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Abstract: In this paper we aim to share a way to impose some nonselfadjoint boundary conditions for the solutions
of a formally symmetric fifth-order differential equation. Constructing a dissipative operator related with the problem
we obtain some informations on spectral properties of the problem. In particular, using coordinate-free approach we
construct characteristic matrix-function related with the contraction which is obtained with the aid of the dissipative
operator.
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1. Introduction
Model operator and characteristic function theories are some basic tools to get some information about the
spectral properties of contractions in Hilbert spaces. First model operators have been introduced by Livshitz
[10] and de Branges [6]. However, a proper description of model operators has been given by Sz.-Nagy and Foias
with the aid of dilation theory for a single operator [18].

Definition 1.1 Let A be an operator acting on a Hilbert space H . A dilation of A is an operator A such that
H ⊂ H if for each k ∈ N

Ak = PHAk|H,

where PH is the orthogonal projection of H onto H . Here H is called the dilation space.

One of the most important results on dilations is the following theorem of Sz.-Nagy [19].

Theorem 1.2 Let A be a contraction acting on a Hilbert space H . Then there exists a Hilbert space H
containing H and a unitary operator U acting on H such that

Am = PHU
m|H

The dilation A is said to be minimal if span {AmH : m ∈ Z} . = H . In the case of the dilation A of A is
unitary, A should be a contraction.

In 1965, Sarason [17] introduced the geometric structure of the dilation space. He showed that an operator
A : H → H is a dilation if and only if H decomposed as

H = D− ⊕H ⊕D+,
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where AD− ⊂ D−, A∗D+ ⊂ D+ with PHA | H = A.

Matrix representation of the minimal unitary dilation of a contraction acting on H = D− ⊕H ⊕D+ is
given by Nikolski and Vasyunin [13] (also see [14]). Their following theorem is very valuable in this context.
Related important results on dilation theory, spectral analysis and Sturm–Liouville operators are given in [15, 16]
and [1–3].

Theorem 1.3 An operator A : H → H is a minimal unitary dilation of A : H → H if and only if there exist
subspaces D− and D+ of H such that

H = D− ⊕H ⊕D+

and with respect to this decomposition, A has matrix

A =

 B∗ 0 0
DA∗U∗

∗ A 0
−UA∗U∗

∗ UDA B

 ,
where DA = (I − A∗A)1/2 and DA∗ = (I − AA∗)1/2 are the defect operators of A and B = A | D+,

B∗
∗ = A∗ | D− are pure isometries, U : DAH → KerB∗ and U∗ : DA∗H → KerB∗ are partial isometries.

Another description of the dilation operator A of A can be given with the following unitary mappings

η : E → D+ ⊖AD+, η∗ : E∗ → D− ⊖A∗D−,

where E and E∗ are some auxiliary Hilbert spaces such that

dimE = dimDAH = dimKerB, dimE∗ = dimDA∗H = dimKerB∗,

and hence the following functional embeddings

π
(∑

m∈Z z
mem

)
=

∑
m∈Z Amηem, em ∈ E,

π∗
(∑

m∈Z z
me∗m

)
=

∑
m∈Z Am+1η∗e∗m, e∗m ∈ E∗.

The function
ΘA = π∗

∗π : L2(E) → L2(E∗)

is called characteristic function of the contraction A . This can be written explicitly as

ΘA(µ)φ = U∗(−A+ µDA∗(I − µA∗)−1DA)U
∗φ, (1.1)

where φ ∈ E and |µ| ≤ 1.

This definition of the characteristic function coincides with the definition of the characteristic function
given by Sz.-Nagy and Foias [18, 20]. However, this way of the construction of the characteristic function is
different from the way introduced by Sz.-Nagy and Foias. Indeed, it does not contain the coordinates. For this
reason this method is called coordinate-free method for the construction of the characteristic function. The
spectral analysis of formally symmetric differential operators together with nonselfadjoint boundary conditions is
one of the considerable field in the literature. Up to now, almost all differential operators have been constructed
with the help of even-order differential expressions and some suitable boundary conditions [4, 5, 21, 28, 29].
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Recently, odd-order differential expressions together with suitable boundary conditions have been studied in
[22–27]. In these works, some problems have been considered as selfadjoint and the others have been considered
as nonselfadjoint problems. As is known that the famous second-order differential expression is the following

ℓ(f) =
1

w
[−(pf ′)′ + qf ], (1.2)

where p, q and w are real-valued functions. The general form of the expression (1.2) has been introduced by
Eckhardt et al. [7] as

ℓ(f) =
1

w
[−(p[f ′ + sf ])′ + sp[f ′ + sf ] + qf ], (1.3)

where s is also real-valued function. Clearly, when s = 0 , Eq. (1.3) turns out to be equivalent to Eq. (1.2).
But there is no need to consider s as zero. Therefore, Eq. (1.3) particularly shows that there are formally
symmetric differential expressions that have not been discovered yet.

In [26], following fifth-order formally symmetric differential equation has been considered

i
(
q2 (q2f

′′)
′
)′′

+ (p2f
′′)

′′ − (p1f
′)
′
+ p0f + i

[
(q0f)

′
+ q0f

′ − (q1f
′)
′′ − (q1f

′′)
′
]
= µwf (1.4)

on a regular interval and imposing some separated and coupled selfadjoint boundary conditions, some spectral
properties of the eigenvalues have been studied. In this paper, we will also consider a fifth-order formally
symmetric differential equation but the equation that we consider will contain Eq. (1.4). Indeed, we will
consider the following equation

i
(
q2 (q2f

′′)
′)′′

+
{
[p2 (f

′′ − s1f
′ + s2f)]

′
+ p2s1 (f

′′ − s1f
′)− p1 (f

′ + s4f) + s3f
}′

+p2s2f
′′ − s3f

′ + p1s4 (f
′ + s4f) + p0f + i

[
(q0f)

′
+ q0f

′ − (q1f
′)
′′ − (q1f

′′)
′]
= µwf,

(1.5)

on an interval [a, b]. At a first glance, Eq. (1.5) may seem to be very complicated. However, for the cases
s1 = s2 = s3 = s4 ≡ 0 on [a, b], the Eq. (1.5) is the same with Eq. (1.4). We assume that all the coefficients
in (1.5) are real-valued functions and regular , q2 ̸= 0, w > 0 on [a, b] and µ is a complex number. Moreover,
we assume that q−1

2 , s1q
−1
2 , q1q

−1
2 , p2q

−1
2 , p2s1q

−1
2 , p1s4, s3, q0, p1s

2
4 are integrable on [a, b].

In this work we aim to study on the eigenvalues and eigen and associated functions of a nonselfadjoint
boundary value problem generated by Eq. (1.5) and some nonselfadjoint separated boundary conditions. For
this aim, we will construct a suitable operator such that the boundary value problem can be handled as the
eigenvalue problem of that operator. In particular, this operator will be a dissipative operator in the Hilbert
space L2 ([a, b] ;w) and therefore it will admit to consider the connection between dissipative and contractive
operator. Using the way of Nikolski and Vasyunin [12–14] on coordinate-free approach we will construct the
characteristic function of the contraction relating with the dissipative operator and then we will prove some
completeness theorems. It should be noted that the form (1.5) has not been introduced earlier and coordinate
free-approach will be used for the first time for a fifth-order dissipative operator.

2. Basic results
In this paper we consider the Hilbert space L2 ([a, b] ;w) as the standart Lebesgue space that consists of all
functions f such that
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∥f∥2 =

∫ b

a

|f |2 wdx <∞,

where ∥f∥2 = (f, f) and

(f, g) =

∫ b

a

fgwdx.

Now we shall introduce the r th quasi-derivative f [r] of a function f as follows

f [0] = f ;
f [1] = f ′,
f [2] = − 1+i√

2
q2f

′′,

f [3] = iq2 (q2f
′′)

′
+ p2 (f

′′ − s1f
′ + s2f)− iq1f

′,

f [4] = −i
(
q2 (q2f

′′)
′)′ − [p2 (f

′′ − s1f
′ + s2f)]

′ − p2s1 (f
′′ − s1f

′)

+p1 (f
′ + s4f)− s3f + iq1f

′′ − iq0f + i (q1f
′)
′
,

f [5] = µf.

Using these quasi-derivatives we can handle the Eq. (1.5) as the following Hamiltonian system

JF ′ = (µW + P)F, (2.1)

where x ∈ [a, b], J,W and P are 5× 5 matrices, F is a 5× 1 vector such that

W =


w

 , J =


−1

−1
i

1
1

 , F =


f
f [1]

f [2]

f [3]

f [4]

 , (2.2)

and

P =



−p1s24 − p0 −p1s4 + s3 − iq0
1−i√

2

p2s2
q2

−p1s4 + s3 + iq0 −p2s21 − p1
1−i√

2

(
−p2s1+iq1

q2

)
1

1+i√
2

p2s2
q2

1+i√
2

(
−p2s1−iq1

q2

)
−p2

q22
− 1+i√

2
1
q2

− 1−i√
2

1
q2

1

 .

Here all the other elements of these matrices are zero. Eq. (2.1) particularly implies the following.

Lemma 2.1 There exists a unique solution f(x, µ) of (1.5) satisfying the conditions

f [s](l, µ) = ls,

where l ∈ [a, b], ls ∈ C and s = 0, 1, ..., 4. The functions f [s](., µ) of µ are entire functions.
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Let B consist of the functions f ∈ L2 ([a, b];w) such that f [s] is absolutely continuous on [a, b] , where
s = 0, 1, ..., 4, and f [5] ∈ L2 ([a, b];w) . Then we can introduce the following Lagrange’s identity for the functions
f and g belonging to B

∫ b

a

(
f [5]g − fg[5]

)
wdx = [f, g](b)− [f, g](a), (2.3)

where [., .] : B × B × [a, b] → C with the rule

[f, g] = fg[4] − f [4]g + f [1]g[3] − f [3]g[1] + if [2]g[2], x ∈ [a, b].

Following the same procedure of [11, pp. 63-64], we may share the following.

Lemma 2.2 There exists f ∈ B subject to the complex numbers cs, ds, s = 0, 1, ..., 4, satisfying

f [s](a) = cs, f
[s](b) = ds.

We define the maximal operator M on B using the following rule

Mf = f [5]

and the minimal operator M0 as the restriction of M to B0 that contains the functions f ∈ B such that

f [s](a) = 0, f [s](b) = 0,

where s = 0, 1, ..., 4. M0 is the symmetric, closed operator such that M∗
0 =M [9, 11].

For the closed symmetric operators a basic theory is the deficiency indices theory for describing maximal
selfadjoint and nonselfadjoint extensions of these operators. The deficiency indices m and n of a closed
symmetric operator A with domain Dom(A) are defined as the dimensions of the following subspaces

m = dim (H ⊖ (A− iI)Dom(A)) , n = dim (H ⊖ (A+ iI)Dom(A)) ,

where H is the Hilbert space.
Note that the deficiency indices of M0 are (5, 5) [9, 11].
Gorbachuks’ introduced a way to share the dissipative (maximal) extensions of a symmetric, closed

operator A in the Hilbert space H with domain Dom(A) using boundary value space [8]. Indeed, if for any
y, z ∈ Dom(A∗), where Dom(A∗) is the domain of the adjoint operator A∗ of A, the equation holds

(A∗y, z)− (y,A∗z) = (τ1y, τ2z)H1
− (τ2y, τ1z)H1

,

where τ1,2 : Dom(A∗) → H1, H1 is a Hilbert space, such that τ1y = y1, τ2y = y2, y1, y2 ∈ H1 then the triple
(H1, τ1, τ2) is a boundary value space of A.

For f ∈ B we define the following mappings

τ1f =

〈
f [4](a), f [3](a),

1

2
f [2](a) +

i

2
f [2](b), f(b), f [1](b)

〉
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and
τ2f =

〈
f(a), f [1](a), if [2](a) + f [2](b), f [4](b), f [3](b)

〉
.

Then we have the following.

Theorem 2.3 A boundary value space of M0 is (C5, τ1, τ2).

Proof For f, g ∈ B one has

(τ1f, τ2g)− (τ2f, τ1g) = [f, g](b)− [f, g](a). (2.4)

On the other side we have
(Mf, g)− (f,Mg) = [f, g](b)− [f, g](a). (2.5)

Therefore (2.4) and (2.5) together with Lemma 2.2 complete the proof. 2

Using the boundary value space (C5, τ1, τ2) and Gorbachuks’ result [8] we can introduce the following
theorem.

Theorem 2.4 For a contraction K on C5 the boundary condition

(K − I) τ1f + i (K + I) τ2f = 0, f ∈ B,

describes the maximal dissipative extension of M0.

Corollary 2.5 For f ∈ B following separated boundary conditions

f(a) + γ1f
[4](a) = 0,

f [1](a) + γ2f
[3](a) = 0,

(i+ γ3) f
[2](a) + (1 + iγ3) f

[2](b) = 0,
f [4](b) + γ4f(b) = 0,
f [3](b) + γ5f

[1](b) = 0,

(2.6)

where γ1, γ2 are real numbers, γ3, γ4, γ5 are complex numbers with Imγt > 0, t = 3, 4, 5, γ3 ̸= i, describe the
maximal dissipative extension of M0.

We will handle the problem (1.5), (2.6) as the eigenvalue problem of the operator N generated by the rule

Nf = f [5]

with domain D(N) that contains the functions f ∈ B satisfying the conditions (2.6). Note that N is maximal
dissipative in L2([a, b];w).

Theorem 2.6 D(N) does not contain a nontrivial subspace on which N has a selfadjoint part there.

Proof For f ∈ D(N) we obtain from (2.3) that

Im(Nf, f) =
2Imγ3

|1 + iγ3|2
∣∣∣f [2](a)∣∣∣2 + Imγ4 |f(b)|2 + Imγ5

∣∣∣f [1](b)∣∣∣2 . (2.7)
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Let us assume that N is selfadjoint on Ds(N) ⊂ D(N) . Then for f ∈ Ds(N) we obtain from (2.7) that
f(b) = f [1](b) = f [2](a) = 0. From the conditions (2.6) we get that f [4](b) = f [3](b) = f [2](b) = 0. Therefore
f ≡ 0. The proof is completed. 2

Boundary conditions (2.6) can also be considered as the following

F (a) =


γ1

γ2
1 + iγ3

−1
−1



t1
t2
t3
t2
t1

 =W.t (2.8)

and

F (b) =


−1

−1
− (i+ γ3)

γ5
γ4



t1
t2
t3
t2
t1

 = P.t (2.9)

where F is the vector generated by f with the rule (2.2), all the other elements of W and P are zero and
t1, ..., t5 are some real numbers. Using (2.8) and (2.9) we obtain the following.

Theorem 2.7 Eigenvalues of N belong to the half-plane Imµ > 0 without any finite accumulation point. The
only possible accumulation point may be infinity.

Proof Corollary 2.5 and Theorem 2.6 imply that all eigenvalues lie in the open upper half-plane.
Let f(x, µ) be a solution of (1.5) and F (x, µ) be the corresponding vector according to the rule given in

(2.2). Consider that F(x, µ) is a 5× 5 matrix whose columns are the solution of (2.1) satisfying F(a, µ) = I,

where I is the 5× 5 unit matrix. Then we have

F (x, µ) = F(x, µ)F (a, µ),

where x ∈ [a, b]. If F (x, µ) satisfies the conditions (2.8) and (2.9) we obtain that

(P −F(b, µ)W ) .t = 0. (2.10)

For t ̸= 0 we have from (2.10) that
det (P −F(b, µ)W ) = 0.

Therefore roots of det (P −F(b, µ)W ) are the eigenvalues of N. Using Lemma 2.1 we complete the proof. 2

3. Characteristic matrix-function
Using maximal dissipative operator N we shall consider the following operator

R = (N − iI) (N + iI)
−1
.

In fact, R is the Cayley transform of N and the whole L2 ([a, b];w) is the domain of R. This implies that R
is a contraction in L2 ([a, b];w) , i.e. ∥R∥ ≤ 1 and 1 cannot be an eigenvalue of R [18].
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We shall remind that K on a Hilbert space H is called completely nonunitary (c.n.u.) if there is no
nontrivial subspace of H on which K is unitary there.

Theorem 3.1 On the Hilbert space L2 ([a, b];w) the operator R is c.n.u.

Proof Let f ∈ D(N) and let us set (N + iI)f = h, where h ∈ L2 ([a, b];w) . Now consider the inequality

∥Rh∥ < ∥h∥ (3.1)

or equivalently
∥(N − iI)f∥ < ∥(N + iI)f∥ . (3.2)

Inequality (3.2) satisfies if and only if N is completely dissipative and this is satisfied by Theorem 2.6 and hence
from (3.1) we get that

∥R∥ < 1. (3.3)

The proof is completed. 2

A contraction K belongs to the classes C0. and C.0 if ∥Kny∥ → 0 and ∥K∗ny∥ → 0 for all y, respectively,
as n→ ∞. C00 is defined as the intersection of C0. and C.0 [18].

Using (3.3) we can introduce the following.

Theorem 3.2 R belongs to the class C00.

Defect operators of the contraction R are defined as follows [18]:

DR := (I −R∗R)1/2, DR∗ := (I −RR∗)1/2.

The closure of L2 ([a, b];w) under DR and DR∗ are called, respectively, defect spaces and we will denote them
by DR and DR∗ , respectively. Finally, the dimensions of DR and DR∗ are called defect indices of R and we
will denote them by dR and dR∗ , respectively.

Let ϑ(x, µ), ϱ(x, µ) and ψ(x, µ) be the solutions of (1.5) satisfying

ϑ(a, µ) = γ1, ϑ
[4](a, µ) = −1, ϑ[1](a, µ) = ϑ[2](a, µ) = ϑ[3](a, µ) = 0,

ϱ(a, µ) = ϱ[1](a, µ) = ϱ[3](a, µ) = ϱ[4](a, µ) = 0, ϱ[2](a, µ) = 1 + iγ3,

and

ψ[1](a, µ) = γ2, ψ
[3](a, µ) = −1, ψ(a, µ) = ψ[2](a, µ) = ψ[4](a, µ) = 0.

Clearly, ϑ, ϱ, ψ ∈ B. From Lemma 2.2 we may infer that ϑ, ϱ and ψ also satisfy the following

ϑ[2](b, µ) = 0, ϱ[2](b, µ) = −(i+ γ3), ψ
[2](b, µ) = 0

and take arbitrary values for the other quasi-derivatives at b. Therefore ϑ, ϱ and ψ satisfy the first three
boundary conditions in (2.6).
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Lemma 3.3 DR and DR∗ are spanned by {ϑ(x, i), ψ(x, i) + ϱ(x, i)}and {ϑ(x,−i), ψ(x,−i) + ϱ(x,−i)} , re-
spectively. In other words,dR = dR∗ = 2.

Proof Firstly, we note that R∗ = (N∗ + iI)(N∗ − iI)−1. Then setting (N + iI)f = g, where f ∈ D(N) and
g ∈ L2 ([a, b] ;w) we obtain that

D2
Rg = (I −R∗R)g = (N + iI)f − (N∗ + iI)(N∗ − iI)−1(N − iI)f. (3.4)

Let us set the following

(N∗ − iI)−1(N − iI)f = h. (3.5)

From (3.5) we get
(N − iI)f = (N∗ − iI)h. (3.6)

Therefore from (3.6) we may infer that f − h is a solution of

(f − h)
[5]

= i (f − h) (3.7)

such that f − h ∈ L2 ([a, b] ;w) and f − h satisfies the first three boundary conditions in (2.6). Eq. (3.7) can
also be handled as

f − h = c1ϑ(x, i) + c2 [ψ(x, i) + ϱ(x, i)] , (3.8)

where c1, c2 are constants. Therefore from (3.4) and (3.8) we see that ϑ(x, i) and ψ(x, i) + ϱ(x, i) span DR

and hence dR = 2.

The other assertion can be proved similarly and this completes the proof. 2

Recall that a contraction K belongs to the class C0 if for a nonzero function z ∈ H∞, where Hp denotes
the Hardy class, satisfies z(K) = 0.

Since R has finite defect indices and belongs to C00 we have the following [18, p. 273].

Theorem 3.4 R belongs to the class C0.

To obtain the characteristic function of R we will use the formula (1.1 ). Note that (1.1) can also be considered
as

DR∗U∗
∗ΘR(δ) = (δI −R) (I − δR∗)

−1
DRU

∗, |δ| ≤ 1 (3.9)

Then we have the following.

Theorem 3.5 The characteristic matrix-function ΘR(δ) of R can be introduced as

ΘK(δ) =

 − Γ(ϑ; γ4; i)

Γ(ϑ; γ4;−i)
Γ(ϑ; γ4;µ)

Γ(ϑ; γ4;µ)
0

0 − Γ(ϑ; γ5; i)

Γ(ϑ; γ5;−i)
Γ(ϑ; γ5;µ)

Γ(ϑ; γ5;µ)


or
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ΘK(δ) =

 − Γ(ψ; γ4; i)

Γ(ψ; γ4;−i)
Γ(ψ; γ4;µ)

Γ(ψ; γ4;µ)
0

0 − Γ(ψ; γ5; i)

Γ(ψ; γ5;−i)
Γ(ψ; γ5;µ)

Γ(ψ; γ5;µ)

 ,
where Γ(χ; γ4;λ) := χ[4](b, λ) + γ4χ(b, λ) and Γ(χ; γ5;λ) := χ[3](b, λ) + γ5χ

[1](b, λ) and δ = (µ− i) / (µ+ i) ,

Imµ > 0.

Proof To construct the characteristic function ΘR(δ) of R we will use Eq. (3.9) and the function ϑ(x, i).

We should note that one may also use the function ψ(x, i) + ϱ(x, i).

Since dR = dR∗ = 2 we let E = E∗ = C2. Now for c =
[
c1
c2

]
∈ C2 we define the following

Uϑ(x, i) =

[
c1
c2

]
. (3.10)

Using (3.9) we obtain that

DR∗U∗
∗ΘR(δ)

[
c1
c2

]
= (δI −R) (I − δR∗)

−1
ϑ(x, i)

= − (N − µI) (N + iI)
−1

(N∗ − iI) (N∗ − µI)
−1
DRϑ(x, i).

(3.11)

At this stage we should note that D2
Rϑ(x, i) = ϑ(x, i) and Rϑ(x, i) = 0. Furthermore DRϑ(x, i) = ϑ(x, i).

Now we shall consider the following sum

ϑ(x, µ) + d1ϑ(x, ζ).

This sum satisfies the fourth boundary condition in (2.6) if

d1 = d1(µ, ζ, γ4) = −Γ(ϑ; γ4;µ)

Γ(ϑ; γ4; ζ)
.

Similarly the following sum

ϑ(x, µ) + d2ϑ(x, ζ)

satisfies the last boundary condition in (2.6) if

d2 = d2(µ, ζ, γ5) = −Γ(ϑ; γ5;µ)

Γ(ϑ; γ5; ζ)
.

Using the equation

(N − µI)
−1
ϑ(x, ζ) =

ϑ(x, ζ) + dk(µ, ζ, γk+3)ϑ(x, µ)

ζ − µ
,

where k = 1, 2, and (3.11) one obtains

DR∗U∗
∗ΘR(δ)

[
c1
c2

]
= − Γ(ϑ; γ4; i)

Γ(ϑ; γ4;−i)
Γ(ϑ; γ4;µ)

Γ(ϑ; γ4;µ)
ϑ(x,−i)

= − Γ(ψ; γ5; i)

Γ(ψ; γ5;−i)
Γ(ψ; γ5;µ)

Γ(ψ; γ5;µ)
ϑ(x,−i).

(3.12)
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From (3.10), (3.12) and the fact that ∥ϑ(x, i)∥ =
∥∥∥ϑ(x,−i)∥∥∥ = ∥ϑ(x,−i)∥ we have

ΘR(δ) =

 − Γ(ϑ; γ4; i)

Γ(ϑ; γ4;−i)
Γ(ϑ; γ4;µ)

Γ(ϑ; γ4;µ)
0

0 − Γ(ϑ; γ5; i)

Γ(ϑ; γ5;−i)
Γ(ϑ; γ5;µ)

Γ(ϑ; γ5;µ)


and this completes the proof. 2

We shall remind that a function Θ(δ) that has a power series expansion

Θ(δ) =

∞∑
n=0

δnΘn

and the values of Θ(δ) are bounded operators from a separable Hilbert space H1 to a separable Hilbert space
H2 such that ∥Θ(δ)∥ ≤ 1 is called a contractive analytic function. Θ(δ) is called inner provided that Θ(eir) is
an isometry from H1 into H2 for almost all r.

Theorem 3.6 ΘR(δ) is inner.

Proof The result comes from the fact that R ∈ C.0. 2

Since R ∈ C0 we have the following [18, p. 273].

Corollary 3.7 detΘR(δ) is inner.

Recall that a weak contraction K is a contraction K on a Hilbert space H with the property that the unit
disk is not fulfilled by the spectrum of K and I−K∗K is a trace class operator. It is known that a contraction
belonging to the class C0 and having finite defects is a weak contraction. Therefore we can introduce the
following result

Theorem 3.8 R is a weak contraction.

Now Corollary 3.7 implies the following.

Theorem 3.9 detΘR(δ) is a Blaschke product.

Proof For δ = (µ− i) / (µ+ i) , Imµ > 0, we have

detΘR(δ) = B(µ)eiµs, (3.13)

where B(µ) is a Blaschke product and s ≥ 0. Using (3.13) and setting µk = ik we get that∣∣∣∣Γ(ϑ; γ4;µk)

Γ(ϑ; γ4;µk)

Γ(ϑ; γ5;µk)

Γ(ϑ; γ5;µk)

∣∣∣∣ ≤ e−ks (3.14)

as ∣∣∣∣ Γ(ϑ; γ4; i)

Γ(ϑ; γ4;−i)

∣∣∣∣ = ∣∣∣∣ Γ(ϑ; γ5; i)

Γ(ϑ; γ5;−i)

∣∣∣∣ = 1.
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As k → ∞ we obtain from (3.14) that one of the followings holds:
(i) Γ(ϑ; γ4;µk) → 0 as k → ∞,

(ii) Γ(ϑ; γ5;µk) → 0 as k → ∞,

(iii) Γ(ϑ; γ4;µk) → 0 and Γ(ϑ; γ5;µk) → 0 as k → ∞.

The case (iii) is possible and in this case ϑ(x, µ∞) becomes an eigenfunction and µ∞ becomes an eigenvalue of
N and equivalently 1 becomes an eigenvalue of R. However, this is not possible and this completes the proof.

2

Therefore we have the following.

Theorem 3.10 Root functions of R are complete in L2 ([a, b];w) .

Since the completeness of R and N are equivalent we can introduce the following.

Theorem 3.11 Root functions of N are complete in L2 ([a, b];w) .

Collecting all the result for the boundary value problem (1.5), (2.6 ) we can introduce the following.

Corollary 3.12 For an eigenvalue µ of the boundary value problem (1.5), (2.6) one has Imµ > 0. The only
possible limiting point of these eigenvalues is infinity. However, infinity cannot be an eigenvalue of the problem
(of the operator N ). All eigenfunctions and associated functions of the boundary value problem (of the operator
N ) generates L2 ([a, b];w) .

4. Conclusion
In this paper a fifth-order formally symmetric differential equation of the form (1.5) has been introduced for
the first time and imposing some well-defined nonselfadjoint boundary conditions for the solutions of (1.5) we
have constructed a maximal, simple dissipative operator. Passing to the corresponding Cayley transform we
have constructed the characteristic matrix-function of the Cayley transform. Finally we have introduced some
completeness theorems.

The contraction R, as was introduced in Theorem 3.8, is a weak contraction. Since R also belongs to
C0 we may introduce some additional results. However, for this aim we need to share some definitions. These
definitions can be found in [18] or [12].

A Hilbert space H1 that is a subspace of the Hilbert space H is called a wandering space for an isometry
A if for p, q ≥ 0, p ̸= q, ApH1 is orthogonal to AqH1.

Let H1 ⊂ H be a wandering subspace of the isometry A. It is called that A is a unilateral shift if

∞⊕
0

AnH1 = H.

The dimension of H ⊖AH is called the multiplicity of A.
Now let Hp denote the Hardy space and A be a unilateral shift on H2 with multiplicity one. Jordan

block A(χ) , where χ is an inner function such that χ ∈ H∞, is defined on

H(χ) = H2 ⊖ χH2
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as

A(χ) = PH(χ)A | H(χ).

Note that A(χ) ∈ C0.

Consider that Ξ = {χj}j≥0 ⊂ H∞ is a sequence of inner functions χj such that χj | χj+1 for all j ≥ 0.

The Jordan operator J(χj) is defined by

J(χj) =

∞⊕
0

A(χj).

Since R ∈ C0 we can introduce the following.

Theorem 4.1 The Jordan model of R is

J(χj) =

∞⊕
0

A(χj),

where χj = θj/θj+1, θj is the greatest common divisor of all minors of corank j of the characteristic matrix-
function ΘR.

The cyclic multiplicity mK of a contraction K acting on the Hilbert space H is defined as the smallest
cardinality of a subset H1 ⊂ H satisfying the equation

span {Kmω : ω ∈ H1,m ≥ 0} = H.

It is known that mK ≤ dK∗ for a contraction K ∈ C.0 [18]. Therefore we can introduce the following.

Theorem 4.2 mR ≤ 2.

Theorem 3.8 implies the following.

Theorem 4.3 I −ΘR(δ) is of trace class.

Using Theorem 3.9 we can also introduce the following.

Theorem 4.4 Let k(µ) be the rank of the Riesz projection at an eigenvalue µof R. Then

det |ΘR(0)|2 =
∏
µ ̸=0

|µ|2k(µ) .
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