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Abstract: In this paper, a novel approach is proposed to solve fractional differential equations (FDEs) based on
hybrid functions. The hybrid functions consist of block-pulse functions and Taylor polynomials. The exact formula
for the Riemann–Liouville fractional integral of the hybrid functions is derived via Laplace transform. The FDE under
consideration is converted into an algebraic equation with undetermined coefficients by using this formula. A set of linear
or nonlinear equations are obtained through collocating the algebraic equation at Newton-Cotes nodes. The numerical
solution of the FDE is achieved by solving the linear or nonlinear equations. Error analysis is performed on the proposed
method. Several numerical examples are given, and the results have proven that the proposed method is effective.

Key words: Fractional differential equations, numerical solution, collocation method, hybrid functions, block-pulse
functions, Taylor polynomials

1. Introduction
FDEs are generalizations of classical integer-order differential equations (IDEs) based on the concept of fractional
calculus (FC) [1]. Due to the nonlocal and long-memory properties of FC, FDEs offer an excellent instrument
to describe physical systems having history memory [2–4]. Finding solutions to FDEs are helpful for analyzing
their dynamic properties. However, sometimes it is impossible or hard to obtain the analytical solutions of
such equations. Therefore, establishing accurate numerical schemes for FDEs becomes an important issue. In
this regard, many numerical methods for solving IDEs are further extended to FDEs, such as finite difference
method [3], predictor-corrector method [5], Adomian decomposition method [6], variational iteration method
[7], homotopy analysis method [8], and collocation method [9]. Most of the methods mentioned above obtain
numerical solutions of FDEs by discretizing FDEs into algebraic equations. Besides from them, in recent time,
several new techniques for discretizing FDEs have been proposed and developed. In [10], a fractional trapezoidal
method is introduced to convert the FDE into a nonlinear equation. In [11], an improved scheme based on the
Grünwald–Letnikov definition is presented for discretization and simulation of FDEs. In [12], the combining
quadrature rules are adopted to reduce the underlying FDE to a system of algebraic equations. However,
considering the drawbacks of these methods, such as high computational complexities, large time consumption
and low order of accuracy, it is desirable to develop easy and effective methods to numerically solve FDEs.
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Orthogonal functions or polynomials, such as Haar wavelets [13], block-pulse functions (BPFs) [14], shifted
Legendre polynomials [15] and Genocchi polynomials [16] have been widely adopted to handle different kinds
of FDEs. Their foundation is to convert the FDE to a system of algebraic equations through an operational
matrix, thus simplifying the problem. Among these functions or polynomials, BPFs are piecewise constants and
orthogonal in the interval [0, T ) , and can approximate any square integrable functions in [0, T ) with arbitrary
precision. BPFs have been utilized to solve fractional partial differential equation [17], nonlinear system of
fractional integral–differential equations [18] and fractional Mathieu equation [14]. However, BPFs are not
smooth enough. This implies that more BPFs should be adopted in order to achieve higher approximation
precision, which in turn increases the computation burden.

Recently, hybrid functions have received more and more attention in computational mathematics [19].
Compared to BPFs, hybrid functions are piecewise polynomials. That is, in each interval, a hybrid function is a
polynomial instead of a constant. Thus, hybrid functions allow for a more accurate and efficient approximation
of a function than a set of BPFs if the same number of basis functions are used. Maleknejad and Mahmoudi
used hybrid of BPFs and Taylor polynomials (HBT) to numerically solve linear Fredholm integral equation
in [20]. Mirzaee et al. proposed a method based on hybrid of BPFs and parabolic functions for solving a
system of nonlinear stochastic Itô–Volterra integral equations of fractional order in [21]. Jafari Behbahani and
Roodaki introduced a combination of Chebyshev polynomials and BPFs to seek the numerical solution of integral
equations in [22]. Mashayekhi and Razzaghi presented hybrid of BPFs and Bernoulli polynomials to solve the
distributed FDEs in [23]. Among these hybrid functions, the structure of HBT functions is simpler than that of
others [24]. Consequently, it is easier to transform FDEs into algebraic systems using HBT functions without
sacrificing the precision of solution. To the author’s best knowledge, little work has been done to find the
numerical solution of FDEs using HBT functions. Furthermore, for the purpose of solving differential equations
by the hybrid functions mentioned above, the operational matrices of integration for hybrid functions are used
to eliminate the integral operations. It is noted that none of them gives the exact formula of fractional integral
of hybrid functions.

In this paper, we focus on solving the following FDE

F (t, f(t), Dα0f(t), Dα1f(t), . . . , Dαrf(t)) = 0,

with initial conditions
f (k)(0) = dk. k = 0, 1, . . . ,m0 − 1, (1.1)

where the fractional derivative are defined in Caputo sense, and t ∈ [0, T ] . For ease of operation, assume that
α0 ≥ α1 ≥ . . . ≥ αr ≥ 0 . mk − 1 < αk ≤ mk , and mk is an integer.

First, the proposed method derives the analytical formula for the Riemann–Liouville (R-L) fractional
integral of HBT functions via Laplace transform. Then, the FDE is converted to an algebraic equation using
the derived formula. A set of linear or nonlinear equations are obtained by collocating the algebraic equation
at Newton-Cotes collocation points. The numerical solution of the FDE can be obtained by solving the linear
or nonlinear equations. It is shown that the proposed method improves the accuracy without increasing the
computational cost compared with the methods based on BPFs.

The remainder of this paper is organized as follows. In Section 2, some essential mathematical prelimi-
naries and definitions of fractional calculus are briefly reviewed. Section 3 gives the definition of HBT functions.
In Section 4, the R-L fractional integral of HBT functions is derived. The error analysis is given in Section

1066



LU and TANG/Turk J Math

5. The proposed method is described in Section 6 in details. In Section 7, numerical examples are given to
demonstrate the effectiveness of the proposed method. Finally, conclusions are draw in Section 8.

2. Preliminaries and notations
2.1. Fractional derivative and integral
First, some necessary definitions and mathematical preliminaries of the FC theory are briefly reviewed, so as
to establish our results. In the literature, there are different kinds of definitions for fractional integration and
derivative. Among them, the R-L fractional integration and the Caputo fractional derivative are investigated
in this paper.

Definition 2.1 The R-L fractional integral of order α is defined as [25]

Iαf(t) =
1

Γ(α)

∫ t

0

(t− s)α−1f(s)ds

=
1

Γ(α)
tα−1 ∗ f(t),

(2.1)

where α > 0 , (0, t) is the integral interval, Γ(·) denotes the Gamma function and ∗ is the convolution operator.

Definition 2.2 The Caputo fractional derivative of order α is defined as

Dαf(t) =
1

Γ(n− α)

∫ t

0

f (n)(s)

(t− s)α+1−n
ds, (2.2)

where n− 1 < α ≤ n , and n is an integer.

For the Caputo fractional derivative and R-L fractional integral, the following properties hold [15, 26].

(1) Dα(Iαf(t)) = f(t) ,

(2) If α > 0 , n is the smallest integer greater than α , then

Iα(Dαf(t)) = f(t)−
n−1∑
k=0

f (k)(0)
tk

k!
, (2.3)

(3) If f(t) is a constant, then Dαf(t) = 0 ,

(4) Dαtk =

{
0, k ∈ N0, k < n,
Γ(k+1)

Γ(k+1−α) t
k−α, k ∈ N0, k ≥ n,

where α > 0 , n is the smallest integer greater than α , and N0 = {0, 1, 2, · · · } .

3. HBT functions and function approximation
3.1. HBT functions
Definition 3.1 A set of BPFs bi(t), i = 1, 2, . . . , N on the interval [0, T ) are defined as

bi(t) =

{
1, i−1

N T ≤ t < i
N T,

0, otherwise. (3.1)
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The BPFs are disjoint and orthogonal on [0, T ) . For more details see [27]. Consider Taylor polynomials
Tj(t) = tj on the interval [0, T ), the HBT functions are defined in the following form [20].

Definition 3.2 For i = 1, 2, . . . , N and j = 0, 1, 2, . . . ,M − 1 , the HBT functions are defined as

hij(t) =

{
Tj(N/T − i+ 1), i−1

N T ≤ t < i
N T,

0, otherwise, (3.2)

Remark 3.3 It can be noted that when j = 0 , the HBT functions degenerate to BPFs.

3.2. Function approximation

Denote H = L2[0, T ), {h10(t), h11(t), · · ·, hN(M−1)(t)} ⊂ H as a set of HBT functions, and

Y = span{h10(t), h11(t), · · ·, hN(M−1)(t)}.

Since Y is a finite dimensional subspace of H , for an arbitrary f(t) ∈ H , it has the unique best
approximation f∗(t) ∈ Y , that is

∀y(t) ∈ Y, ∥ f(t)− f∗(t) ∥≤∥ f(t)− y(t) ∥ .

Since f∗(t) ∈ Y, there is a set of coefficients c10, c11, · · ·, cN(M−1) such that

f(t) ≈ f∗(t) =

N∑
i=1

M−1∑
j=0

cijhij(t) = CTH(t), (3.3)

where the superscript T denotes transposition,

C = [c10, · · ·, c1(M−1), c20, · · ·, c2(M−1), · · ·, cN0, · · ·, cN(M−1)]
T (3.4)

and
H(t) = [h10(t), · · ·, h1(M−1)(t), h20(t), · · ·, h2(M−1)(t), · · ·, hN0(t), · · ·, hN(M−1)(t)]

T (3.5)

are column vectors with the dimension of m̂ = N ×M .

4. R-L factional integral of HBT functions

In this section, the R-L fractional integral of H(t) defined in Eq. 3.5 is derived. The fractional integral of H(t)

can be expressed as
IαH(t) = H̄(t, α), (4.1)

where

H̄(t, α) =
[
Iαh10(t), · · ·, Iαh1(M−1)(t), I

αh20(t), · · ·, Iαh2(M−1)(t), · · ·, IαhN0(t), · · ·, IαhN(M−1)(t)
]T
. (4.2)

To obtain Iαhij(t), the Laplace transform is used. According to Eq. 2.1, one has

Iαhij(t) =
1

Γ(α)
tα−1 ∗ hij(t). (4.3)
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Eq. 4.3 is the convolution of functions tα−1 and hij(t) . Taking Laplace transform on both sides of Eq. 4.3,
yields

L[Iαhij(t)] = F1(s) · F2(s), (4.4)

where

F1(s) = L
[

1

Γ(α)
tα−1

]
=

1

sα
(4.5)

and

F2(s) = L[hij(t)] =
N jj!

sj+1T j
e−

i−1
N Ts −

j∑
k=0

NkΓ(j + 1)

sk+1Γ(j − k + 1)T k
e−

i
N Ts (4.6)

can be obtained by using the definition of Laplace transform and integration by parts. Substituting Eq. 4.5
and Eq. 4.6 into Eq. 4.4, one gets

L[Iαhij(t)] =
N jΓ(j + 1)

Γ(α+ j + 1)T j
× Γ(α+ j + 1)

sα+j+1
e−

i−1
N Ts

−
j∑

k=0

NkΓ(j + 1)

Γ(α+ k + 1)Γ(j − k + 1)T k
× Γ(α+ k + 1)

sα+k+1
e−

i
N Ts.

(4.7)

Next, computing the inverse Laplace transform of Eq. 4.7, yields

Iαhij(t) =
N jΓ(j + 1)

Γ(α+ j + 1)T j

(
t− i− 1

N
T

)α+j

µ

(
t− i− 1

N
T

)

−
j∑

k=0

NkΓ(j + 1)

Γ(α+ k + 1)Γ(j − k + 1)T k

(
t− i

N
T

)α+k

µ

(
t− i

N
T

)
,

(4.8)

where µ(t) is a unit step function, which is defined as

µ(t) =

{
1, t ≥ 0,
0, otherwise. (4.9)

Then Eq. 4.8 can be rewritten as

Iαhij(t) =


0, t < i−1

N T,(
t− i−1

N T
)α+j

dj ,
i−1
N T ≤ t < i

N T,(
t− i−1

N T
)α+j

dj −
(
t− i

N T
)α

d̄j , t ≥ i
N T.

where

dj =
N jΓ(j + 1)

Γ(α+ j + 1)T j
,

d̄j =

j∑
k=0

NkΓ(j + 1)

Γ(α+ k + 1)Γ(j − k + 1)T k

(
t− i

N
T

)k

.
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5. Error analysis

In this section, the approximation error of the R-L fractional integral of the hybrid functions with respect to
L2 -norm is deduced. First, the upper error bound of function approximation is given.

Theorem 5.1 Suppose f (M)(t) is continuous and bounded on [0, T ) , say |f (M)(t)| ≤ K , and f∗(t) =∑N
i=1

∑M−1
j=0 cijhij(t) is the best approximation of f(t) out from Y . Then the following inequality holds

∥ f(t)− f∗(t) ∥L2[0,T )≤

√
T

(2M + 1)

(
K

M !

)(
T

N

)M

. (5.1)

Proof The function f(t) defined on [0, T ) can be presented as

f(t) =

N∑
i=1

fi(t), (5.2)

where

fi(t) =

{
f(t), i−1

N T ≤ t < i
N T,

0, otherwise.

Approximating fi(t) with fM−1
i (t) , which is the Taylor expansion of f(t) on interval [ i−1

N T, i
N T ) , yields

fi(t) ≈ fM−1
i (t) = f

(
i− 1

N
T

)
+ f ′

(
i− 1

N
T

)(
t− i− 1

N
T

)
+

f ′′ ( i−1
N T

)
2!

(
t− i− 1

N
T

)2

+ · · ·+
f (M−1)

(
i−1
N T

)
(M − 1)!

(
t− i− 1

N
T

)M−1

= f

(
i− 1

N
T

)
hi0(t) + f ′

(
i− 1

N
T

)
T

N
hi1(t) +

f ′′ ( i−1
N T

)
2!

(
T

N

)2

hi2(t)

+ · · ·+
f (M−1)

(
i−1
N T

)
(M − 1)!

(
T

N

)M−1

hi(M−1)(t)

=

M−1∑
j=0

dijhij(t),

(5.3)

where dij =
f(j)( i−1

N T)
j!

(
T
N

)j . According to Taylor’s mean value theorem, the approximating error between

fi(t) and fM−1
i (t) is

fi(t)− fM−1
i (t) =

f (M)(ξi)

M !

(
t− i− 1

N
T

)M

with ξi ∈ ( i−1
N T, t) . Let

y(t) =

N∑
i=1

fM−1
i (t) =

N∑
i=1

M−1∑
j=0

dijhij(t). (5.4)
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Obviously, y(t) ∈ Y . Since f∗(t) is the best approximation of f(t)out from Y, the following inequality

∥ f(t)− f∗(t) ∥2L2[0,T ) ≤∥ f(t)− y(t) ∥2L2[0,T )

=

N∑
i=1

∥ fi(t)− fM−1
i (t) ∥2

L2[ i−1
N T, i

N T )

=

N∑
i=1

∫ i
N T

i−1
N T

∣∣∣∣∣f (M)(ξi)

M !

(
t− i− 1

N
T

)M
∣∣∣∣∣
2

dt

(5.5)

holds. Because f (M)(t) is continuous and bounded on [0, T ) , Eq. 5.5 can be rewritten as

∥ f(t)− f∗(t) ∥2L2[0,T ) ≤
(

K

M !

)2 N∑
i=1

∫ i
N T

i−1
N T

(
t− i− 1

N
T

)2M

dt

=
1

2M + 1

T 2M+1

N2M

(
K

M !

)2

.

(5.6)

This completes the proof. 2

Second, the error between the R-L fractional integral of function f(t) and its HBT approximation is analyzed.

Theorem 5.2 Suppose f (M)(t) is continuous and bounded on [0, T ) , say |f (M)(t)| ≤ K , and f∗(t) =∑N
i=1

∑M−1
j=0 cijhij(t) is the best approximation of f(t) out from Y . Then for α > 0 the following inequality

holds

∥ Iαf(t)− Iαf∗(t) ∥L2[0,T )≤
Tα

Γ(α+ 1)

√
T

(2M + 1)

(
K

M !

)(
T

N

)M

. (5.7)

Proof According to [23], one has
∥ f ∗ g ∥p≤∥ f ∥1∥ g ∥p .

Together with the definition of fractional integral 2.1, it is easy to obtain

∥ Iαf(t)− Iαf∗(t) ∥2L2[0,T ) =∥ Iα(f(t)− f∗(t)) ∥2L2[0,T )

=∥ 1

t1−αΓ(α)
∗ (f(t)− f∗(t)) ∥2L2[0,T )

≤
(

Tα

αΓ(α)

)2

∥ f(t)− f∗(t) ∥2L2[0,T )

=

(
Tα

Γ(α+ 1)

)2

∥ f(t)− f∗(t) ∥2L2[0,T ) .

By using Eq. 5.6, one gets

∥ Iαf(t)− Iαf∗(t) ∥2L2[0,T )≤
(

Tα

Γ(α+ 1)

)2
1

2M + 1

T 2M+1

N2M

(
K

M !

)2

.

Then Eq. 5.7 can be obtained. 2
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Remark 5.3 Eq. 5.1 shows that the upper error bound between f(t) and its HBT approximation f∗(t) is√
T

(2M+1)

(
K
M !

) (
T
N

)M , which is superior to that of BPFs approximation [14]. This is also true for the upper

error bound given in Eq. 5.7.

Remark 5.4 The upper error bound given in Eq. 5.1 depends on both N and M . If N > T , this upper error
bound decreases with the increase of N and M , and even tends to zero when the values of N and M are
sufficient large. It is also true for the upper error bound given in Eq. 5.7. In practice, for a given error bound,
one can determine the values of N and M .

6. The proposed method

Here, the HBT functions are used to solve Eq. 1.1. First, Dα0f(t) is expanded onto HBT functions as

Dα0f(t) = ATH(t), (6.1)

where
A = [a10, a11, . . . , a1(M−1), a20, a21, . . . , a2(M−1), . . . , aN(M−1)]

T

and
H(t) = [h10(t), h11(t), . . . , h1(M−1)(t), h20(t), h21(t), . . . , h2(M−1)(t), . . . , hN(M−1)(t)]

T.

Applying α0 order R-L fractional integration to both sides of Eq. 6.1, using Eq. 2.3 and Eq. 4.1, one
has

f(t) = ATH̄(t, α0) +

m0−1∑
k=0

tk

k!
dk. (6.2)

Based on Eq. 6.2, yields

Dαif(t) = ATH̄(t, α0 − αi) +

m0−1∑
k=0

Dαi(tk)

k!
dk. (6.3)

Substituting Eqs. 6.1–6.3 into Eq. 1.1, then

F

(
t, ATH̄(t, α0) +

m0−1∑
k=0

tk

k!
dk, A

TH̄(t, α0 − α1) +

m0−1∑
k=0

Dα1(tk)

k!
dk, . . . ,

ATH̄(t, α0 − αr) +

m0−1∑
k=0

Dαr (tk)

k!
dk

)
= 0.

(6.4)

is obtained. Taking the Newton-Cotes nodes

tl =
2l + 1

2m̂
T, l = 0, 1, . . . , m̂− 1, (6.5)

as collocation points and substituting these collocation points into Eq. 6.4, yields

F

(
tl, A

TH̄(tl, α0) +

m0−1∑
k=0

tkl
k!
dk, A

TH̄(tl, α0 − α1) +

m0−1∑
k=0

Dα1(tkl )

k!
dk, . . . ,

ATH̄(tl, α0 − αr) +

m0−1∑
k=0

Dαr (tkl )

k!
dk

)
= 0.

(6.6)
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Eq. 6.6 is a set of linear or nonlinear algebraic equations, which can be used to find the unknown vector A .
After finding A , f(t) can be obtained according to Eq. 6.2.

Remark 6.1 The Newton-Cotes nodes given in Eq. 6.5 can be obtained as follows. The interval [0, T ] is
divided into m̂ equidistant subintervals, and the midpoint of each subinterval is taken as the Newton-Cotes
nodes. For example, when the HBT functions with N = 1,M = 3 is selected to solve Eq. 1.1, one gets m̂ = 3 .
In this case, the Newton-Cotes nodes are taken as t0 = 1

6T, t1 = 3
6T, t2 = 5

6T .

7. Numerical examples
In this section, the proposed method is used to solve three FDEs, including linear and nonlinear ones to show
its effectiveness. Moreover, the numerical solutions of underlying FDEs obtained by the proposed method are
compared with those obtained by other methods in the literatures.

7.1. Example 1

The following FDE [28]

D2f(t) + 3D1.5f(t) + 2Dα2f(t) +Dα1f(t) + 5f(t) = g(t), t ∈ [0, 1], (7.1)

with the initial conditions f(0) = 1, f ′(0) = 0 is considered, where g(t) = 1+3t+ 2
Γ(3−α2)

t2−α2 + 1
Γ(3−α1)

t2−α1 +

5
(
1 + 1

2 t
2
)

and α1 = 0.0159 , α2 = 0.1379 . The analytical solution of Eq. 7.1 is f(t) = 1+ 1
2 t

2 . In the proposed
method, N = 1,M = 3 is selected. Let

D2f(t) = ATH(t) = a10h10(t) + a11h11(t) + a12h12(t). (7.2)

According to Eq. 6.2, one obtains
f(t) = ATH̄(t, 2) + 1. (7.3)

By using Eq. 6.3, one gets
Df(t) = ATH̄(t, 1) (7.4)

and
Dαif(t) = ATH̄(t, 2− αi). (7.5)

Substituting Eqs. 7.2–7.5 into Eq. 7.1, one has

ATH(t) + 3ATH̄(t, 1) + 2ATH̄(t, 2− α2) +ATH̄(t, 2− α1)

+ 5ATH̄(t, 2)− g(t) = 0.
(7.6)

By collocating Eq. 7.6 at the Newton-Cotes nodes given in Eq. 6.5, the following linear algebraic equations are
obtained

1.62418a10 + 0.21534a11 + 0.03260a12 = 1.62418,
3.56446a10 + 1.05502a11 + 0.42051a12 = 3.56446,
6.39515a10 + 2.69051a11 + 1.61656a12 = 6.39515.

(7.7)

By solving the above linear equations, one gets

a10 = 1, a11 = 0, a12 = 0. (7.8)
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Substituting coefficients obtained in Eq. 7.8 into Eq. 7.3, the solution can be obtained as

f(t) = 1 +
1

2
t2,

which is the same as the analytical solution. The result demonstrates that the proposed HBT estimation of
R-L fractional integration of the function is precise.

7.2. Example 2
Considering a FDE

Dαf(t) + f(t) = 0, 0 < α < 2, (7.9)

with the initial conditions f(0) = 1, f ′(0) = 0 . t ϵ [0, 1] This FDE was first considered by Diethelm et al. in [29]
and also solved by Saadatmandi and Dehghan in [15] using the Legendre operational matrix. The analytical
solution of Eq. 7.9 is

f(t) =

∞∑
k=0

(−tα)k

Γ(αk + 1)
. (7.10)

Firstly, 0 < α < 1 is considered. In this case, let α = 0.85 . Table 1 lists the maximum absolute errors of
solutions obtained by the proposed method with M = 2 and different N , the BPFs method with N = 6 and
the shifted Legendre polynomials method [15] with M1 = 2 . It can be seen from Table 1 that our proposed
method gives the most accurate solution. Also, the error becomes smaller by increasing N and M .

Table 1. Maximum absolute errors of Example 2 when α = 0.85 .

Method Maximum absolute error
Present method
M = 2, N = 1 1.1e−002

M = 2, N = 2 3.3e−003

M = 2, N = 3 1.3e−003

BPFs method
N = 6 1.1e−001

Shifted Legendre polynomials method [15]
M1 = 2 2.6e−002

Secondly, 1 < α < 2 is considered. In this case, let α = 1.6 . Once again, Table 2 provides the maximum
absolute errors obtained by our proposed method with M = 5 and different N , the BPFs method with N = 10 ,
and the shifted Legendre polynomials method with degree of shifted Legendre polynomials M1 = 10 [15]. It
demonstrates that the proposed method gives more accurate solutions than the other two methods and also the
error becomes smaller by increasing the values of N and M .

7.3. Example 3
The nonlinear FDE

Dαf(t) =
40320

Γ(9− α)
t8−α − 3

Γ(5 + α/2)

Γ(5− α/2)
t4−α/2 +

9

4
Γ(α+ 1) +

(
3

2
tα/2 − t4

)3

− [f(t)]
3
2 , (7.11)
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Table 2. Maximum absolute errors of Example 2 when α = 1.6 .

Method Maximum absolute error
Present method
M = 5, N = 2 3.8e−006

M = 5, N = 4 1.2e−006

M = 5, N = 8 2.1e−007

BPFs method
N = 10 3.8e−002

Shifted Legendre polynomials method [15]
M1 = 10 3.1e−004

with the initial conditions f(0) = f ′(0) = 0 is considered, where 0 < α < 2 , t ϵ [0, 1] The analytical solution of
Eq. 7.11 is f(t) = t8 − 3t4+α/2 + 9

4 t
α [30].

Eq. 7.11 can be transformed into N ×M nonlinear algebraic equations following our proposed method.
Table 3 lists the absolute errors between the analytical solution and numerical solutions obtained by our proposed
method with N = 2,M = 5 , BPFs method with N = 10 , and method in [15] with degree of M3 = 10 for
different α . Obviously, the numerical solution obtained by our proposed method is more accurate than the
other two methods.

Moreover, Figure shows the curves of analytical solutions and the solutions obtained by our proposed
method with N = 2, 3, 4,M = 2 when α = 0.75, 1.5 . It is evident that as N,M increases the solutions of our
method tend to the analytical solution.

Figure. Solutions of Example 3.

8. Conclusion
In this paper, a new method based on HBT functions is proposed to solve FDEs. Instead of deriving the
fractional integral operation matrix of the hybrid functions, the analytical expression for the R-L fractional
integral of HBT functions is deduced and used to reduce the FDE under consideration to an algebraic one,
which is collocated at Newton-Cotes nodes, a set of linear or nonlinear equations are obtained. The numerical
solution of the FDE is obtained through solving the set of equations. Numerical results verify the effectiveness
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Table 3. Absolute errors of Example 3 when different values are taken for α .

α Method t = 0.1 t = 0.3 t = 0.5 t = 0.7 t = 0.9

0.2

Present method 2.2e−005 1.4e−005 4.2e−004 2.3e−004 6.2e−004

BPFs method 2.0e−004 9.4e−003 4.5e−002 1.0e−001 1.5e−001

Method in [15] 2.2e−001 2.3e−001 3.6e−002 5.3e−001 1.7e−000

0.4

Present method 1.2e−005 9.6e−006 3.2e−004 1.6e−004 4.0e−004

BPFs method 2.0e−004 6.5e−003 3.0e−002 6.9e−002 8.7e−002

Method in [15] 6.3e−002 6.0e−002 2.4e−002 1.2e−001 3.0e−001

0.6

Present method 8.4e−006 3.4e−008 2.1e−004 1.2e−004 2.4e−004

BPFs method 1.0e−004 4.1e−003 1.8e−002 4.0e−002 4.6e−002

Method in [15] 1.5e−002 1.3e−002 9.6e−003 2.1e−002 3.7e−002

0.8

Present method 3.2e−005 1.6e−005 1.2e−004 1.4e−004 1.7e−004

BPFs method 1.0e−004 2.3e−003 9.7e−003 2.1e−002 2.1e−002

Method in [15] 2.9e−003 2.1e−003 2.3e−003 2.5e−003 2.1e−003

1.2

Present method 2.6e−006 2.9e−006 2.6e−006 2.2e−006 1.8e−006

BPFs method 3.6e−005 3.0e−004 8.4e−004 1.5e−003 7.6e−004

Method in [15] 1.9e−003 1.6e−003 2.8e−002 2.9e−003 1.6e−002

1.4

Present method 2.4e−006 3.5e−006 3.8e−006 3.7e−006 3.3e−006

BPFs method 1.9e−005 1.8e−004 1.1e−003 2.4e−003 2.5e−003

Method in [15] 2.0e−004 1.6e−003 7.6e−003 4.9e−003 3.3e−002

1.6

Present method 1.8e−006 3.3e−006 4.2e−006 4.7e−006 4.7e−006

BPFs 7.6e−006 4.4e−004 2.1e−003 4.3e−003 4.1e−003

Method in [15] 6.3e−005 7.3e−004 1.7e−003 2.3e−003 1.3e−002

1.8

Present method 9.2e−007 2.2e−006 3.2e−006 3.9e−006 4.3e−006

BPFs method 1.3e−005 5.7e−004 2.5e−003 5.3e−003 4.9e−003

Method in [15] 3.8e−005 2.0e−004 2.6e−004 5.9e−004 2.8e−003

of the proposed method, and comparisons demonstrate that the proposed method can provide more accurate
solutions than other existing methods.
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