in domain S , the function φ(x, k) can be defined as follows:

dky(x)

dxk
= φ(x, k) for all x ∈ S, (2.1)

where k is a nonnegative integer.
By considering Definition 2.1, the differential transform of function y(x) at any position x = xi in the

domain is locally defined as follows:

Yi(k) =
φ(x, k)

k!
=

1

k!

[
dky(x)

dxk

]
x=xi

. (2.2)
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Definition 2.2 When y(x) is analytic in domain S , then y(x) can be denoted by Taylor series at x = xi as
follows:

yi(x) =

∞∑
k=0

Yi(k)(x− xi)
k = D−1Yi(k), xi − ρ ≤ x ≤ xi + ρ (2.3)

where D−1 denotes the inverse differential transform operator and ρ is the radius of convergence.

By truncating series 2.3, y(x) can be represented as follows:

yi(x) =

K∑
k=0

Yi(k)(x− xi)
k +O

(
(x− xi)

K+1
)
, xi − ρ ≤ x ≤ xi + ρ. (2.4)

Proposition 2.3 Let y(x) and w(x) be analytic in domain S and xi ∈ S . If D(yi(x), k) = Yi(k) ,
D(wi(x), k) = Wi(k) and zi(x) = yi(x)wi(x) , then the following equality holds

Zi(k) = D(zi(x), k) =

k∑
n=0

Yi(n)Wi(k − n). (2.5)

Proposition 2.4 Let y(x) be analytic in domain S and xi ∈ S . If D(yi(x), k) = Yi(k) and zi(x) = ymi (x)

for m ∈ N , then the following equality holds

Zi(k) = D(zi(x), k) =

k∑
n1=0

k−n1∑
n2=0

...

k−
∑m−2

i=1 ni∑
nm−1=0

Yi(n1)...Yi(nm−1)Yi(k −
m−1∑
i=1

ni). (2.6)

Proposition 2.5 Let y(x) be analytic in domain S and xi ∈ S . If D(yi(x), k) = Yi(k) and zi(x) =
dmyi(x)
dxm

for m ∈ N , then the following equality holds

Zi(k) = D(zi(x), k) = (k + 1)(k + 2)...(k +m)Yi(k +m). (2.7)

Definition 2.6 Let y(x) be analytic in domain S and xi ∈ S and m,n, p ∈ N . If D(yi(x), k) = Yi(k) and

zi (x) = (ymi (x))
(

dpyi(x)
dxp

)n

, we define the following transformation notation

Zi (k) = D (Zi (x) , k) = Ȳi (m; p, n; k) (2.8)

Note that we assume p = 0 and n = 0 in case of zi (x) = ymi (x) . Throughout the rest of the paper we use this
notation given in Definition 2.6. Before giving the propositions about the general values of m, n, p ∈ N , we
need to consider the following special cases;

. Ȳi (m; 0, 0; k) =
∑k

n1=0

∑k−n1

n2=0

∑k−n1−n2

n3=0 . . .
∑k−

∑m−2
i=1 ni

nm−1=0 Yi (n1) . . . Yi(nm−1)Y i(k −
∑m−1

i=1 ni)

. Ȳi (0; p, 1; k) = (k + 1) (k + 2) . . . (k + p)Yi(k + p)
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. Ȳi (0; p, n; k) =
∑k

n1=0 . . .
∑k−

∑m−2
i=1 ni

nm−1=0 Ȳi (0; p, 1;n1) . . . Ȳi(0; p, 1;nm−1)Ȳi(0; p, 1; k −
∑m−1

i=1 ni).

Proposition 2.7 Let y(x) be analytic in domain S and xi ∈ S and m, n, p ∈ N . If D (yi (x) , k) = Yi(k) ,
then the following equality holds

Ȳi (m; p, n; k) =

k∑
n=0

Ȳi (m; 0, 0; k) Ȳi (0; p, n; k − n). (2.9)

Proposition 2.8 Assume that the power series

∞∑
k=0

Yi (k) (x− xi)
k (2.10)

has the radius of convergence ρ . For any point xj satisfying |xi − xj | < ρ , then the power series

∞∑
k=0

Yj (k) (x− xj)
k (2.11)

has the radius of convergence at least τ = ρ − |xi − xj | and on the interval (xj − τ, xj + τ) it converges to
y(x) .

In the light of Proposition 2.8, we present the foundations of the IELDTM in the following section.

3. The implicit-explicit local differential transform method
This section is devoted to numerical foundations of the IELDTM for general second order BVPs. A general
description of the IELDTM is explained and some comments on this method are provided. Numerical imple-
mentation of the present method to the general second order linear BVP is presented. Priori error analysis of the
IELDTM is done and order conditions are determined. Stability properties of the IELDTM for the considered
BVP is explained and some illustrations are presented.
Let us consider the following general second order two-point boundary value problem,

y′′ (x) = G(y′ (x) , y(x), x), x ∈ S (3.1)

with the mixed boundary conditions

α1y (a) + α2y
′ (a) = δ1 and β1y (b) + β2y

′ (b) = δ2 (3.2)

where S = [a, b] ⊂ R , y(x) ∈ R , α1, α2, β1, β2, δ1, δ2 ∈ R and G : R× R× S → R .
We assume that the BVP (3.1–3.2) is well-posed and the exact solution y (x) is analytic on the considered

domain S . Let us divide the interval [a, b] into at most N spatial elements with dxi = xi+1 − xi and the
partition of the interval is given by ω = {a = x0 < x1 < . . . < xN∗ = b} where N∗ ≤ N . Let us consider the
convergent local Taylor series representation of the function y(x) about xi ∈ S as follows:

yi (x) =

K∑
k=0

Yi (k) (x− xi)
k
+O

(
(x− xi)

K+1
)
, xi − ρi ≤ x ≤ xi + ρi (3.3)
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where i = 0, 1, . . . , N∗ . The function yi (x) is assumed to be analytic for all i and has the radius of convergence
ρi > dxi . This assumption leads us to search about the relations between neighbour solutions yi (x) and yi+1 (x)

in terms of their local behaviours. With Proposition 2.8, since the condition |xi+1 − xi| = dxi < ρi holds, the
function y(x) has also a local convergent Taylor series representation about x = xi+1 with the radius of
convergence at least ρi+1 = ρi − dxi and the interval of convergence is (xi+1 − ρi+1, xi+1 + ρi+1) . Then, the
function y(x) can be locally approximated as

yi+1 (x) =

K∑
k=0

Yi+1 (k) (x− xi+1)
k
+O

(
(x− xi+1)

K+1
)
, (3.4)

where xi+1 − ρi+1 ≤ x ≤ xi+1 + ρi+1 . Let us define the intervals P i = [xi − ρi, xi + ρi] , P i+1 = [xi+1 −
ρi+1, xi+1 + ρi+1] and P = [xi, xi+1] . Assume that the condition P ⊂

(
P i ∩ P i+1

)
holds. Then we state the

following conclusions:

. Due to the convergence assumptions, the two convergent representations (3.3) and (3.4) should give the same
numerical result at any point in the interval [xi, xi+1] .

. If necessary, Cm continuity condition i.e. continuous slopes, continuous curvatures etc. can be applied in the
interval [xi, xi+1] .

. Any point in the interval [xi, xi+1] can be written as x∗ = xi + (1− θ)dxi , where 0 ≤ θ ≤ 1 .

. We produce the IELDTM with the use of continuity conditions of the solutions at such interior points.

Convergent solutions yi (x) and yi+1 (x) at the interior points x∗ = xi+(1−θ)dxi need to satisfy the following
C0 and C1 continuity relations

yi+1 (xi + (1− θ)dxi) = yi (xi + (1− θ)dxi) , (3.5)

y′i+1 (xi + (1− θ)dxi) = y′i (xi + (1− θ)dxi) . (3.6)

Substituting interior node value x∗ = xi + (1 − θ)dxi to approximate solutions (3.3-3.4) and using continuity
relations (3.5-3.6) yield the following equations,

K∑
k=0

Yi+1 (k) (−θdxi)
k
=

K∑
k=0

Yi (k) ((1− θ)dxi)
k
+O

(
(dxi)

K+1
)

(3.7)

K∑
k=1

Yi+1 (k) k (−θdxi)
k−1

=

K∑
k=1

Yi (k) k ((1− θ)dxi)
k−1

+O
(
(dxi)

K
)
. (3.8)

The next issue is to determine the algebraic relations between Yi (k) and Yi+1 (k) for all k = 0, 1, . . . ,K .
Taking differential transform of equation (3.1) with the use of Proposition 2.5 given in Section 2 leads to the
following relation

Yi (k + 2) =
1

(k + 1) (k + 2)
F (Yi (k + 1) , Yi (k) , . . . , Yi (1) , Y i (0) ,H(k)) (3.9)

746



TUNÇ and SARI/Turk J Math

where i = 0, 1, . . . , N∗ , k = 0, 1, . . . , K − 2 , F is the transformed form of the function arbitrary function
G(y′ (x) , y(x), x) and H(k) is the transformed form of the nonautonomous part of the function G(y′ (x) , y(x), x) .
It is obvious that Yi (k + 2) can be written in terms of Yi (k + 1) and Yi (k) for each i and k . Thus, to com-
pletely describe approximation functions (3.3-3.4), one should evaluate the initial position Yi (0) and the initial
slope Yi (1) for all i = 0, 1, . . . , N∗ . For each spatial position, Yi (0) and Yi (1) are assumed to be unknown
values to determine highly accurate local approximations (3.3-3.4). With the use of algebraic relations in
(3.9), substitution of all algebraic coefficients Yi (k) into continuity equations (3.7-3.8) leads to the following
explicit-implicit local equations

g1 (Yi+1(0), Yi+1(1), θ, dxi) = h1 (Yi(0), Yi(1), θ, dxi) (3.10)

g2 (Yi+1(0), Yi+1(1), θ, dxi) = h2 (Yi(0), Yi(1), θ, dxi) (3.11)

where i = 0, 1, . . . , N∗ and the functions g1, g2, h1 and h2 are obtained from the right- and left-hand sides
of equations (3.7–3.8). If θ = 0 then the equations (3.10–3.11) are explicit equations of Yi+1(0) and Yi+1(1)

irrespective of the linearity-nonlinearity of the differential equation. On the other hand, if θ ̸= 0 and the
differential equation is nonlinear then equations (3.10–3.11) are implicit equations of Yi+1(0) and Yi+1(1) . The
boundary conditions lead to the following equations:

α1Y0(0) + α2Y0(1) = δ1 (3.12)

β1YN∗ (0) + β2YN∗ (1) = δ2. (3.13)

By eliminating Y0(0) and YN∗ (0) from the equations (3.12–3.13) and substituting into system of algebraic
equations (3.10-3.11), equations (3.10–3.11) can be rewritten as follows:

φ (Y0 (1) , Y1 (0) , Y1 (1) , Y2 (0) , Y2 (1) , . . . , YN∗−1 (0) , YN∗−1 (1) , YN∗ (1)) = Z (3.14)

where the system is (2N∗) × (2N∗) including all local positions and slopes. Depending on the function
G(y′ (x) , y(x), x) , φ (Y ) = Z is either a linear or nonlinear system of algebraic equations with

Y = (Y0 (1) , Y1 (0) , Y1 (1) , Y2 (0) , Y2 (1) , . . . , YN∗−1 (0) , YN∗−1 (1) , YN∗ (1)) .

MATLAB built-in function fsolve has been used when equation system (3.14) is nonlinear. The function φ

also depends on the selection of the direction parameter θ . As will be demonstrated later on, this parameter is
crucial in terms of accuracy, stability and computational efficiency. Therefore, the following notes are important
for the rest of this study

. N∗ = 1 and θ = 0 yields the classical semianalytic DTM [25–30].

. θ = 0 yields the explicit forward scheme and known as local differential transform method which is used in
the literature [34, 35].

. The rest of the selections of the parameter θ , i.e. θ ̸= 0 , leads to the implicit schemes. To the best of the
authors knowledge, this generalization for boundary value problems is carried out for the first time.
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. θ = 0.5 leads to implicit central scheme which will give us stability and order preserved method for linear
and nonlinear cases.

. θ = 1 leads to the implicit backward scheme which is also a stable and order preserved method for linear and
nonlinear cases.

3.1. Numerical implementation and error analysis

Consider BVP (3.1–3.2) as

G(y′ (x) , y(x), x) = − (py′(x) + qy) (3.15)

where p, q ∈ R . Thus, problem (3.1–3.2) becomes a linear two-point BVP as a test problem to explain numerical
implementation of the current IELDTM. With the guide of Section 2, taking the transform of equation (3.1)
yields,

Yi (k + 2) = − 1

(k + 1)(k + 2)
[p (k + 1)Yi (k + 1) + qYi (k)] (3.16)

where k = 0, 1, 2, . . . , K − 2 and i = 0, 1, 2, . . . , N . The following coefficients can be evaluated

Yi (2) = −q

2
Yi (0)−

p

2
Yi (1) , (3.17)

Yi (3) =
pq

6
Yi (0) +

(
p2 − q

)
6

Yi (1) , (3.18)

Yi (4) =

(
q2 − p2q

)
24

Yi (0) +

(
2pq − p3

)
24

Yi (1) , (3.19)

Yi (5) =

(
7pq2 − 3p2q

)
480

Yi (0) +

(
10p2q − 4q2 − 3p4

)
480

Yi (1) . (3.20)

This evaluation can be increased up to desired approximation order. If we apply the IELDTM to the considered
BVP, the following equations are found for each spatial element [xi , xi+1]

K∑
k=0

Yi+1 (k) (−θdx)
k
=

K∑
k=0

Yi (k) ((1− θ)dx)
k
, (3.21)

K∑
k=1

Yi+1 (k) k(−θdx)
k−1

=

K∑
k=1

Yi (k) k ((1− θ)dx)
k−1

, (3.22)
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where i = 0, 1, . . . , N − 1 and the fixed spatial step size dx = (b−a)
N is assumed. With the use of coefficients

(3.17-3.20), equations (3.21–3.22) become

Yi+1 (0) + Yi+1 (1) (−θdx) +
[
−q

2
Yi+1 (0)−

p

2
Yi+1 (1)

]
(−θdx)

2
+

[
pq

6
Yi+1 (0) +

(
p2 − q

)
6

Yi+1 (1)

]
(−θdx)

3
+

[(
q2 − p2q

)
24

Yi+1 (0) +

(
2pq − p3

)
24

Yi+1 (1)

]
(−θdx)

4
+ . . .

= Yi (0) + Yi (1) ((1− θ) dx) +
[
−q

2
Yi (0)−

p

2
Yi (1)

]
((1− θ) dx)

2
+

[
pq

6
Yi (0) +

(
p2 − q

)
6

Yi (1)

]
((1− θ) dx)

3
+

[(
q2 − p2q

)
24

Yi (0) +

(
2pq − p3

)
24

Yi (1)

]
((1− θ) dx)

4
+ . . .

(3.23)

Yi+1 (1) + 2
[
−q

2
Yi+1 (0)−

p

2
Yi+1 (1)

]
(−θdx) + 3

[
pq

6
Yi+1 (0) +

(
p2 − q

)
6

Yi+1 (1)

]
(−θdx)

2
+

4

[(
q2 − p2q

)
24

Yi+1 (0) +

(
2pq − p3

)
24

Yi+1 (1)

]
(−θdx)

3
+ . . .

= Yi (1) + 2
[
−q

2
Yi (0)−

p

2
Yi (1)

]
((1− θ) dx)+

3

[
pq

6
Yi (0) +

(
p2 − q

)
6

Yi (1)

]
((1− θ) dx)

2
+ 4

[(
q2 − p2q

)
24

Yi (0) +

(
2pq − p3

)
24

Yi (1)

]
((1− θ) dx)

3
+ . . . .

(3.24)

where i = 0, 1, . . . , N − 1 . If equations (3.23–3.24) is rearranged in terms of Yi+1 (0) , Yi+1 (1) , Yi (0) and
Yi (1) , equations (3.23–3.24) turn into the following equation

[
1− q

2
(−θdx)

2
+

pq

6
(−θdx)

3
+

(
q2 − p2q

)
24

(−θdx)
4
+ . . .

]
Yi+1 (0)+

[
−θdx− p

2
(−θdx)

2
+

(
p2 − q

)
6

(−θdx)
3
+

(
2pq − p3

)
24

(−θdx)
4
+ . . .

]
Yi+1 (1) =

[
1− q

2
((1− θ)dx)

2
+

pq

6
((1− θ)dx)

3
+

(
q2 − p2q

)
24

((1− θ)dx)
4
+ . . .

]
Yi (0)+

[
(1− θ)dx− p

2
((1− θ)dx)

2
+

(
p2 − q

)
6

((1− θ)dx)
3
+

(
2pq − p3

)
24

((1− θ)dx)
4
+ . . .

]
Yi (1) ,

(3.25)
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[
−q (−θdx) +

pq

2
(−θdx)

2
+

(
q2 − p2q

)
6

(−θdx)
3
+ . . .

]
Yi+1 (0)+

[
1− p(−θdx) +

(
p2 − q

)
2

(−θdx)
2
+

(
2pq − p3

)
6

(−θdx)
3
+ . . .

]
Yi+1 (1) =

[
−q ((1− θ)dx) +

pq

2
((1− θ)dx)

2
+

(
q2 − p2q

)
6

((1− θ)dx)
3
+ . . .

]
Yi (0)+

[
1− p((1− θ)dx) +

(
p2 − q

)
2

((1− θ)dx)
2
+

(
2pq − p3

)
6

((1− θ)dx)
3
+ . . .

]
Yi (1)

(3.26)

where i = 0, 1, . . . , N − 1 . Equations (3.25–3.26) include 2N equations with 2N + 2 unknowns for N spatial
elements. Thus, imposing mixed boundary conditions defined in (3.2) we can eliminate Y0(0) and YN (0) .
Finally, we reach the following linear system

AŶ = F̂ , (3.27)

where Ŷ = [Y0 (1) , Y1 (0) , Y1 (1) , . . . , YN−1 (0) , YN−1 (1) , YN (1)]
T including all unknown positions and

slopes, A is a ((2N)× (2N)) known matrix and F̂ is the residual vector coming from boundary conditions.
With the use of any suitable linear solver for Equation (3.27), we find the desired solutions at discrete positions.
Now, it is time to analyse the global error of the numerical approximation. Complete form of continuity
Equations (3.21–3.22) can be written as follows:

K∑
k=0

Yi+1 (k) (−θdx)
k
=

K∑
k=0

Yi (k) ((1− θ)dx)
k
+ dxρ1i , (3.28)

K∑
k=1

Yi+1 (k) k(−θdx)
k−1

=

K∑
k=1

Yi (k) k ((1− θ)dx)
k−1

+ dxρ2i , (3.29)

where ρ1i and ρ2i are the local truncation errors defined as

ρ1i =
[
Yi∗ (K + 1) (1− θ)

K+1 − Y(i+1)∗
(K + 1) (−θ)

K+1
]
dxK (3.30)

ρ2i =
[
Yi∗ (K + 1) (K + 1) (1− θ)

K − Y(i+1)∗
(K + 1) (K + 1) (−θ)

K
]
dxK−1 (3.31)

where i = 0, 1, . . . , N − 1 and Yi∗ defines the local transform at the point xi∗ ∈ [xi−1, xi+1] . Then exact
equation system corresponding to Equation (3.27) can be stated as

AY = F̂ + dxG (θ, dx) , (3.32)
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where Y is a ((2N)× 1) column vector corresponds to exact form of Ŷ and G (θ, dx) = G1 (θ, dx) +G2(θ, dx)

is a ((2N)× 1) column vector corresponds to the truncation errors as follows:

G1 (θ, dx) =



[
(1− θ)

K+1
Y0∗ (K + 1)− (−θ)

K+1
Y1∗ (K + 1)

]
0[

(1− θ)
K+1

Y1∗ (K + 1)− (−θ)
K+1

Y2∗ (K + 1)
]

0
.
.
.[

(1− θ)
K+1

Y(N−1)∗
(K + 1)− (−θ)

K+1
YN∗ (K + 1)

]
0


dxK (3.33)

G2 (θ, dx) =



0[
(K + 1) (1− θ)

K
Y0∗ (K + 1)− (K + 1) (−θ)

K
Y1∗ (K + 1)

]
0[

(K + 1) (1− θ)
K
Y1∗ (K + 1)− (K + 1) (−θ)

K
Y2∗ (K + 1)

]
.
.
.
0[

(K + 1) (1− θ)
K
Y(N−1)∗

(K + 1)− (K + 1) (−θ)
K
YN∗ (K + 1)

]


dxK−1 (3.34)

Now, defining the error column vector as ε = Y − Ŷ and subtracting Equation (3.32) from Equation (3.27)
yield

Aε = dxG(θ, dx) (3.35)

and defining new matrix A∗ = dxA−1 leads to

||ε|| ≤ ||A∗|| ||G (θ, dx) ||, (3.36)

where ||.|| is an arbitrary norm. The explicit derivation for the bound of ||G (θ, dx) || can be found in Appendix.
Assume that the following inequalities are satisfied

||G (θ, dx) || ≤ L2dx
S , (3.37)

||A∗|| ≤ L1, (3.38)

where L2 can be seen in the Appendix and S = K − 1, K . Thus, we obtain the following error estimates

||ε|| ≤

{
L1L2dx

K , θ = 0.5 and K is even

L1L2dx
K−1, otherwise

(3.39)

Note that, the norm ||A∗|| is almost independent of the spatial increment dx . Similar analysis can be
executed for different order boundary value problems. If the order of the differential equation is 2p , then one
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needs 2p contiunity equations to get consistent system of algebraic equations. Since one needs at least C2p−1

contiunity, the truncation error terms will start with dxK−2p+1 or dxK−2p+2 depending on θ . As a conclusion,
if the differential equation is 2p − th order and K is the transformation order, then the IELDTM leads to
(K − 2p+ 1)− th or (K − 2p+ 2)− th order method depending on the selection of the direction parameter θ .

3.2. Stability analysis

As explained in the last subsection, the stability and global errors of the present IELDTM for BVP (3.1–3.2) with
the selection of (3.15) clearly depend on the structure of the matrix A defined in (3.27). Thus, the invertibility
and the norm of the matrix A determine the stability of the present method. We analyse the bound value L1

stated in the last subsection with the inequality ||A∗|| = ||dxA−1|| ≤ L1 depending on p, q, dx, θ and K . In
Figure 1, we demonstrate the effect of the parameter values p and q to the matrix norm ||A∗||∞ . As seen in
Figure 1, the bound value L1 is finite and does not have much negative effect on the stability as clearly seen in
Equation (3.27). As stated in the error analysis, the norm bound of ||A∗|| is almost independent of the spatial
step size dx . In Figure 2, we have demonstrated the effect of the various values of K and θ to the norm value
||A∗||∞ . Asymptotic behaviour can be seen with changing values of K and a little effect of the changing values
of θ can be observed in Figure 2.

Figure 1. ||A∗||∞ norm values as a function of the problem parameters p and q .

4. Numerical experiments

Numerical illustrations of the current method through various kinds of boundary value problems are presented
here. We considered linear, nonlinear, singular, singularly perturbed and high order boundary value problems
to illustrate the versatility of the IELDTM. The produced results are compared with the exact solutions, DTM
and LDTM results. To measure errors of the present results, we prefer to use the following maximum error
norm ||E||∞ and absolute pointwise errors Ei

||E||L∞ = maxi|ynumerical
i − yexacti |

Ei = |ynumerical
i − yexacti |.
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Figure 2. Effects of K and θ values on ||A∗||∞ norm for the problem parameter values p = 3 and q = −3 .

Problem 4.1 [2] Consider the following thick pressure vessel problem represented by

d2y

dx2
+

1

x

dy

dx
− y

x2
= 0, 5 ≤ x ≤ 8 (4.1)

with the boundary conditions

y (5) = 0.0038731 and y (8) = 0.0030770 (4.2)

where the exact solution is y (x) = (10501x)/78000000 + 77999/(4875000x) . The differential transform of the
equation (4.1) is

Yi (k + 2) =
1

(k + 1)(k + 2)

[
k∑

n=0

(− (k − n+ 1)F (n, xi)Yi (k − n+ 1) +G(n, xi)Yi (k − n))

]
(4.3)

where Yi is the transformed form of the local function yi(x) . F (n, xi) and G(n, xi) can be defined as follows

F (n, xi) =
(−1)

n

(xi)
n+1 and G (n, xi) =

(−1)
n
n+ 1

(xi)
n+2 , i = 0, 1, . . . , N (4.4)

where the nodes are defined as xi = 5 + idx and dx = 3
N . The boundary conditions lead to the following

equations,

Y0 (0) = 0.0038731 and YN (0) = 0.0030770. (4.5)

For a typical element [xi, xi+1] the present IELDTM yields the following equations,

K∑
k=0

Yi+1 (k) (−θdx)
k
=

K∑
k=0

Yi (k) ((1− θ)dx)
k
, (4.6)
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K∑
k=1

Yi+1 (k) k (−θdx)
k−1

=

K∑
k=1

Yi (k) k ((1− θ)dx)
k−1

, (4.7)

where i = 0, 1, . . . , N − 1 and the coefficients Yi (k) can be calculated from the relation (4.3) in terms of Yi (0)

and Yi (1) .

Problem 4.2 [14] Consider the following singularly perturbed nonlinear BVP,

−ε
d2y

dx2
+ y + y2 = e

−2x√
ε , 0 ≤ x ≤ 1 (4.8)

with the following boundary conditions

y (0) = 1 and y (1) = e
−1√

ε (4.9)

where ε ≪ 1 and the exact solution is y (x) = e
−x√

ε . The transform of Equation (4.8) is

Yi (k + 2) =
1

ε(k + 1)(k + 2)

[
Yi (k) + Ȳi (2; 0, 0; k)− F (k, xi)

]
(4.10)

where Yi is the transformed form of the local function yi(x) . F (k, xi) can be defined as follows:

F (k, xi) =
1

k!

(
−2√
ε

)k

e

−2xi√
ε

, (4.11)

where the nodes are expressed by xi = idx and dx = 1
N . The boundary conditions lead to the following equations,

Y0 (0) = 1 and YN (0) = e
−1√

ε . (4.12)

The present IELDTM yields the same expressions defined in (4.6–4.7) and the required coefficients can be
obtained from Equation (4.10) in terms of Yi (0) and Yi (1) .

Problem 4.3 [12] Consider the following BVP

d4y

dx4
= sin (x) + sin2 (x)−

(
d2y

dx2

)2

, 0 ≤ x ≤ 1 (4.13)

with the following boundary conditions

y (0) = 0, y′(0) = 1, y (1) = sin(1) and y′ (1) = cos(1), (4.14)

where the exact solution is y (x) = sin(x) . The transform of Equation (4.13) is

Yi (k + 4) =
1

(k + 1)(k + 2)(k + 3)(k + 4)

[
F (k, xi) +

k∑
n=0

F (n, , xi)F (k − n, , xi)−Ȳi (0; 2, 2; k)

]
(4.15)
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where Yi is the transformed form of the local function yi(x) , Ȳi is defined in Section 2. F (k, xi) can be defined
by

F (k, xi) =
1

k!

dk(sinx)

dxk
|x=xi , (4.16)

where the nodes are defined by xi = idx and dx = 1
N . The boundary conditions lead to the following equations,

Y0 (0) = 0, Y0(1) = 1, YN (0) = sin(1) and YN (1) = cos(1). (4.17)

For a typical element [xi, xi+1] the present IELDTM yields

K∑
k=0

Yi+1 (k) (−θdx)
k
=

K∑
k=0

Yi (k) ((1− θ)dx)
k
,

K∑
k=1

Yi+1 (k) k (−θdx)
k−1

=

K∑
k=1

Yi (k) k ((1− θ)dx)
k−1

, (4.18)

K∑
k=2

Yi+1 (k) k(k − 1) (−θdx)
k−2

=

K∑
k=2

Yi (k) k(k − 1) ((1− θ)dx)
k−2

,

K∑
k=3

Yi+1 (k) k(k − 1)(k − 2) (−θdx)
k−3

=

K∑
k=3

Yi (k) k(k − 1)(k − 2) ((1− θ)dx)
k−3

,

where i = 0, 1, . . . , N − 1 and the coefficients can be calculated from equation (4.15) in terms of Yi (0) , Yi (1) ,
Yi (2) and Yi (3) .

Problem 4.4 [17] Consider the following second order nonlinear BVP,

d2y

dx2
=

1

8

(
32 + 2x3 − y

dy

dx

)
, 1 ≤ x ≤ 2 (4.19)

with the boundary conditions
y (1) = 17 and y′ (2) = 0 (4.20)

where the exact solution is y (x) = x2 + 16
x . The transform of Equation (4.19) is

Yi (k + 2) =
1

8(k + 1)(k + 2)

[
32δ (k) + 2 F (k, xi)− Ȳi (1; 1, 1; k)

]
(4.21)

where Yi is the transformed form of the local function yi(x) , δ is Kronecker delta, Ȳi is defined in Section 2.
F (k, xi) is defined by

F (k, xi) =

{(
3
k

)
x3−k
i , k = 0, 1, 2, 3

0, otherwise
(4.22)

where the nodes are defined by xi = 1 + idx and dx = 1
N . The boundary conditions lead to the following

equations,
Y0 (0) = 17 and YN (1) = 0. (4.23)
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The present IELDTM yields the same expressions defined in (4.6–4.7) and the required coefficients can be
obtained from Equation (4.21) in terms of Yi (0) and Yi (1) .

Problem 4.5 [17] Consider the following nonlinear BVP,

d2y

dx2
=

1

x3

(
dy

dx

)2

− 9
y2

x5
+ 4x, 1 ≤ x ≤ 2 (4.24)

with the boundary conditions
y (1) = 0 and y′(2) = 4 + 12ln(2) (4.25)

where the exact solution is y (x) = x3ln(x) . The transform of equation (4.19) is

Yi (k + 2) =
1

(k + 1)(k + 2)

[
k∑

n=0

(
F (n, xi) Ȳi (0; 1, 2; k − n)− 9G (n, xi) Ȳi (2; 0, 0; k − n)

)
+ 4H (k, xi)

]
(4.26)

where Yi is the transformed form of the local function yi(x) , δ is Kronecker delta, Ȳi is defined in Section 2.
F (n, xi) , G (n, xi) and H (k, xi) are defined by

F (n, xi) =
(−1)

n
(n+ 1) (n+ 2)

2 (xi)
n+3 , G (n, xi) =

(−1)
n
(n+ 1) (n+ 2) (n+ 3) (n+ 4)

24 (xi)
n+5 (4.27)

H (k, xi) =

{(
1
k

)
x1−k
i , k = 0, 1

0, otherwise
(4.28)

where the nodes are defined by xi = 1 + idx and dx = 1
N . The boundary conditions lead to the following

equations,
Y0 (0) = 0 and YN (1) = 4 + 12ln(2). (4.29)

The present IELDTM yields the same expressions defined in (4.6-4.7) and the coefficients can be evaluated from
equation (4.26) in terms of Yi (0) and Yi (1) .

Problem 4.6 [36] Consider the following nonlinear singular BVP,

d2y

dx2
+

1

x

dy

dx
= −y5, 0 < x < 1 (4.30)

with the boundary conditions

y′(0) = 0 and y (1) =

√
3

2
. (4.31)

where the exact solution is y (x) =
(
1 + x2/3

)−1/2 . The transform of equation (4.6) is

Y0 (k + 2) =
1

(k + 1)(k + 2)

[
−Ȳ0 (5; 0, 0; k)

]
(4.32)
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Yi (k + 2) =
1

(k + 1)(k + 2)

[
k∑

n=0

(
F (n, xi)Yi (k − n)− Ȳi (5; 0, 0; k)

)]
, i = 1, 2, ..., N (4.33)

where Yi is the transformed form of the local function yi(x) , Ȳi is defined in Section 2 and F (n, xi) is defined
as

F (n, xi) =
(−1)

n

(xi)
n+1 i = 0, 1, . . . , N (4.34)

The nodes are defined by xi = idx and dx = 1
N . The boundary conditions lead to the following equations,

Y0(1) = 0 and YN (0) =

√
3

2
. (4.35)

The present IELDTM yields the same expressions defined in (4.6-4.7) and the coefficients can be evaluated from
equation (4.32-4.33) in terms of Yi (0) and Yi (1) .

In Figures 3–7, we demonstrate the effectiveness of the current IELDTM and the DTM on various BVP
types, taking into account pointwise errors. As clearly seen in the figures, the present IELDTM with θ = 0.5

is more accurate than the LDTM (θ = 0) and the DTM for all types of the linear and nonlinear BVPs. With
the consideration of the same transformation order K , numerically constructed IELDTM is seen to be far
more efficient than the semianalytical DTM. While the DTM produces acceptable results for Problem 4.1 and
Problem 4.3, the DTM results are seen to be divergent for Problem 4.2 and Problems 4.4–4.5 as shown in Figures
4, 8 and 9. Thus, the convergence, accuracy and versatility of the IELDTM are much more reliable than the
classical DTM and the LDTM. To demonstrate the effect of the spatial step size dx and the transformation
order K , the maximum errors produced with various parameter values are presented in Tables 1–5. In line
with our theoretical analysis, the accuracy of the present IELDTM is increasing with either dx -refinement or
K -refinement for all problems. Both the semianalytical DTM and the numerical LDTM [34, 35, 43] suffer from
instability, especially in solving stiff BVPs. Just at this time, the IELDTM is here constructed for elimination
of this serious drawback. Since Problem 4.2 has stiff nature for ε ≪ 1 , the IELDTM and the rival methods are
compraed with the calculation of ||E||L∞ error norms for various challenging ε values in Table 6. As observed
from the table, the DTM is completely divergent and the LDTM produce divergent results for ε < 0.001 . The
IELDTM with θ = 0 and θ = 0.5 have ability to produce accurate numerical solutions up to ε = 0.00001 -
with dx=0.01. To produce Table 6, the LDTM and the DTM are treated as a shooting method as previously
considered in literature [38, 43] and the IELDTM with θ = 0 and θ = 0.5 are treated as a direct method as
mathematically derived in Section 3.

Numerical nature of the current IELDTM depends heavily on the choice of the direction parameter value
θ . Figure 10 has shown how the maximum error norms vary with respect to the direction parameter θ . It
is obvious that the selections θ ∼= 0.5 provide more accurate results as we already proved in error analysis.
In Figure 11, processing times of the present IELDTM algorithms for solving Problems 4.4–4.5 are illustrated
with the changing values of the transformation order K . It is possible to observe that the computational
cost increases linearly according to the transformation order K . In Table 7, the theoretical order expectations
and experimental order averages of the IELDTM are compared with the various values of K . The highly
matching experiment results are seen in the table and the theoretical expectations stated in the error analysis
are verified. The experimental order is calculated as p = log(E1/E2)/log(dx1/dx2) where dx1 and dx2 are
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spatial increments and E1 and E2 are the corresponding absolute errors. By evaluating the experimental orders
for various dx1 and dx2 values, the experimental average order is obtained for each problem. In addition to
the above and those suggested here, also high order shooting methods and finite difference methods (FDM)
have been widely used in the solution of various versions of BVPs in the literature [2–10, 36, 37]. To prove the
efficiency of the proposed IELDTM, the ||E||L∞ error norms of the present algorithm, the sixth order shooting
method [36] and the fourth order FDM [37] are compared in Table 8. The IELDTM of order four and six are
used for computations with θ = 0.5 . As clearly observed from the table, our sixth order method produces far
more accurate results than the sixth order shooting method [36]. Similarly, the present fourth order IELDTM
offers far more accurate results than the fourth order FDM [37]. The CPU times required to produce the
present results are also demonstrated in Table 8. As we illustrated qualitatively and quantitatively, the present
IELDTM is an effective numerical method in terms of reliability, versatility and computational efficiency.

Figure 3. Pointwise errors produced by the IELDTM and the DTM with the fixed parameter values dx = 0.1 and
K = 9 for Problem 4.1.

Table 1. Maximum errors of the IELDTM with θ = 0.5 and various values of the parameters K and N for Problem
4.1.

K/N N = 5 N = 10 N = 15 N = 20 N = 25 N = 30 N = 35 N = 40
K = 3 6.62E-07 1.63E-07 7.22E-08 4.06E-08 2.60E-08 1.80E-08 1.32E-08 1.01E-08
K = 4 7.84E-09 4.76E-10 9.46E-11 2.99E-11 1.22E-11 5.89E-12 3.18E-12 1.87E-12
K = 5 2.51E-09 1.51E-10 2.99E-11 9.45E-12 3.86E-12 1.86E-12 1.01E-12 5.89E-13
K = 6 4.39E-11 6.75E-13 5.87E-14 1.04E-14 2.73E-15 9.12E-16 3.63E-16 1.65E-16
K = 7 8.89E-12 1.33E-13 1.15E-14 2.04E-15 5.33E-16 1.78E-16 6.98E-17 2.82E-17
K = 8 2.06E-13 7.91E-16 3.12E-17 3.47E-18 2.17E-18 2.60E-18 3.04E-18 4.34E-18
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Figure 4. Pointwise errors produced by the IELDTM and the DTM with the fixed parameter values dx = 0.05, ε = 0.001
and K = 13 for Problem 4.2.

Table 2. Maximum errors of the IELDTM with θ = 0.5 and various values of the parameters K and N for Problem
4.2.

K/N N = 20 N = 25 N = 30 N = 35 N = 40 N = 45 N = 50
K = 5 4.26E-04 1.86E-04 9.12E-05 4.88E-05 2.80E-05 1.70E-05 1.14E-05
K = 6 2.93E-05 8.32E-06 2.87E-06 1.14E-06 5.05E-07 2.44E-07 1.33E-07
K = 7 6.63E-06 1.82E-06 6.14E-07 2.40E-07 1.05E-07 5.03E-08 2.73E-08
K = 8 3.60E-07 6.54E-08 1.57E-08 4.56E-09 1.54E-09 5.87E-10 2.59E-10
K = 9 5.91E-08 1.03E-08 2.40E-09 6.87E-10 2.30E-10 8.67E-11 3.80E-11
K = 10 2.66E-09 3.08E-10 5.11E-11 1.09E-11 2.83E-12 8.50E-13 3.04E-13
K = 11 3.42E-10 3.78E-11 6.10E-12 1.28E-12 3.28E-13 9.77E-14 3.47E-14
K = 12 1.31E-11 9.72E-13 1.12E-13 1.74E-14 3.44E-15 7.77E-16 3.33E-16

Figure 5. Pointwise errors produced by the IELDTM and the DTM with the fixed parameter values dx = 0.05 and
K = 7 for Problem 4.3.

5. Conclusion

In this study, the implicit-explicit local differential transform method (IELDTM) has been produced for solving
BVPs. Based on the DTM and the local DTM idea; a high-order, direction free and stability-preserved numerical
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Table 3. Maximum errors of the IELDTM with θ = 0.5 and various values of the parameters K and N for Problem
4.3.

K/N N = 5 N = 10 N = 15 N = 20 N = 25 N = 30 N = 35 N = 40
K = 5 1.90E-06 4.99E-07 2.22E-07 1.25E-07 8.02E-08 5.56E-08 4.09E-08 3.13E-08
K = 6 2.83E-09 1.86E-10 3.70E-11 1.17E-11 4.81E-12 2.32E-12 1.25E-12 7.34E-13
K = 7 9.51E-10 6.23E-11 1.24E-11 3.90E-12 1.60E-12 7.73E-13 4.17E-13 2.45E-13
K = 8 1.13E-12 1.83E-14 1.67E-15 4.44E-16 2.22E-16 5.55E-16 4.44E-16 3.33E-16
K = 9 2.26E-13 3.83E-15 3.33E-16 1.11E-16 2.22E-16 3.33E-16 3.33E-16 2.22E-16
K = 10 3.33E-16 2.22E-16 2.22E-16 2.22E-16 2.22E-16 4.44E-16 3.33E-16 3.33E-16

Figure 6. Pointwise errors produced by the IELDTM with the fixed parameter values dx = 0.1 and K = 13 for
Problem 4.4.

Figure 7. Pointwise errors produced by the IELDTM with the fixed parameter values dx = 0.1 and K = 9 for Problem
4.5.

method has been presented. Priori global error analysis has been done for the second order test problem and
the order conditions of the IELDTM have been determined according to the direction parameter. Stability
properties of the IELDTM have been explained with the use of approximation matrices. Various kinds of linear
and nonlinear BVPs have been considered as test problems including singular and singularly perturbed BVPs.
As proven theoretically and experimentally throughout the study, the IELDTM is a numerically reliable, high-
order, stable and computationally efficient method for solving BVPs. One of the main advantages of the method
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Table 4. Maximum errors of the IELDTM with θ = 0.5 and various values of the parameters K and N for Problem
4.4

K/N N = 5 N = 10 N = 15 N = 20 N = 25 N = 30 N = 35 N = 40
K = 3 4.84E-02 1.18E-02 5.20E-03 2.92E-03 1.87E-03 1.30E-03 9.51E-04 7.28E-04
K = 4 1.16E-03 6.85E-05 1.34E-05 4.22E-06 1.73E-06 8.31E-07 4.48E-07 2.63E-07
K = 5 3.71E-04 2.13E-05 4.14E-06 1.30E-06 5.32E-07 2.56E-07 1.38E-07 8.10E-08
K = 6 1.41E-05 2.01E-07 1.73E-08 3.06E-09 7.99E-10 2.67E-10 1.06E-10 4.74E-11
K = 7 2.96E-06 3.92E-08 3.33E-09 5.87E-10 1.53E-10 5.11E-11 2.03E-11 9.08E-12
K = 8 1.56E-07 5.29E-10 2.00E-11 1.97E-12 3.53E-13 8.88E-14 2.66E-14 1.95E-14
K = 9 2.57E-08 7.66E-11 2.82E-12 2.93E-13 4.09E-14 2.84E-14 1.24E-14 1.95E-14
K = 10 1.73E-09 1.38E-12 2.31E-14 1.95E-14 1.95E-14 1.24E-14 2.31E-14 1.95E-14

Table 5. Maximum errors of the IELDTM with θ = 0.5 and various values of the parameters K and N for Problem
4.5.

K/N N = 5 N = 10 N = 15 N = 20 N = 25 N = 30 N = 35 N = 40
K = 3 3.13E-03 7.77E-04 3.45E-04 1.94E-04 1.24E-04 8.62E-05 6.34E-05 4.85E-05
K = 4 1.13E-06 6.29E-08 1.22E-08 3.83E-09 1.56E-09 7.53E-10 4.06E-10 2.38E-10
K = 5 1.51E-06 9.23E-08 1.82E-08 5.74E-09 2.35E-09 1.13E-09 6.11E-10 3.58E-10
K = 6 9.62E-09 1.41E-10 1.22E-11 2.16E-12 5.63E-13 1.94E-13 7.73E-14 3.64E-14
K = 7 2.42E-09 3.54E-11 3.07E-12 5.53E-13 1.41E-13 4.88E-14 2.40E-14 1.20E-14
K = 8 3.95E-11 1.38E-13 9.77E-15 7.11E-15 7.11E-15 4.44E-15 8.44E-15 6.22E-15
K = 9 6.47E-12 2.93E-14 3.55E-15 4.44E-15 2.66E-15 3.55E-15 4.44E-15 6.22E-15

Figure 8. Comparison of numerical results produced by the IELDTM and the DTM with the fixed parameter values
dx = 0.1 and K = 11 for Problem 4.4.

proposed here is that the degrees of freedom are not affected by the order of the method, i.e. the IELDTM is
an optimized numerical technique. It has been proven that the degrees of freedom depend only on the order
of the differential equation concerned. If the differential equation is of order p and N nodes are used then
the degrees of freedom is 2pN irrespective of the local transformation order K . It has thus been proven that
the convergence rate of the IELDTM increases with either p− refinement or h− refinement. If the number of
terms used in local approximations is increased, then the p−refinement procedure can be easily applied for the
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Figure 9. Comparison of numerical results produced by the IELDTM and the DTM with the fixed parameter values
dx = 0.1 and K = 9 for Problem 4.5.

Figure 10. Effect of the direction parameter θ to maximum errors produced by the IELDTM with the parameter values
dx = 0.1 and K = 9 .

Figure 11. Processing times with respect to varying values of the transformation orders K with the parameter values
dx = 0.1 and θ = 0.5 .

IELDTM. The central approach with θ = 0.5 has been proven to be more accurate than both the other explicit
(θ = 0) and implicit (θ ̸= 0) selections.
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Table 6. Comparison of the ||E||L∞ norms of the IELDTM, LDTM and DTM with K = 6 and dx = 0.01 for Problem
4.2.

ε DTM LDTM IELDTM(θ = 0) IELDTM(θ = 0.5)
1 divergent 2.15E-14 2.15E-14 4.44E-16
0.5 divergent 7.22E-14 7.22E-14 2.66E-15
0.4 divergent 1.38E-14 1.38E-14 8.88E-16
0.3 divergent 3.17E-13 3.17E-13 3.33E-16
0.2 divergent 9.76E-13 9.76E-13 6.66E-13
0.1 divergent 6.10E-12 6.10E-12 2.00E-15
0.01 divergent 2.08E-09 2.08E-09 2.16E-12
0.0015 divergent 6.29E-06 2.67E-07 6.38E-10
0.001 divergent 1.00E-02 7.67E-07 2.15E-09
0.0001 divergent divergent 4.12E-04 2.10E-08
0.00001 divergent divergent 4.09E-01 0.90E-02

Table 7. Validation of the approximation orders of the present IELDTM with the direction parameter θ = 0.5 for
Problems 4.4–4.5.

Problem 4.4 Problem 4.5
K Experimental

average order
Theoretical
expectation

Experimental
average order

Theoretical
expectation

K = 3 2.016 2 2.003 2
K = 4 4.030 4 4.062 4
K = 5 4.047 4 4.013 4
K = 6 6.054 6 6.042 6
K = 7 6.095 6 6.049 6

Table 8. Comparison of the IELDTM and the rival higher order methods with ||E||L∞ norms for Problem 4.6.

N Shooting
method [36]

FDM [37] EILDTM
(θ = 0.5) K = 4

CPU time EILDTM
(θ = 0.5) K = 6

CPU time

8 1.23E-06 4.36E-07 0.025 s 9.85E-10 0.035 s
16 3.47E-08 4.78E-04 2.72E-08 0.048 s 1.54E-11 0.084 s
32 8.40E-10 3.31E-05 1.70E-09 0.127 s 2.43E-13 0.194 s
64 2.05E-11 2.12E-06 1.06E-10 0.539 s 4.21E-15 0.559 s
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6. Appendix

Complete error analysis of the IELDTM requires the bound of ||G(θ, dx)|| in terms of the direction parameter
θ . Then, the following two cases are considered:
Case 1: Assume that the direction parameter θ = 0.5 and K is even. In this case, the following general
conditions are reached for G1(0.5, dx)

(G1(0.5, dx))i =
[
(0.5)

K+1
Yi∗ (K + 1)− (−0.5)

K+1 (
Yi∗ (K + 1) + dx(K + 2)Y i∗

(K + 2)
)]

dxK ,

=

(
1

2

)K

Yi∗ (K + 1) dxK +O(dxK+1).

Defining M1 = maxi

∣∣∣( 1
2

)K
Yi∗ (K + 1)

∣∣∣ and neglecting the higher order terms yield

||G1(0.5, dx)|| ≤ M1dx
K .

Then the general term of G2(0.5, dx) becomes,

(G2(0.5, dx))i =
[
(K + 1) (0.5)

K
Yi∗ (K + 1)− (K + 1) (−0.5)

K (
Yi∗ (K + 1) + dx(K + 2)Y i∗

(K + 2)
)]

dxK−1

= − (K + 1) (K + 2)

(
1

2

)K

Yi∗ (K + 2) dxK +O(dxK+1).

Defining M2 = maxi

∣∣∣(K + 1) (K + 2)
(
1
2

)K
Yi∗ (K + 2)

∣∣∣ and neglecting the higher order terms yield

||G2(0.5, dx)|| ≤ M2dx
K .

Remembering G (0.5, dx) = G1 (0.5, dx) + G2(0.5, dx) and taking L2 = max (M1, M2) lead to the estimate
||G(0.5, dx)|| ≤ L2dx

K .
Case 2: Assume that the conditions of Case 1 are not satisfied. Then, the following general terms are

found for G1(θ, dx)

(G1(θ, dx))i =
[
(1− θ)

K+1
Yi∗ (K + 1)− (−θ)

K+1 (
Yi∗ (K + 1) + dx(K + 2)Y i∗

(K + 2)
)]

dxK

=
[
(1− θ)

K+1 − (−θ)
K+1

]
Yi∗ (K + 1) dxK +O(dxK+1).

Defining M3 = maxi

∣∣∣[(1− θ)
K+1 − (−θ)

K+1
]
Yi∗ (K + 1)

∣∣∣ and neglecting the higher order terms give rise to

||G1(θ, dx)|| ≤ M3dx
K .

Thus the general term of G2(θ, dx) becomes,

(G2(θ, dx))i =
[
(K + 1) (1− θ)

K
Yi∗ (K + 1)− (K + 1) (−θ)

K
(Yi∗ (K + 1) + dx(K + 2)Yi∗ (K + 2))

]
dxK−1

=
[
(K + 1) (1− θ)

K − (K + 1) (−θ)
K
]
Yi∗ (K + 1) dx

K−1
+O(dxK).
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Defining M4 = maxi

∣∣∣[(K + 1) (1− θ)
K − (K + 1) (−θ)

K
]
Yi∗ (K + 1)

∣∣∣ and dropping the higher order terms

lead to
||G2(θ, dx)|| ≤ M4dx

K−1.

Since G (θ, dx) = G1 (θ, dx) + G2(θ, dx) , taking L2 = max (M3dx, M4) leads to the estimate ||G(θ, dx)|| ≤

L2dx
K−1 .
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