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Abstract: In this paper, we determine the 2 -rank of the class group of certain classes of real cyclic quartic number
fields. Precisely, we consider the case in which the quadratic subfield is Q(

√
ℓ) with ℓ = 2 or a prime congruent to 1

(mod 8) .
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1. Introduction
Let K be a number field and H its p -class group, that is the Sylow p -subgroup of the ideal class group Cl(K)

of K in the wide sense, where p is a prime integer. Class groups of number fields have been studied for a
long time, and there are many very interesting problems concerning their behavior. A particular quantity of
interest is the rank rp(H) of the p -class group H defined as the number of cyclic p -groups appearing in the
decomposition of Cl(K) , i.e. the dimension of the Fp -vector space Cl(K)/Cl(K)p , where Fp is the field of p

elements.
For p = 2 , many mathematicians are interested in determining r2(H) and the power of 2 dividing the

class number of K . Hasse [13], Bauer [5] and others gave methods for determining the exact power of 2 dividing
the class number of a quadratic numbers field. These methods were developed by C. J. Parry and his co-authors
to determine r2(H) and the power of 2 dividing the class number of some cyclic quartic numbers fields K

having a quadratic subfield k with odd class number (e.g., [6, 7, 22–24]). To accomplish their task, they needed
a suitable genus theory convenient to their situation. Hence they showed that, the theory firstly developed
by Hilbert ([16]), assuming an imaginary base field k , can be adapted to the situation where K is a totally
imaginary quartic cyclic extension of a totally real quadratic subfield k . In reality, this theory can be applied
to any quartic number field K having a quadratic subfield k of odd class number ([22]).

The 2 -rank of the class group of any biquadratic number field K is determined (partially or totally) in
many papers ([2, 3, 6, 7, 20, 21]) up to the case: K is a real quartic cyclic extension of the rational number
field Q . This paper is devoted to investigate the 2 -rank of the class group of this class of number fields. We
will focus on the case where the unique quadratic subfield of K is k = Q(

√
ℓ) with ℓ is a prime congruent to 1

(mod 8) or ℓ = 2 , and it is well known that the norm of the fundamental unit of k in these cases is −1 . Note
that the case ℓ congruent to 5 (mod 8) is studied separately.
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An outline of the paper is as follows. In § 2 we summarize preliminary results on quartic cyclic number
fields and the ambiguous class numbers formula, and in § 3, we recall the definition of the quadratic norm residue
symbol and some of its properties. The main theorems are presented in § 4 and § 5. In § 6 we characterize, for

a prime ℓ congruent to 1 (mod 8) or ℓ = 2 , all the real cyclic quartic number fields K = Q(
√
nϵ0

√
ℓ) whose

2 -class group is trivial, cyclic, of rank 2 or 3 .

Notations
Throughout this paper, we adopt the following notations.

• Q : the rational field.

• ℓ : a prime integer congruent to 1 modulo 8 or ℓ = 2 .

• k = Q(
√
ℓ) : a quadratic field.

• ϵ0 : the fundamental unit of k .

• n : a square-free positive integer relatively prime to ℓ .

• δ = 1 or 2 .

• d = nϵ0
√
ℓ .

• K = k(
√
d) : a real quartic cyclic number field.

• Ok (resp. OK ): the ring of integers of k (resp. K).

• H : the 2-class group of K .

• r2(H) : the rank of H .

• 2i, i ∈ {1; 2} : the prime ideals of k above 2 if ℓ ≡ 1 (mod 8) .

• K∗ , k∗ : the nonzero elements of the fields K and k respectively.

• NK/k(K) : elements of k which are norm from K .

• p, q, pi, qj : odd prime integers.

• (x, yp ) : quadratic norm residue symbol over k .

• [αβ ] : quadratic residue symbol for k .

• (ab ) : quadratic residue (Legendre) symbol.

• (ab )4 : the rational 4 -th power residue symbol.
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2. Preliminary results

Let K be a cyclic quartic extension of the rational number field Q . By [15, Theorem 1], it is known that K

can be expressed uniquely in the form K = Q(
√
a(ℓ+ b

√
ℓ)) , where a, b, c and ℓ are integers satisfying the

conditions: a is odd and square-free, ℓ = b2 + c2 is square free positive and relatively prime to a , with b > 0

and c > 0 . Note that K possesses a unique quadratic subfield k = Q(
√
ℓ) . Assuming the class number of k is

odd and Nk/Q(ϵ0) = −1 , where ϵ0 is the fundamental unit of k , then one can, by [17, 25], deduce that there

exists an integer n such that K = Q(
√

nϵ0
√
ℓ) and:

n =

{
2a if ℓ ≡ 1 (mod 4) and b ≡ 1 (mod 2)
a otherwise.

We need also the following theorem which gives the conductor fK of K .

Theorem 2.1 ([15]) The conductor fK of the (real or imaginary) cyclic quartic field K = Q(
√

a(ℓ+ b
√
ℓ) ,

where a is an odd square-free integer, ℓ = b2 + c2 is a square-free positive integer relatively prime to a , with
b > 0 and c > 0 , is given by fK = 2e|a|ℓ , where e is defined by:

e =

 3, if ℓ ≡ 2 (mod 8) or ℓ ≡ 1 (mod 4) and b ≡ 1 (mod 2),
2, if ℓ ≡ 1 (mod 4), b ≡ 0 (mod 2), a+ b ≡ 3 (mod 4),
0, if ℓ ≡ 1 (mod 4), b ≡ 0 (mod 2), a+ b ≡ 1 (mod 4).

Recall that the extensions K/Q were investigated by Hasse in a paper ([14]) prior to that of Leopoldt ([19])
on the arithmetic interpretation of the class number of real abelian fields. They were also investigated by M.
N. Gras [10–12, ...] and others. By [14], the field K can be real as it can be imaginary. Precisely, we have
the following result that specify the number of real (resp. imaginary) cyclic quartic fields sharing the same
conductor and the same quadratic subfield.

Lemma 2.2 ([14]) For a given square-free positive integer ℓ = p0p1 . . . pm , where pi is a prime integer for all
i , and for a given conductor fK , the number of real (resp. imaginary) cyclic quartic fields K having the same
conductor fK and the same quadratic subfield k = Q(

√
ℓ) is equal to 2m if fK ≡ 0 (mod 8) . But if fK ̸≡ 0

(mod 8) , then the number of real (resp. imaginary) cyclic quartic fields K with the conductor fK and the
same quadratic subfield k = Q(

√
ℓ) is equal to 2m or 0 (resp. 0 or 2m) . Moreover, a cyclic quartic field K is

real if and only if S =
∏

p|fK sp = +1 , where s2 = −1 , sp = (−1)
p−1
ep for odd prime integer p with ep is the

ramification index of p in K .

Remark 2.3 Keeping notations above, K is then real if and only if a > 0 (equivalently n > 0) .

The field K also satisfies the following lemma.

Lemma 2.4 ([26]) Let a, b and c be positive integers, ℓ = b2+ c2 , with a and c odd, then Q(
√
2a(ℓ+ b

√
ℓ) =

Q(
√
a(ℓ+ c

√
ℓ) .
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We end this section by recalling the number of ambiguous ideal classes of a quadratic extension K/k . This
result will allow us to investigate the 2 -rank of the class group of K .

Theorem 2.5 ([1, 23]) Let K/k be a cyclic extension of prime degree p . Denote by AK/k the number of
ambiguous ideal classes of K with respect to k , then:

AK/k = h(k)pµ+r∗−(r+c+1),

where:
r is the number of fundamental units of k ,
µ is the number of prime ideals of k (finite or infinite) which ramify in K ,
pr

∗
= [NK/k(K

∗) ∩ Ek : Ep
k ] with Ek is the group of units of k ,

c = 1 if k contains a primitive p-th root of unity and c = 0 otherwise.
Furthermore, for p = 2 and if the class number of k is odd, then the 2-rank of the class group of K is

µ+ r∗ − (r + c+ 1).

Remark 2.6 Since −1 and ϵ0 generate the unit group of the quadratic field k , so

• r∗ = 0 , if −1, ϵ0 and − ϵ0 are not in NK/k(K
∗) .

• r∗ = 1 , if (−1 ∈ NK/k(K
∗) and ϵ0 is not) or (−1 is not in NK/k(K

∗) and ϵ0 or −ϵ0 is) .

• r∗ = 2 , if −1 and ϵ0 are in NK/k(K
∗) .

To compute r2(H) , the rank of the 2 -class group H of K , we will distinguish many cases. For this, let p1 ,
p2 , · · · , pt , q1 , · · · , qs be positive prime integers. Put δ = 1 or 2 .

3. Quadratic norm residue symbol
Since we frequently use the quadratic norm residue symbol, we have to recall its definition and some of its
properties (cf. [9, Chapter II, Theorem 3.1.3]). Let k be a number field and β ∈ k∗ a square-free element in
k . Let f be the conductor of k(

√
β)/k . For any prime p of k (finite or infinite), we denote by fp the largest

power of p dividing f . Let α ∈ k∗ , according to the approximation theorem there exists α0 ∈ k such that

α0 ≡ α (mod fp) and α0 ≡ 1 (mod f
fp
).

If (α0) = pnP with n ∈ Z and (P, p) = 1 (n = 0 if p is infinite), set

(
α, k(

√
β)

p

)
=

(
k(
√
β)

P

)
,

where
(

k(
√
β)

P

)
is the Artin map applied to P . For α ∈ k∗ and a prime (finite or infinite) p of k , the quadratic

norm residue symbol is defined by

(
α, β

p

)
=

(
α,k(

√
β)

p

)
(
√
β)

√
β

∈ {±1}.
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If the prime p is unramified in k(
√
β)/k , we set

(
β

p

)
=

(
k(

√
β)

p

)
(
√
β)

√
β

∈ {±1}.

Note that the norm residue symbol may be defined more generally for an extension k( m
√
β)/k , where

m ∈ N∗ , k is a number field containing the m -th root of unity and β ∈ k∗ .
The quadratic norm residue symbol verifies the following properties that we shall use later.

1.
(

α1α2, β
p

)
=
(

α1, β
p

)(
α2, β

p

)
,

2.
(

α, β
p

)
=
(

β, α
p

)
,

3. If p is unramified in k(
√
β)/k and appears with exponent e in the decomposition of (α) , then

(
α, β

p

)
=(

β

p

)e

,

4. If p is unramified in k(
√
β)/k and does not appear in the decomposition of (α) , then

(
α, β

p

)
= 1 ,

5.
∏

p∈Pl

(
α, β
p

)
= 1 , where Pl is the set of all finite and infinite primes of k ,

6. Let k1 be a finite extension of k , α ∈ k∗1 and β ∈ k∗ . Denote by p a prime ideal of k and by B a prime
ideal of k1 above p . Thus ∏

B|p

(
α, β

B

)
=

(
Nk1/k(α), β

p

)
.

4. The case ℓ ≡ 1 (mod 8)

Let ℓ be a prime integer congruent to 1 (mod 8) and n a square free positive integer relatively prime to ℓ .

Let K = k(
√
nϵ0

√
ℓ) and k = Q(

√
ℓ) , where ϵ0 is the fundamental unit of k .

Remark 4.1 As n is relatively prime to ℓ , so the prime integers dividing n don’t ramify in k , and 2

splits completely in k since ℓ ≡ 1 (mod 8) . Moreover, eℓ , the ramification index of ℓ in K , is 4 . Thus,

sℓ = (−1)
ℓ−1
4 = 1 .

Remark 4.2 In what follows, we consider ℓ = b2 + c2 where b and c are two positive integers with c odd. As
ℓ ≡ 1 (mod 8) , so b ≡ 0 (mod 4) (e.g., [8, page 2]) . Recall, as mentioned in the beginning of section 2, that

there exists an odd square-free integer a relatively prime to ℓ such that K = Q(
√

a(ℓ+ b
√
ℓ)) with

a =

{
n
2 if ℓ ≡ 1 (mod 4) and b ≡ 1 (mod 2),
n otherwise.
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We also need the following lemma.

Lemma 4.3 ([4]) Let ℓ be a prime integer congruent to 1 (mod 8) and ϵ0 the fundamental unit of k = Q(
√
ℓ) .

Then ϵ0
√
ℓ ≡ 1 (mod 4) in k .

4.1. Case n = 1

Theorem 4.4 Let K = Q(
√

nϵ0
√
ℓ) be a real cyclic quartic number field, where ℓ ≡ 1 (mod 8) is a positive

prime integer, n a square-free positive integer relatively prime to ℓ and ϵ0 the fundamental unit of k = Q(
√
ℓ) .

If n = 1 , then r2 (H) = 0 .

Proof Since a = n = 1 , a+ b ≡ 1+0 ≡ 1 (mod 4) , which implies, by Theorem 2.1, that fK = ℓ ̸≡ 0 (mod 8) .
But S = sℓ = +1 , then Lemma 2.2 ensures the existence of real number field K having as conductor fK and
as quadratic subfield k . Moreover, the only prime ideal of k that ramifies in K is (

√
ℓ) , i.e. µ = 1 . To prove

the theorem, we have to compute the integer r∗ (see Theorem 2.5) by applying Remark 2.6, and then we call
the theorem 2.5. We have:(

−1, d

(
√
ℓ)

)
=

[
−1

(
√
ℓ)

]
=
(−1

ℓ

)
= 1 and

(
ϵ0, d

(
√
ℓ)

)
=
[

ϵ0
(
√
ℓ)

]
=
[

u
(
√
ℓ)

]
=
(
u
ℓ

)
=
(
ℓ
u

)
=
(

v2ℓ
u

)
= 1,

indeed ϵ0 = u + v
√
ℓ , so −1 = u2 − v2ℓ and thus v2ℓ ≡ 1 (mod u). Hence r∗ = 2 , which implies that:

r2 (H) = µ+ r∗ − 3 = 1 + 2− 3 = 0. 2

4.2. Case n = 2

Theorem 4.5 Let K = Q(
√

nϵ0
√
ℓ) be a real cyclic quartic number field, where ℓ ≡ 1 (mod 8) is a positive

prime integer, n a square-free positive integer relatively prime to ℓ and ϵ0 the fundamental unit of k = Q(
√
ℓ) .

For n = 2 , we have:

1. If
(
2
ℓ

)
4
= (−1)

l−1
8 , then r2 (H) = 2.

2. If
(
2
ℓ

)
4
̸= (−1)

l−1
8 , then r2 (H) = 1.

Proof Since n = 2 , n is even and according to Lemma 2.4 we get K = Q(
√

2a(ℓ+ b
√
ℓ) = Q(

√
a(ℓ+ c

√
ℓ)

with a = n
2 = 1 . As c ≡ 1 (mod 2) , so, by Theorem 2.1, fK = 23aℓ = 23ℓ ≡ 0 (mod 8) ; thus, there exists as

many real cyclic fields as imaginary ones having as a conductor fK and as a quadratic subfield k . The prime
ideals of k which ramify in K are (

√
ℓ) and 2i, i ∈ {1, 2} , where 2Ok = 2122 is the decomposition of 2 in k ,

i.e. µ = 3 . We have(
−1,d
21

)
=
(

−1,d
22

)
=
(

−1,2ϵ0
√
ℓ

21

)
=
(

−1,2
21

)(
−1,ϵ0

√
ℓ

21

)
=
[
−1
21

]
=
(−1

2

)
=
(−1,2

2

)
= 1,

indeed
(

−1, ϵ0
√
ℓ

21

)
=
[
ϵ0

√
ℓ

21

]0
= 1 since 21 don’t ramify in Q(

√
ϵ0
√
ℓ) (see Theorem 2.1).(

ϵ0,d
21

)
=
(

ϵ0,d
22

)
=
(

ϵ0,2ϵ0
√
ℓ

21

)
=
(

ϵ0,2
21

)(
ϵ0,ϵ0

√
ℓ

21

)
=
(

ϵ0,2
21

)
=
(
2
ℓ

)
4
(−1)

ℓ−1
8 (see [2]).

Using the previous results, we complete the following table:
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Unit\ Character
√
ℓ 2i

−1 + +

ϵ0 +
(
2
ℓ

)
4
(−1)

ℓ−1
8

−ϵ0 +
(
2
ℓ

)
4
(−1)

ℓ−1
8

a. If
(
2
ℓ

)
4
= (−1)

ℓ−1
8 , then r∗ = 2 , which implies that: r2 (H) = µ+ r∗ − 3 = 3 + 2− 3 = 2.

b. If
(
2
ℓ

)
4
̸= (−1)

ℓ−1
8 , then r∗ = 1 , which implies that: r2 (H) = µ+ r∗ − 3 = 3 + 1− 3 = 1. 2

4.3. Case n =
∏t

i=1 pi and, for all i , pi ≡ 1 (mod 4)

Theorem 4.6 Let K = Q(
√

nϵ0
√
ℓ) be a real cyclic quartic number field, where ℓ ≡ 1 (mod 8) is a positive

prime integer, n a square-free positive integer relatively prime to ℓ and ϵ0 the fundamental unit of k = Q(
√
ℓ) .

Let n =
∏i=t

i=1 pi with pi ≡ 1 (mod 4) for all i ∈ {1, . . . , t} and t is a positive integer.

1. If, for all i , (pi

ℓ ) = −1 , then r2(H) = t .

2. If, for all i , (pi

ℓ ) = 1 , then:

a. If
(
pi

ℓ

)
4
̸=
(

ℓ
pi

)
4

for at least one i ∈ {1, . . . , t} , then r2 (H) = 2t− 1.

b. If
(
pi

ℓ

)
4
=
(

ℓ
pi

)
4

for all i ∈ {1, . . . , t} , then r2 (H) = 2t.

Moreover, for n =
∏i=t1

i=1 pi
∏i=t2

j=1 qj with (pi

ℓ ) = −(
qj
ℓ ) = −1 and pi ≡ qj ≡ 1 (mod 4) for all i ∈ {1, . . . , t1}

and for all j ∈ {1, . . . , t2} , we have:

a. If
( qj

ℓ

)
4
̸=
(

ℓ
qj

)
4

for at least one j ∈ {1, . . . , t2} , then r2 (H) = t1 + 2t2 − 1.

b. If
( qj

ℓ

)
4
=
(

ℓ
qj

)
4

for all j ∈ {1, . . . , t2} , then r2 (H) = t1 + 2t2.

Proof Note first that b ≡ 0 (mod 2) , and since ℓ ≡ 1 (mod 8) , so b ≡ 0 (mod 4) (see Remark 4.2).
On the other hand, n =

∏i=t
i=1 pi , with pi ≡ 1 (mod 4) for all i = 1, . . . , t , then n = a =

∏i=t
i=1 pi ≡ 1

(mod 4) , so a + b ≡ 1 + 0 ≡ 1 (mod 4) . Thus, by Theorem 2.1, fK = aℓ =
∏i=t

i=1 piℓ , which implies that
fK ̸≡ 0 (mod 8) . Thus, K is either real or imaginary cyclic quartic field. As the ramification index in K

of each prime pi is epi
= 2 , then pi−1

2 ≡ 0 (mod 2) , this implies that spi
= (−1)

pi−1

2 = +1 . Hence,

S =
∏

q|f sq =
∏i=t

i=1 spi
sℓ = +1 , and Lemma 2.2 ensures the existence of real number field K , for all non-zero

positive integer t , having as conductor fK and as quadratic subfield k .

1. If (pi

ℓ ) = −1 , for all i = 1, . . . , t , then the prime ideals of k which ramify in K are (
√
ℓ) and the prime

ideals pi , i = 1, . . . , t , where pi is the prime ideal of k above pi , this implies that the number of prime
ideals of k ramifying in K is µ = t+ 1 . Hence, for all, i = 1, . . . , t , we have(

−1, d

pi

)
=

[
−1

pi

]
=

(
1

pi

)
= 1 and

(
ϵ0, d

pi

)
=

[
ϵ0
pi

]
=

(
−1

pi

)
= 1.
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Since
(

−1, d

(
√
ℓ)

)
=
(

ϵ0, d

(
√
ℓ)

)
= 1 , so r∗ = 2 , from which we infer that: r2(H) = µ+ r∗ − 3 = t+ 1 + 2− 3 = t.

2. If (pi

ℓ ) = 1 , for all i = 1, . . . , t , then the prime ideals of k which ramify in K are (
√
ℓ) , and the prime ideals

℘i and ℘̄i with piOk = ℘i℘̄i , i = 1, . . . , t , in this case µ = 2t+ 1 . Hence, for all, i = 1, . . . , t , we have(
−1, d

℘i

)
=

(
−1, d

℘̄i

)
=

[
−1

℘i

]
=

(
−1

pi

)
= 1,(

ϵ0, d

℘i

)
=

(
ϵ0, d

℘̄i

)
=

[
ϵ0
℘i

]
=

(
ϵ0, p

℘i

)
=
(pi
ℓ

)
4

(
ℓ

pi

)
4

(see [2]).

Using the previous results, we get the table:

Unit\ Character
√
ℓ ℘i ℘̄i

−1 + + +

ϵ0 +
(
pi

ℓ

)
4

(
ℓ
pi

)
4

(
pi

ℓ

)
4

(
ℓ
pi

)
4

−ϵ0 +
(
pi

ℓ

)
4

(
ℓ
pi

)
4

(
pi

ℓ

)
4

(
ℓ
pi

)
4

From which we infer that:

a. If
(
pi

ℓ

)
4
̸=
(

ℓ
pi

)
4

for at least one i ∈ {1, . . . , t} , then r∗ = 1 and r2 (H) = µ+r∗−3 = 2t+1+1−3 = 2t−1.

b. If
(
pi

ℓ

)
4
=
(

ℓ
pi

)
4

for all i ∈ {1, . . . , t} , then r∗ = 2 and r2 (H) = µ+ r∗ − 3 = 2t+ 1 + 2− 3 = 2t.

If n =
∏i=t1

i=1 pi
∏j=t2

j=1 qj with pi ≡ qj ≡ 1 (mod 4) and
(
pi

ℓ

)
= −

( qj
ℓ

)
= −1 for all i ∈ {1, . . . , t1} and for all

j ∈ {1, . . . , t2} , then according to the two cases above we have:

a. If
( qj

ℓ

)
4
̸=
(

ℓ
qj

)
4

for at least one j ∈ {1, . . . , t2} , then r∗ = 1 and r2 (H) = µ+r∗−3 = t1+2t2+1+1−3 =

t1 + 2t2 − 1.

b. If
( qj

ℓ

)
4
=
(

ℓ
qj

)
4

for all j ∈ {1, . . . , t2} , then r∗ = 2 and r2 (H) = µ+r∗−3 = t1+2t2+1+2−3 = t1+2t2.

2

4.4. Case n = 2
∏t

i=1 pi , and for all i , pi ≡ 1 (mod 4)

Theorem 4.7 Let K = Q(
√

nϵ0
√
ℓ) be a real cyclic quartic number field, where ℓ ≡ 1 (mod 8) is a positive

prime integer, n a square-free positive integer relatively prime to ℓ and ϵ0 the fundamental unit of k = Q(
√
ℓ) .

Let n = 2
∏i=t

i=1 pi with pi ≡ 1 (mod 4) for all i ∈ {1, . . . , t} and t is a positive integer.

1. Assume, for all i , (pi

ℓ ) = −1 , then:

a. If
(
2
ℓ

)
4
= (−1)

ℓ−1
8 , then r2(H) = t+ 2.

b. If
(
2
ℓ

)
4
̸= (−1)

ℓ−1
8 , then r2(H) = t+ 1.
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2. Assume, for all i , (pi

ℓ ) = 1 , then

a. If
(
2
ℓ

)
4
= (−1)

ℓ−1
8 and

(
pi

ℓ

)
4
=
(

ℓ
pi

)
4

for all i ∈ {1, . . . , t} , then r2(H) = 2t+ 2.

b. If
(
2
ℓ

)
4
̸= (−1)

ℓ−1
8 or

(
pi

ℓ

)
4
̸=
(

ℓ
pi

)
4

for at least one i ∈ {1, . . . , t} , then r2(H) = 2t+ 1.

Moreover, if n = 2
∏i=t1

i=1 pi
∏j=t2

j=1 qj with pi ≡ qj ≡ 1 (mod 4) and (pi

ℓ ) = −(
qj
ℓ ) = −1 for all i ∈ {1, . . . , t1}

and for all j ∈ {1, . . . , t2} , then:

a. If
(
2
ℓ

)
4
= (−1)

ℓ−1
8 and

( qj
ℓ

)
4
=
(

ℓ
qj

)
4

for all j ∈ {1, . . . , t2} , then r2(H) = t1 + 2t2 + 2.

b. If
(
2
ℓ

)
4
̸= (−1)

ℓ−1
8 or

( qj
ℓ

)
4
̸=
(

ℓ
qj

)
4

for at least one j ∈ {1, . . . , t2} , then r2(H) = t1 + 2t2 + 1.

Proof For n = 2
∏i=t

i=1 pi , with pi ≡ 1 (mod 4) for all i = 1, . . . , t , we have, according to Lemma 2.4,

K = Q(
√
2a(ℓ+ b

√
ℓ) = Q(

√
a(ℓ+ c

√
ℓ) with a = n

2 =
∏i=t

i=1 pi . As c ≡ 1 (mod 2) and a = n
2 =

∏i=t
i=1 pi ≡ 1

(mod 4) , so, by Theorem 2.1, fK = 23aℓ = 23ℓ
∏i=t

i=1 pi ≡ 0 (mod 8) , this implies, by Lemma 2.2, that there
are as many real cyclic fields as imaginary ones K having as a conductor fK and as quadratic subfield k .

1. If (pi

ℓ ) = −1 , for all i = 1, . . . , t , then the prime ideals of k which ramify in K are (
√
ℓ) , 2i, i ∈ {1, 2} ,

and the prime ideals pi , i = 1, . . . , t , where pi is the prime ideal of k above pi and 2Ok = 2122 is the
decomposition of 2 in k , this implies that the number of prime ideals of k ramifying in K is µ = t + 3 .
Therefore,

(
−1,d
21

)
=
(

−1,d
22

)
=
(

−1,2
∏i=t

i=1 piϵ0
√
ℓ

21

)
=
(

−1,2
21

)(
−1,

∏i=t
i=1 piϵ0

√
ℓ

21

)
=
(−1,2

2

)
= 1,(

ϵ0,d
21

)
=
(

ϵ0,d
22

)
=
(

ϵ0,2
∏i=t

i=1 piϵ0
√
ℓ

21

)
=
(

ϵ0,2
21

)(
ϵ0,

∏i=t
i=1 piϵ0

√
ℓ

21

)
=
(

ϵ0,2
21

)
=
(
2
ℓ

)
4
(−1)

ℓ−1
8 ,

indeed 2i don’t ramifie in Q(
√∏i=t

i=1 piϵ0
√
ℓ).

Using the above results, we get the table:

Unit \ Character
√
ℓ pi 2i

−1 + + +

ϵ0 + +
(
2
ℓ

)
4
(−1)

ℓ−1
8

−ϵ0 + +
(
2
ℓ

)
4
(−1)

ℓ−1
8

a. If
(
2
ℓ

)
4
= (−1)

ℓ−1
8 , then r∗ = 2 , which implies that: r2(H) = µ+ r∗ − 3 = t+ 3 + 2− 3 = t+ 2.

b. If
(
2
ℓ

)
4
̸= (−1)

ℓ−1
8 , then r∗ = 1 , which implies that: r2(H) = µ+ r∗ − 3 = t+ 3 + 1− 3 = t+ 1.

2. If (pi

ℓ ) = 1 , for all i = 1, . . . , t , then the prime ideals of k which ramify in K are (
√
ℓ) , 2i, i ∈ {1, 2} and

the prime ideals ℘i and ℘̄i with piOk = ℘i℘̄i , i = 1, . . . , t , in this case µ = 2t+ 3 . So using the results of
the above cases we get:
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Unit\ Character
√
ℓ ℘i ℘̄i 2i

−1 + + + +

ϵ0 +
(
pi

ℓ

)
4

(
ℓ
pi

)
4

(
pi

ℓ

)
4

(
ℓ
pi

)
4

(
2
ℓ

)
4
(−1)

ℓ−1
8

−ϵ0 +
(
pi

ℓ

)
4

(
ℓ
pi

)
4

(
pi

ℓ

)
4

(
ℓ
pi

)
4

(
2
ℓ

)
4
(−1)

ℓ−1
8

a. If
(
2
ℓ

)
4
= (−1)

ℓ−1
8 and

(
pi

ℓ

)
4
=
(

ℓ
pi

)
4

for all i ∈ {1, . . . , t} then r∗ = 2 , so: r2(H) = µ + r∗ − 3 =

2t+ 3 + 2− 3 = 2t+ 2.

b. If
(
2
ℓ

)
4
≠ (−1)

ℓ−1
8 or

(
pi

ℓ

)
4
̸=
(

ℓ
pi

)
4

for at least one i ∈ {1, . . . , t} then r∗ = 1 , which implies that:

r2(H) = µ+ r∗ − 3 = 2t+ 3 + 1− 3 = 2t+ 1.

Finally, if n = 2
∏i=t1

i=1 pi
∏j=t2

j=1 qj with pi ≡ qj ≡ 1 (mod 4) and
(
pi

ℓ

)
= −

( qj
ℓ

)
= −1 for all i ∈ {1, . . . , t1}

and for all j ∈ {1, . . . , t2} , then according to the two cases above:

a. If
(
2
ℓ

)
4
= (−1)

ℓ−1
8 and

( qj
ℓ

)
4
=
(

ℓ
qj

)
4

for all j ∈ {1, . . . , t2} , then r∗ = 2 and r2 (H) = t1 + 2t2 + 2·

b. If
(
2
ℓ

)
4
̸= (−1)

ℓ−1
8 or

( qj
ℓ

)
4
̸=
(

ℓ
qj

)
4

for at least one j ∈ {1, . . . , t2} , then r∗ = 1 and r2 (H) = t1 +2t2 +1·

2

4.5. Case n = δ
∏i=t

i=1 pi with t odd, and for all i , pi ≡ 3 (mod 4)

Theorem 4.8 Let K = Q(
√

nϵ0
√
ℓ) be a real cyclic quartic number field, where ℓ ≡ 1 (mod 8) is a positive

prime integer, n a square-free positive integer relatively prime to ℓ and ϵ0 the fundamental unit of k = Q(
√
ℓ) .

Assume n = δ
∏i=t

i=1 pi , pi ≡ 3 (mod 4) for all i = 1, . . . , t and t is a positive odd integer.

1. If, for all i ,
(
pi

ℓ

)
= −1 , then r2 (H) = t .

2. If, for all i ,
(
pi

ℓ

)
= 1 , then r2 (H) = 2t .

Moreover, if n =
∏t1

i=1 pi
∏t2

j=1 qj , where pi ≡ qj ≡ 3 (mod 4) and
(
pi

ℓ

)
= −

( qj
ℓ

)
= −1, for all i ∈ {1, . . . , t1} ,

and for all j ∈ {1, . . . , t2} with t1 + t2 is odd, then r2 (H) = t1 + 2t2 .

Proof Assume n =
∏i=t

i=1 pi , since t is odd, we have a =
∏i=t

i=1 pi ≡ 3 (mod 4) , so a + b ≡ 3 + 0 ≡ 3

(mod 4) . Thus, by Theorem 2.1, fK = 22aℓ = 22ℓ
∏i=t

i=1 pi ̸≡ 0 (mod 8) . But S = s2sℓ
∏i=t

i=1 spi
= +1 . Indeed

for i = 1, . . . , t , we have epi
= 2 and pi ≡ 3 (mod 4) , then pi−1

2 ≡ 1 (mod 2) , so spi
= −1 . Therefore, the

real number field K having as a conductor fK and as quadratic subfield k exists.
If n = 2

∏i=t
i=1 pi , pi ≡ 3 (mod 4) for all i = 1, . . . , t , with t odd, then by Lemma 2.4 we get K =

Q(
√

2a(ℓ+ b
√
ℓ) = Q(

√
a(ℓ+ c

√
ℓ) with a = n

2 =
∏i=t

i=1 pi . As c ≡ 1 (mod 2) and ℓ ≡ 1 (mod 4) , so

fK = 23ℓ
∏i=t

i=1 pi ≡ 0 (mod 8) , then there exist as many real cyclic quartic number fields as imaginary ones
sharing the conductor fK and the quadratic subfield k .
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1. If
(
pi

ℓ

)
= −1 , for all i ∈ {1, . . . , t} , then the prime ideals of k which ramify in K are 2i, i ∈ {1, 2} , pi and

(
√
ℓ) , where pi is the prime ideal of k above pi and 2Ok = 2122 the decomposition of 2 in k .

a. For the case n =
∏i=t

i=1 pi , i ∈ {1, . . . , t} , we have:

(
−1,d
pi

)
=
[
−1
pi

]
=
(

1
pi

)
= 1,

(
ϵ0, d
pi

)
=
[
ϵ0
pi

]
=
(

−1
pi

)
= −1,(

−1,d
21

)
=
∏i=t

i=1

(
−1,pi

21

)(
−1,ϵ0

√
ℓ

21

)
=
∏i=t

i=1

(
−1,pi

21

)
= (−1)t = −1,(

ϵ0,d
21

)
=
(

ϵ0,−1
21

)(
ϵ0,−

∏i=t
i=1 piϵ0

√
ℓ

21

)
=
(

ϵ0,−1
21

)
= 1, since 21 don’t ramify in Q(

√
−
∏i=t

i=1 piϵ0
√
ℓ).

Using the above results and the product formula, we get the following table:

Unit \ Character (
√
ℓ) pi 21 22

−1 + + − −
ϵ0 + − + −
−ϵ0 + − − +

b. For the case n = 2
∏i=t

i=1 pi , i ∈ {1, . . . , t} , we have:

(
−1,d
21

)
=
(

−1,2
∏i=t

i=1 piϵ0
√
ℓ

21

)
=
(

−1,2
21

)∏i=t
i=1

(
−1,pi

21

)(
−1,ϵ0

√
ℓ

21

)
= (−1)t = −1,(

ϵ0,d
21

)
=
(

−1,2
∏i=t

i=1 piϵ0
√
ℓ

21

)
=
(

ϵ0,2
21

)(
ϵ0,−

∏i=t
i=1 piϵ0

√
ℓ

21

)
=
(
2
ℓ

)
4
(−1)

ℓ−1
8 .

So we need just to change the two columns in the previous table:

21 22
− −(

2
ℓ

)
4
(−1)

ℓ−1
8 −

(
2
ℓ

)
4
(−1)

ℓ−1
8

−
(
2
ℓ

)
4
(−1)

ℓ−1
8

(
2
ℓ

)
4
(−1)

ℓ−1
8

Hence for the two cases we have: r∗ = 0 , which implies: r2 (H) = µ+ r∗ − 3 = t+ 3 + 0− 3 = t.

2. If
(
pi

ℓ

)
= 1 for all i ∈ {1, . . . , t} , then the prime ideals of k which ramify in K are 2i, i ∈ {1, 2} , (

√
ℓ) , ℘i

and ℘̄i , where piOk = ℘i℘̄i , i = 1, . . . , t and 2Ok = 2122 .

a. For the case n =
∏i=t

i=1 pi , i ∈ {1, . . . , t} , we have for all i ∈ {1, . . . , t} :

(
−1, d
℘i

)
=
(

−1,d
℘̄i

)
=
[
−1
℘i

]
=
(

−1
pi

)
= −1 and

(
ϵ0,d
℘i

)
=
[
ϵ0
℘i

]
.

To compute the last unity, put ph0
i = ℘i℘̄i and ℘i = ai + bi

√
ℓ and ℘̄i = ai − bi

√
ℓ, for all i . According

to [7] we have
[
ϵ0

√
ℓ

℘i

]
=
[
ϵ0

√
ℓ

℘̄i

]
=
(
pi

ℓ

)
4
. Thus

[
ϵ0
℘i

]
=
(pi
ℓ

)
4

[√
ℓ

℘i

]
. On the other hand,

[√
ℓ

℘i

]
=
[
b2i

√
ℓ

℘i

]
=
[
bi(−ai+ai+bi

√
ℓ)

℘i

]
=
[
−aibi
℘i

]
= −

(
ai

pi

)(
bi
pi

)
.
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As ph0
i = a2i − b2i ℓ , so b2i ℓ ≡ a2i (mod pi) . Since ℓ and pi are relatively prime, then b2i ℓ

2 ≡ ℓa2i (mod pi) ,

so
(

bi
pi

)
=
(

biℓ
pi

)
=
(

b2i ℓ
2

pi

)
4

=
(

ℓa2
i

pi

)
4

=
(

ℓ
pi

)
4

(
ai

pi

)
. Finally,

[
ϵ0
℘i

]
= −

(
pi

ℓ

)
4

(
ai

pi

)(
bi
pi

)
= −

(
pi

ℓ

)
4

(
ai

pi

)(
ℓ
pi

)
4

(
ai

pi

)
= −

(
pi

ℓ

)
4

(
ℓ
pi

)
4

.

Proceeding similarly, we get
[
ϵ0
℘̄i

]
=
(
pi

ℓ

)
4

(
ℓ
pi

)
4

using the fact
[√

ℓ
℘̄i

]
= −

[
−b2i

√
ℓ

℘̄i

]
.

Then we get the following table by using the above results and the product formula.

Unit/Character
√
ℓ ℘i ℘̄1 21 22

−1 + − − − −
ϵ0 + −

(
pi

ℓ

)
4

(
ℓ
pi

)
4

(
pi

ℓ

)
4

(
ℓ
pi

)
4

+ −

−ϵ0 +
(
pi

ℓ

)
4

(
ℓ
pi

)
4

−
(
pi

ℓ

)
4

(
ℓ
pi

)
4

− +

b. For the case n = 2
∏i=t

i=1 pi , i ∈ {1, . . . , t} , we need just to change the last two columns in the previous
table by the following two ones:

21 22
− −(

2
ℓ

)
4
(−1)

ℓ−1
8 −

(
2
ℓ

)
4
(−1)

ℓ−1
8

−
(
2
ℓ

)
4
(−1)

ℓ−1
8

(
2
ℓ

)
4
(−1)

ℓ−1
8

Hence for the two cases −1, ϵ0 and −ϵ0 are not norms in K , thus r2(H) = µ+ r∗ − 3 = 2t+3+ 0− 3 = 2t.

Finally, if n = δ
∏t1

i=1 pi
∏t2

j=1 qj , with pi ≡ qj ≡ 3 (mod 4) and
(
pi

ℓ

)
= −

( qj
ℓ

)
= −1 for all i ∈ {1, . . . , t1} and

for all j ∈ {1, . . . , t2} with t1 + t2 is odd, then, according to the two cases above, there are t1 + 2t2 + 3 prime
ideals of k which ramify in K and r∗ = 0 . Thus, r2(H) = t1 + 2t2 + 3 + 0− 3 = t1 + 2t2. 2

4.6. Case n = δ
∏t

i=1 pi , with t even, and for all i pi ≡ 3 (mod 4)

Theorem 4.9 Let K = Q(
√

nϵ0
√
ℓ) be a real cyclic quartic number field, where ℓ ≡ 1 (mod 8) is a positive

prime integer, n a square-free positive integer relatively prime to ℓ and ϵ0 the fundamental unit of k = Q(
√
ℓ) .

Let n = δ
∏i=t

i=1 pi with pi ≡ 3 (mod 4) for all i ∈ {1, . . . , t} and t is an even positive integer (δ = 1 or 2) .

1. If, for all i , (pi

ℓ ) = −1 , then r2(H) = t− 1 + 2(δ − 1) .

2. If, for all i , (pi

ℓ ) = 1 , then r2(H) = 2t− 2 + 2(δ − 1) .

Moreover, for n = δ
∏i=t1

i=1 pi
∏j=t2

j=1 qj with (pi

ℓ ) = −(
qj
ℓ ) = −1 and pi ≡ qj ≡ 3 (mod 4) for all i ∈ {1, . . . , t1}

and for all j ∈ {1, . . . , t2} with t1 + t2 is even, we have r2(H) = t1 + 2t2 − 2 + 2(δ − 1) .

Proof For n =
∏i=t

i=1 pi ≡ 1 (mod 4) , with pi ≡ 3 (mod 4) for all i = 1, . . . , t , it is easy to see that

fK = aℓ =
∏i=t

i=1 piℓ ̸≡ 0 (mod 8) , and for n = 2
∏i=t

i=1 pi , we prove that fK = 23ℓ
∏i=t

i=1 pi ≡ 0 (mod 8) . We
proceed as in the cases above to prove, for any even nonzero positive integer t , the existence of real number
fields K having fK as a conductor and k as a quadratic subfield.
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1. Assume (pi

ℓ ) = −1 for all i .

• For δ = 1 , the prime ideals of k which ramify in K are (
√
ℓ) and pi , the prime ideals of k above pi , thus

µ = t+ 1 . As above we get the following table:

Unit \ Character
√
ℓ pi

−1 + +
ϵ0 + −
−ϵ0 + −

Then r∗ = 1 , from which we infer that: r2(H) = µ+ r∗ − 3 = t+ 1 + 1− 3 = t− 1.

• For δ = 2 , the prime ideals of k ramifying in K are (
√
ℓ) , 2i, i ∈ {1, 2} , and pi , the prime ideal of k

above pi , thus µ = t + 3 . We have:
(
−1, d

21

)
=

(
−1, d

22

)
=

(
−1, 2

∏i=t
i=1 piϵ0

√
ℓ

21

)
= (−1)t = 1. Using

the above results, we get the following table.

Unit/Character
√
ℓ 2i pi

−1 + + +

ϵ0 +
(
2
ℓ

)
4
(−1)

ℓ−1
8 −

ϵ0 +
(
2
ℓ

)
4
(−1)

ℓ−1
8 −

Hence r∗ = 1 , which implies that: r2(H) = µ+ r∗ − 3 = t+ 3 + 1− 3 = t+ 1.

2. Assume (pi

ℓ ) = 1 for all i .

• For δ = 1 , the prime ideals of k which ramify in K are (
√
ℓ) , ℘i and ℘̄i with piOk = ℘i℘̄i , thus µ = 2t+1 .

As above, we have the following table:

Unit\ Character
√
ℓ ℘i ℘̄i

−1 + − −
ϵ0 + −

(
pi

ℓ

)
4

(
ℓ
pi

)
4

(
pi

ℓ

)
4

(
ℓ
pi

)
4

−ϵ0 +
(
pi

ℓ

)
4

(
ℓ
pi

)
4

−
(
pi

ℓ

)
4

(
ℓ
pi

)
4

So r∗ = 0 , from which we infer that: r2(H) = µ+ r∗ − 3 = 2t+ 1 + 0− 3 = 2t− 2.

• For δ = 2 , then the prime ideals of k ramifying in K are (
√
ℓ) , 2i, i ∈ {1, 2} , ℘i and ℘̄i , where

pOk = ℘i℘̄i and 2Ok = 2122 . Using the above results we get:

Unit/Character
√
ℓ ℘i ℘̄i 2i

−1 + − − +

ϵ0 + −
(
pi

ℓ

)
4

(
ℓ
pi

)
4

(
pi

ℓ

)
4

(
ℓ
pi

)
4

(
2
ℓ

)
4
(−1)

ℓ−1
8

−ϵ0 +
(
pi

ℓ

)
4

(
ℓ
pi

)
4

−
(
pi

ℓ

)
4

(
ℓ
pi

)
4

(
2
ℓ

)
4
(−1)

ℓ−1
8

Hence r∗ = 0 , so: r2(H) = µ+ r∗ − 3 = 2t+ 3 + 0− 3 = 2t.

1253



AZIZI et al./Turk J Math

According to previous cases, if n = δ
∏t1

i=1 pi
∏t2

j=1 qj with t1 + t2 even and pi ≡ qj ≡ 3 (mod 4) ,
(
pi

ℓ

)
=

−
( qj

ℓ

)
= −1, for all i ∈ {1, . . . , t1} and for all j ∈ {1, . . . , t2} , then r∗ = 0 and r2 (H) = t1+2t2−2+2(δ−1).

2

4.7. Case n = δ
∏i=t

i=1 pi
∏j=s

j=1 qj , where pi ≡ −qj ≡ 1 (mod 4) for all (i, j) and s is odd

Theorem 4.10 Let K = Q(
√
nϵ0

√
ℓ) be a real cyclic quartic number field, where ℓ ≡ 1 (mod 8) is a positive

prime integer, n a square-free positive integer relatively prime to ℓ and ϵ0 the fundamental unit of the quadratic
subfield k = Q(

√
ℓ) . Assume n = δ

∏i=t
i=1 pi

∏j=s
j=1 qj with s odd, where pi ≡ −qj ≡ 1 (mod 4) , for all

(i, j) ∈ {1, . . . , t} × {1, . . . , s} , are prime integers. Denote by h the number of prime ideals of k above all the
p′is , i ∈ {1, . . . , t} .

1. If, for all j ,
( qj

ℓ

)
= −1 , then r2(H) = h+ s .

2. If, for all j ,
( qj

ℓ

)
= 1 , then r2(H) = h+ 2s .

Moreover, if
∏j=s

j=1 qj =
∏j′=s1

j′=1 qj′
∏j=s2

j=1 qj with
( qj′

ℓ

)
= −

( qj
ℓ

)
= −1 , for all j′ = 1, . . . , s1 and j = 1, . . . , s2 ,

with s1 + s2 is odd, then r2(H) = h+ s1 + 2s2 .

Proof Assume n =
∏i=t

i=1 pi
∏j=s

j=1 qj , where pi ≡ −qj ≡ 1 (mod 4) , for i = 1, . . . , t and j = 1, . . . , s . As

b ≡ 0 (mod 2) and a = n ≡ 3 (mod 4) (since s is odd), so a + b ≡ 3 + 0 ≡ 3 (mod 4) . Thus fK = 22ℓa ̸≡ 0

(mod 8) . But S = s2sℓ
∏i=t

i=1 spi

∏j=s
j=1 sqj = +1 , this implies that the real number K exists.

Assume n = 2
∏i=t

i=1 pi
∏j=s

j=1 qj , where pi ≡ −qj ≡ 1 (mod 4) , for i = 1, . . . , t and j = 1, . . . , s . Then

K = Q(
√
2a(ℓ+ b

√
ℓ) = Q(

√
a(ℓ+ c

√
ℓ) and a = n

2 . As c ≡ 1 (mod 2) , so fK = 23ℓa ≡ 0 (mod 8) , and there
exists as many real cyclic quartic number fields as imaginary ones.

1. If
(
pi

ℓ

)
=
( qj

ℓ

)
= −1 , for all i = 1, . . . , t and j = 1, . . . , s , then the prime ideals of k which ramify in K are

2i, i ∈ {1; 2} , (
√
ℓ) , pi , qj and 2Ok = 2122 .

a. For the case n =
∏i=t

i=1 pi
∏j=s

j=1 qj we have:

(
−1,d
21

)
=
∏s

j

(
−1,qj
21

)(
−1,

∏t
i piϵ0

√
ℓ

21

)
= (−1)s = −1,(

ϵ0,d
21

)
=

(
ϵ0,

∏s
j qi

∏t
i piϵ0

√
ℓ

21

)
=
(

ϵ0,−1
21

)(
ϵ0,−

∏s
j qi

∏t
i piϵ0

√
ℓ

21

)
= 1,

indeed 21 don’t ramify in Q
(√

−
∏s

j qi
∏t

i piϵ0
√
ℓ
)

since −
∏s

j qi
∏t

i pi ≡ 1 (mod 4) . The other charac-

ters are computed as above; using the product formula, we get the following table:

Unit/Character
√
ℓ 21 22 pi qj

−1 + − − + +
ϵ0 + − + + −
−ϵ0 + − + + −
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b. For the case n = 2
∏i=t

i=1 pi
∏j=s

j=1 qj we have:

(
−1,d
21

)
=
(

−1,2
21

)∏s
j

(
−1,qj
21

)(
−1,

∏t
i piϵ0

√
ℓ

21

)
= −1,(

ϵ0,d
21

)
=
(

ϵ0,2
21

)(
ϵ0,−1
21

)(
ϵ0,−

∏s
j qi

∏t
i piϵ0

√
ℓ

21

)
=
(

ϵ0,2
21

)
=
(
2
ℓ

)
4
(−1)

ℓ−1
8

So we need just to change the two columns in the previous table:

21 22
− −(

2
ℓ

)
4
(−1)

ℓ−1
8 −

(
2
ℓ

)
4
(−1)

ℓ−1
8

−
(
2
ℓ

)
4
(−1)

ℓ−1
8

(
2
ℓ

)
4
(−1)

ℓ−1
8

Hence, for the two cases we have: r∗ = 0 , so r2(H) = µ+ r∗ − 3 = t+ s+ 3 + 0− 3 = t+ s.

2. If
(
pi

ℓ

)
= −

( qj
ℓ

)
= 1 , for all i = 1, . . . , t and j = 1, . . . , s , then, the prime ideals of k which ramify in K

are 2i, i ∈ {1; 2} , (
√
ℓ) , ℘i , ℘̄i and qj , where piOk = ℘i℘̄i and 2Ok = 2122 .

a. For the case n =
∏i=t

i=1 pi
∏j=s

j=1 qj , proceeding as above, we obtain:

Unit/Character
√
ℓ 21 22 ℘i ℘̄i qj

−1 + − − + + +

ϵ0 + + −
(
pi

ℓ

)
4

(
ℓ
pi

)
4

(
pi

ℓ

)
4

(
ℓ
pi

)
4

−

−ϵ0 + − +
(
pi

ℓ

)
4

(
ℓ
pi

)
4

(
pi

ℓ

)
4

(
ℓ
pi

)
4

−

b. For the case n = 2
∏i=t

i=1 pi
∏j=s

j=1 qj we need just to change the two columns in the previous table:

21 22
− −(

2
ℓ

)
4
(−1)

ℓ−1
8 −

(
2
ℓ

)
4
(−1)

ℓ−1
8

−
(
2
ℓ

)
4
(−1)

ℓ−1
8

(
2
ℓ

)
4
(−1)

ℓ−1
8

Hence for the two cases r∗ = 0 , so r2(H) = µ+ r∗ − 3 = 2t+ s+ 3 + 0− 3 = 2t+ s.

3. If
(
pi

ℓ

)
= −

( qj
ℓ

)
= −1 ; for all i = 1, . . . , t and j = 1, . . . , s , then, the prime ideals of k , which ramify in K

are 2i, i ∈ {1; 2} , (
√
ℓ) , pi , ρj , and ρ̄j , where qjOk = ρj ρ̄j and 2Ok = 2122 .

a. For the case n =
∏i=t

i=1 pi
∏j=s

j=1 qj , proceeding as above, we obtain:

Unit/Character
√
ℓ 21 22 pi ρj ρ̄j

−1 + − − + − −
ϵ0 + + − + −

( qj
ℓ

)
4

(
ℓ
qj

)
4

( qj
ℓ

)
4

(
ℓ
qj

)
4

−ϵ0 + − + +
( qj

ℓ

)
4

(
ℓ
qj

)
4

−
( qj

ℓ

)
4

(
ℓ
qj

)
4

b. For the case n = 2
∏i=t

i=1 pi
∏j=s

j=1 qj , we need just to change the two columns in the previous table:
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21 22
− −(

2
ℓ

)
4
(−1)

ℓ−1
8 −

(
2
ℓ

)
4
(−1)

ℓ−1
8

−
(
2
ℓ

)
4
(−1)

ℓ−1
8

(
2
ℓ

)
4
(−1)

ℓ−1
8

For the two cases we have: r∗ = 0 , so r2(H) = µ+ r∗ − 3 = t+ 2s+ 2 + 0− 3 = t+ 2s− 1.

4. If
(
pi

ℓ

)
=
( qj

ℓ

)
= 1 , for all i = 1, . . . , t and j = 1, . . . , s , then the prime ideals of k which ramify in K are

2i, i ∈ {1; 2} , (
√
ℓ) , ℘i , ℘̄i , ρj and ρ̄j , where piOk = ℘i℘̄i and 2Ok = 2122 , qjOk = ρj ρ̄j .

(a) For the case n =
∏i=t

i=1 pi
∏j=s

j=1 qj , as above we get:

Unit/Char
√
ℓ 21 22 ℘i ℘̄i ρj ρ̄j

−1 + − − + + − −
ϵ0 + + −

(
pi

ℓ

)
4

(
ℓ
pi

)
4

(
pi

ℓ

)
4

(
ℓ
pi

)
4

−
( qj

ℓ

)
4

(
ℓ
qj

)
4

( qj
ℓ

)
4

(
ℓ
qj

)
4

−ϵ0 + − +
(
pi

ℓ

)
4

(
ℓ
pi

)
4

(
pi

ℓ

)
4

(
ℓ
pi

)
4

( qj
ℓ

)
4

(
ℓ
qj

)
4

−
( qj

ℓ

)
4

(
ℓ
qj

)
4

(b) For the case n = 2
∏i=t

i=1 pi
∏j=s

j=1 qj we need just to change the two columns in the previous table:

21 22
− −(

2
ℓ

)
4
(−1)

ℓ−1
8 −

(
2
ℓ

)
4
(−1)

ℓ−1
8

−
(
2
ℓ

)
4
(−1)

ℓ−1
8

(
2
ℓ

)
4
(−1)

ℓ−1
8

Hence for the two cases we have: r∗ = 0 , so r2(H) = µ+ r∗ − 3 = 2t+ 2s+ 3 + 0− 3 = 2t+ 2s.

In general, if
∏j=s

j=1 qj =
∏j′=s1

j′=1 qj′
∏j=s2

j=1 qj with
( qj′

ℓ

)
= −

( qj
ℓ

)
= −1 , for all j′ = 1, . . . , s1 and j = 1, . . . , s2 ,

with s1 + s2 is odd, then r∗ = 0 and r2(H) = h+ s1 + 2s2 + 3 + 0− 3 = h+ s1 + 2s2. 2

4.8. Case n = δ
∏i=t

i=1 pi
∏j=s

j=1 qj , where pi ≡ −qj ≡ 1 (mod 4) for all (i, j) and s is even

Theorem 4.11 Let K = Q(
√
nϵ0

√
ℓ) be a real cyclic quartic number field, where ℓ ≡ 1 (mod 8) is a

positive prime integer, n a square-free positive integer relatively prime to ℓ and ϵ0 the fundamental unit
of k = Q(

√
ℓ) . Assume n =

∏i=t
i=1 pi

∏j=s
j=1 qj with s an even positive integer and pi ≡ −qj ≡ 1 (mod 4) , for

all (i, j) ∈ {1, . . . , t} × {1, . . . , s} are prime integers. Denote by h the number of prime ideals in k above all
the p′is , i ∈ {1, . . . , t} .

1. If, for all j ,
( qj

ℓ

)
= −1 , then r2(H) = h+ s− 1 + 2(δ − 1) .

2. If, for all j ,
( qj

ℓ

)
= 1 , then r2(H) = h+ 2s− 2 + 2(δ − 1) .

Moreover, if
∏j=s

j=1 qj =
∏j′=s1

j′=1 qj′
∏j=s2

j=1 qj with
( qj′

ℓ

)
= −

( qj
ℓ

)
= −1 , for all j′ = 1, . . . , s1 and j = 1, . . . , s2 ,

s1 + s2 is even, then r2(H) = h+ s1 + 2s2 − 2 + 2(δ − 1) .

Proof We proceed as in the previous cases. 2
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5. The Case ℓ = 2

Let ℓ = 2 and n a square-free positive integer relatively prime to 2 . Let K = k(
√
nϵ0

√
2) with k = Q(

√
2) ,

where ϵ0 is the fundamental unit of k . Since ℓ = 2 we have fK = 23aℓ = 23ℓ
∏i=t

i=1 pi , then fK ≡ 0 (mod 8) ,
which implies, by Lemma 2.2, that there are as many real cyclic fields as imaginary ones having as conductor
fK and as quadratic subfield k . On the other hand, the prime ideals of k , which ramify in K are (

√
2) and

the prime ideals dividing n in k . Denote by µ the number of prime ideals of k ramifying in K .

5.1. Case n = 1

Theorem 5.1 Let K = Q(
√
nϵ0

√
2) be a real cyclic quartic number field, where ϵ0 is the fundamental unit of

the quadratic subfield k = Q(
√
2) and n a square-free positive integer relatively prime to 2 . If n = 1 , then

r2 (H) = 0 .

Proof In this case only (
√
2) ramifies in K , i.e. µ = 1 . Using the product formula, we must have:(

−1,d√
2

)
=
(

ϵ0,d√
2

)
= 1. Hence r∗ = 2 , which implies that: r2 (H) = µ+ r∗ − 3 = 2 + 1− 3 = 0. 2

5.2. Case n =
∏t

i=1 pi and, for all i , pi ≡ 1 (mod 4)

Theorem 5.2 Let K = Q(
√
nϵ0

√
2) be a real cyclic quartic number field, where ϵ0 is the fundamental unit of

the quadratic subfield k = Q(
√
2) and n a square-free positive integer relatively prime to 2 . Let n =

∏i=t
i=1 pi

with pi ≡ 1 (mod 4) for all i ∈ {1, . . . , t} and t is a positive integer.

1. Assume, for all i , ( 2
pi
) = −1 , then r2(H) = t .

2. Assume, for all i , ( 2
pi
) = 1 .

a. If
(

2
pi

)
4
=
(
pi

2

)
4
, for all i , then r2(H) = 2t.

b. If
(

2
pi

)
4
̸=
(
pi

2

)
4

for at least one i , then r2(H) = 2t− 1.

Moreover, if n =
∏i=t1

i=1 pi
∏j=t2

j=1 qj with
(

2
pi

)
= −

(
2
qj

)
= −1 for all i ∈ {1, . . . , t1} and for all j ∈ {1, . . . , t2} ,

then:

a. If
(

2
qj

)
4
=
( qj

2

)
4

for all j ∈ {1, . . . , t2} , then r2(H) = t1 + 2t2.

b. If
(

2
qj

)
4
̸=
( qj

2

)
4

for at least one j ∈ {1, . . . , t2} , then r2(H) = t1 + 2t2 − 1.

Proof

1. If ( 2
pi
) = −1 , for all i = 1, . . . , t , then µ = t+ 1 . Denote by pi the prime ideal of k above pi , hence, for all
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i = 1, . . . , t , we get (
−1, d

pi

)
=

[
−1

pi

]
=

(
1

pi

)
= 1,

(
ϵ0, d

pi

)
=

[
ϵ0
pi

]
=

(
−1

pi

)
= 1

and
(
−1, d√

2

)
=

(
ϵ0, d√

2

)
= 1 by the product formula.

So r∗ = 2 , from which we infer that: r2(H) = µ+ r∗ − 3 = t+ 1 + 2− 3 = t.

2. If ( 2
pi
) = 1 , for all i = 1, . . . , t , then µ = 2t + 1 . Let ℘i and ℘̄i be the prime ideals of k above pi ,

i = 1, . . . , t . Hence(
−1, d

℘i

)
=

(
−1, d

℘̄i

)
=

[
−1

℘i

]
=

(
−1

pi

)
= 1, for all i = 1, . . . , t.(

ϵ0, d

℘i

)
=

(
ϵ0, d

℘̄i

)
=

[
ϵ0
℘i

]
=

(
2

pi

)
4

(pi
2

)
4
(see [18, Proposition 5.8, p 160]).

The following table is completed by using the product formula:

Unit\ Character
√
2 ℘i ℘̄i

−1 + + +

ϵ0 +
(

2
pi

)
4

(
pi

2

)
4

(
2
pi

)
4

(
pi

2

)
4

−ϵ0 +
(

2
pi

)
4

(
pi

2

)
4
)

(
2
pi

)
4

(
pi

2

)
4

So we have to discus two cases:

a. If
(

2
pi

)
4
=
(
pi

2

)
4

for all i = 1, . . . , t , then r∗ = 2 , thus r2(H) = µ+ r∗ − 3 = 2t+ 1 + 2− 3 = 2t.

b. If
(

2
pi

)
4
̸=
(
pi

2

)
4

for at least one i = 1, . . . , t , then r∗ = 1 , thuq r2(H) = µ+r∗−3 = 2t+1+1−3 = 2t−1.

In general, if n =
∏i=t1

i=1 pi
∏j=t2

j=1 qj with
(

2
pi

)
= −

(
2
qj

)
= −1 for all i ∈ {1, . . . , t1} and for all

j ∈ {1, . . . , t2} , then according to the two cases above,

a. If
(

2
qj

)
4
=
( qj

2

)
4

for all j = 1, . . . , t2 , then r∗ = 2 , thus r2(H) = µ+r∗−3 = t1+2t2+1+2−3 = t1+2t2.

b. If
(

2
qj

)
4
̸=
( qj

2

)
4

for at least one j = 1, . . . , t2 , then r∗ = 1 , thus r2(H) = µ+r∗−3 = t1+2t2+1+1−3 =

t1 + 2t2 − 1.

2

5.3. Case n =
∏i=t

i=1 pi with pi ≡ 3 (mod 4) for all i

Theorem 5.3 Let K = Q(
√

nϵ0
√
2) be a real cyclic quartic number field, where ϵ0 is the fundamental unit of the

quadratic subfield k = Q(
√
2) and n a square-free positive integer relatively prime to 2 . Assume n =

∏i=t
i=1 pi ,

pi ≡ 3 (mod 4) for all i = 1, . . . , t and t is a positive integer.
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1. If, for all i ,
(

2
pi

)
= −1 , then r2 (H) = t− 1 .

2. If, for all i ,
(

2
pi

)
= 1 , then r2 (H) = 2t− 2 .

Moreover, if n =
∏t1

i=1 pi
∏t2

j=1 qj , where pi ≡ qj ≡ 3 (mod 4) and
(

2
pi

)
= −

(
2
qj

)
= −1, for all i ∈ {1, . . . , t1} ,

and for all j ∈ {1, . . . , t2} , then r2 (H) = t1 + 2t2 − 2 .

Proof

1. If
(

2
pi

)
= −1 , for all i ∈ {1, . . . , t} , then µ = t+ 1 . For pi the prime ideal of k above pi we have

(
−1, d
pi

)
=
[
−1
pi

]
=
(

1
pi

)
= 1 and

(
ϵ0, d
pi

)
=
[
ϵ0
pi

]
=
(

−1
pi

)
= −1.

Using the product formula, we obtain the following table:

Unit\ Character
√
2 pi

−1 + +
ϵ0 (−1)t −
−ϵ0 (−1)t −

Hence r∗ = 1 , which implies that: r2 (H) = µ+ r∗ − 3 = t+ 1 + 1− 3 = t− 1.

2. If
(

2
pi

)
= 1 for all i ∈ {1, . . . , t} , then the prime ideals of k which ramify in K are (

√
2) , ℘i and ℘̄i , where

piOk = ℘i℘̄i , i = 1, . . . , t . Hence for all i ∈ {1, . . . , t} , we have:(
−1, d
℘i

)
=
(

−1,d
℘̄i

)
=
[
−1
℘i

]
=
(

−1
pi

)
= −1 and

(
ϵ0,d
℘i

)
=
[
ϵ0
℘i

]
=
[
1+

√
2

℘i

]
.

To compute the last unity, put piOk = ℘i℘̄i and pi = a2i − 2b2i ≡ 7 (mod 8) with ℘i = ai + bi
√
2 and

℘̄i = ai − bi
√
2, for all i (note that Ok is a principal ring).

We have: [
1 +

√
2

℘i

]
=

(
bi
pi

)[
bi + bi

√
2

℘i

]
=

(
bi
pi

)[
bi + bi

√
2− ℘i

℘i

]
.

So (
ϵ0, d

℘i

)
=

(
bi
pi

)[
bi − ai
℘i

]
=

(
bi
pi

)(
bi − ai

pi

)
= −

(
bi
pi

)(
ai − bi
℘i

)
= −

(
bi
pi

)(
ai + bi

pi

)
,

indeed: (ai − bi)(ai + bi) = a2i − b2i ≡ a2i − b2i − pi ≡ b2i (mod pi) . Then:(
ai − bi

pi

)(
ai + bi

pi

)
=

(
b2i
pi

)
= 1 for all i = 1, . . . , t.

Since pi = a2i − 2b2i , one gets
(
2b2i
pi

)
4

=

(
a2i
pi

)
4

=

(
ai
pi

)
= (−1)

pi+1

8 ([6, page 19]). Which implies:

(
bi
pi

)
=

(
b2i
pi

)
4

=

(
2

pi

)
4

(−1)
pi+1

8 .
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Let ai + bi = 2jc with c an odd integer (ai and bi must be odd). So:

(
bi + ai

pi

)
=

(
2jc

pi

)
=

(
2

pi

)j (
c

pi

)
=

(
c

pi

)
=

(
−pi
c

)
.

On the other hand, we have: (ai − bi)(ai + bi) = a2i − b2i = pi + b2i , then
(
−pi
c

)
=

(
b2i
c

)
= 1 , which implies

that
(
bi + ai

pi

)
= 1 and

(
ϵ0, d

℘i

)
=

(
2

pi

)
4

(−1)
pi+1

8 .

In the same way we have:(
ϵ0, d

℘̄i

)
=

(
bi
pi

)[
bi + ai
℘̄i

]
=

(
bi
pi

)(
bi + ai

pi

)
=

(
2

qi

)
4

(−1)
qi+1

8 , for all i = 1, . . . , t.

Consequently, we have the following table.

Unit\ Character
√
2 ℘i ℘̄i

−1 + − −

ϵ0 (−1)t −
(

2

pi

)
4

(−1)
pi+1

8

(
2

qi

)
4

(−1)
pi+1

8

−ϵ0 (−1)t
(

2

pi

)
4

(−1)
pi+1

8 −
(

2

pi

)
4

(−1)
pi+1

8

Hence r∗ = 0 , and we infer that r2(H) = µ+ r∗ − 3 = 2t+ 1 + 0− 3 = 2t− 2.

Finally, if n =
∏t1

i=1 pi
∏t2

j=1 qj , with pi ≡ qj ≡ 3 (mod 4) and
(

2
pi

)
= −

(
2
pi

)
= −1 for all i ∈ {1, . . . , t1} and

for all j ∈ {1, . . . , t2} , then according to the two cases above, there are t1 + 2t2 + 1 prime ideals of k which
ramify in K and r∗ = 0 . Thus r2(H) = t1 + 2t2 + 1 + 0− 3 = t1 + 2t2 − 2. 2

5.4. Case n =
∏i=t

i=1 pi
∏j=s

j=1 qj , pi ≡ −qj ≡ 1 (mod 4) ∀(i, j)

Theorem 5.4 Let K = Q(
√
nϵ0

√
2) be a real cyclic quartic number field, where n a square-free positive

integer relatively prime to 2 and ϵ0 the fundamental unit of k = Q(
√
2) . Assume n =

∏i=t
i=1 pi

∏j=s
j=1 qj with

pi ≡ −qj ≡ 1 (mod 4) for all (i, j) ∈ {1, . . . , t} × {1, . . . , s} . Denote by h the number of prime ideals of k

dividing all the p′is , i ∈ {1, . . . , t} .

1. If, for all j ,
(

2
qj

)
= −1 , then r2(H) = h+ s− 1 .

2. If, for all j ,
(

2
qj

)
= 1 , then r2(H) = h+ 2s− 2 .

Moreover, if
∏j=s

j=1 qj =
∏i=s1

i=1 qi
∏j=s2

j=1 qj with qi ≡ qj ≡ 3 (mod 4) and
(

2
qj

)
= −

(
2
qj

)
= −1, i ∈

{1, . . . , s1}, j ∈ {1, . . . , s2} , then r2(H) = h+ s1 + 2s2 − 2 .

Proof Proceeding as above and using the previous results, we prove the theorem. 2
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6. Applications

In this section, we will determine the integers n such that r2(H) , the rank of the 2 -class group H of

K = Q(
√
nϵ0

√
ℓ) , is equal to 0 , 1 , 2 or 3 . For this we adopt the following notations: p and pi (resp. q

and qi ), i ∈ N∗ , are prime integers congruent to 1 (resp. 3) modulo 4 . δ = 1 or 2 . The following theorems
are simple deductions from the results of previous subsections. For all the examples below, we use PARI/GP
calculator version 2.11.2 (64bit), April 28, 2019.

6.1. Case ℓ ≡ 1 (mod 8)

Theorem 6.1 Let K = Q(
√

nϵ0
√
ℓ) be a real cyclic quartic number field, where ℓ ≡ 1 (mod 8) is a positive

prime integer, n a square-free positive integer relatively prime to ℓ and ϵ0 the fundamental unit of k = Q(
√
ℓ) .

The class number of K is odd if and only if n = 1 .

Example 6.2 For n = 1 and ℓ = 257 ≡ 1 (mod 8) , we have the class number of the class group H of

K = Q(
√
ϵ0
√
ℓ) is 3 .

Theorem 6.3 Let K = Q(
√
nϵ0

√
ℓ) be a real cyclic quartic number field, where ℓ ≡ 1 (mod 8) is a prime, n

a square-free positive integer relatively prime to ℓ and ϵ0 the fundamental unit of k = Q(
√
ℓ) . H is cyclic if

and only if one of the following assertions holds:

1. n = p and either (pℓ ) = −1 or (pℓ ) = 1 and
(
p
ℓ

)
4
̸=
(

ℓ
p

)
4

.

2. n = 2 and
(
2
ℓ

)
4
̸= (−1)

ℓ−1
8 .

3. n = δq and ( qℓ ) = −1 .

4. n = q1q2 and ( q1ℓ ) = −1 or ( q2ℓ ) = −1 .

Example 6.4

1. For n = p = 89 ≡ 1 (mod 4) and ℓ = 41 ≡ 1 (mod 8) , (pℓ ) = −1 and H is cyclic of order 2 . For

n = p = 97 ≡ 1 (mod 4) and ℓ = 89 ≡ 1 (mod 8) ,
(
p
ℓ

)
4
= −

(
ℓ
p

)
4

= 1 and H is cyclic of order 2 .

2. For n = 2 and and ℓ = 1913 ≡ 1 (mod 8) ,
(
2
ℓ

)
4
= −(−1)

ℓ−1
8 = 1 and H is cyclic of order 2 .

3. For n = q = 83 ≡ 3 (mod 4) and ℓ = 137 ≡ 1 (mod 8) , ( qℓ ) = −1 and H is cyclic of order 2 . For
n = 2q = 2.83 ≡ 2 (mod 4) and ℓ = 97 ≡ 1 (mod 8) , ( qℓ ) = −1 and H is cyclic of order 2 .

4. For n = q1q2 = 71.83 ≡ 1 (mod 4) and ℓ = 97 ≡ 1 (mod 8) , ( q1ℓ ) = ( q2ℓ ) = −1 and H is cyclic of order 2 .
For n = q1q2 = 79.83 ≡ 1 (mod 4) and ℓ = 41 ≡ 1 (mod 8) , ( q1ℓ ) = −( q2ℓ ) = −1 and H is cyclic of order
2 .
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Theorem 6.5 Let K = Q(
√
nϵ0

√
ℓ) be a real cyclic quartic number field, where ℓ ≡ 1 (mod 8) is a prime, n

a square-free positive integer relatively prime to ℓ and ϵ0 the fundamental unit of k = Q(
√
ℓ) . The rank r2(H)

equals 2 if and only if n takes one of the following forms.

1. n = p1p2 and

i. either (pi

ℓ ) = −1 for all i ∈ {1, 2}

ii. or (pi

ℓ ) = −(
pj

ℓ ) = −1 and
(pj

ℓ

)
4
̸=
(

ℓ
pj

)
4

, i ̸= j ∈ {1, 2} .

2. n = p , (pℓ ) = 1 and
(
p
ℓ

)
4
=
(

ℓ
p

)
4

.

3. n = 2p , (pℓ ) = −1 and
(
2
ℓ

)
4
̸= (−1)

ℓ−1
8 .

4. n = 2 and
(
2
ℓ

)
4
= (−1)

ℓ−1
8 .

5. n = δq and ( qℓ ) = 1 .

6. n = q1q2 and ( q1ℓ ) = ( q2ℓ ) = 1 .

7. n = δpq and (pℓ ) = ( qℓ ) = −1 .

8. n = pq1q2 , (pℓ ) = −1 and ( q1ℓ ) = −1 or ( q2ℓ ) = −1 .

Example 6.6

1. For n = p1p2 = 89.97 ≡ 1 (mod 4) and ℓ = 41 ≡ 1 (mod 8) , we have (p1

ℓ ) = (p2

ℓ ) = −1 and H is of type
(2, 2) . For n = p1p2 = 97.89 ≡ 1 (mod 4) and ℓ = 17 ≡ 1 (mod 8) , we have (p1

ℓ ) = −(p2

ℓ ) = −1 and(
p2

ℓ

)
4
= −

(
ℓ
p2

)
4

= 1 , H is of type (2, 2) .

2. n = p = 613 ≡ 1 (mod 4) and ℓ = 17 ≡ 1 (mod 8) , we have (pℓ ) = 1 ,
(
p
ℓ

)
4
=
(

ℓ
p

)
4

= 1 and H is of type

(4, 4) .

3. n = 2p = 2.1994 ≡ 2 (mod 4) and ℓ = 1753 ≡ 1 (mod 8) , we have (pℓ ) = −1 ,
(
2
ℓ

)
4
= −(−1)

ℓ−1
8 = 1 and

H is of type (2, 2) .

4. For n = 2 and and ℓ = 1889 ≡ 1 (mod 8) , we have
(
2
ℓ

)
4
= (−1)

ℓ−1
8 = 1 and H is of type (2, 4) .

5. For n = q = 79 ≡ 3 (mod 4) and ℓ = 97 ≡ 1 (mod 8) , we have ( qℓ ) = 1 and H is of type (2, 2) . For
n = 2q = 2.71 ≡ 2 (mod 4) and ℓ = 73 ≡ 1 (mod 8) , we have ( qℓ ) = 1 and H is of type (2, 4) .

6. For n = q1q2 = 47.67 ≡ 1 (mod 4) and ℓ = 17 ≡ 1 (mod 8) , we have ( q1ℓ ) = ( q2ℓ ) = 1 and H is of type
(2, 4) .
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7. For n = pq = 73.79 ≡ 3 (mod 4) and ℓ = 17 ≡ 1 (mod 8) , we have (pℓ ) = ( qℓ ) = −1 and H is of type
(2, 2) . For n = 2pq = 2.41.79 ≡ 2 (mod 4) and ℓ = 17 ≡ 1 (mod 8) , we have (pℓ ) = ( qℓ ) = −1 and H is of
type (2, 2) .

8. For n = pq1q2 = 97.71.79 ≡ 1 (mod 4) and ℓ = 41 ≡ 1 (mod 8) , we have (pℓ ) = ( q1ℓ ) = ( q2ℓ ) = −1

and H is of type (2, 2) . For n = pq1q2 = 97.79.83 ≡ 1 (mod 4) and ℓ = 41 ≡ 1 (mod 8) , we have
(pℓ ) = ( q1ℓ ) = −( q2ℓ ) = −1 and H is of type (2, 2) .

Theorem 6.7 Let K = Q(
√
nϵ0

√
ℓ) be a real cyclic quartic number field, where ℓ ≡ 1 (mod 8) is a prime, n

a square-free positive integer relatively prime to ℓ and ϵ0 the fundamental unit of k = Q(
√
ℓ) . The rank r2(H)

equals 3 if and only if n takes one of the following forms.

1. n = 2p and one of the following cases holds:

i. (pℓ ) = −1 and
(
2
ℓ

)
4
= (−1)

ℓ−1
8 ,

ii. (pℓ ) = 1 and
(
2
ℓ

)
4
̸= (−1)

ℓ−1
8 or

(
p
ℓ

)
4
̸=
(

ℓ
p

)
4

.

2. n = p1p2 and

i. either (pi

ℓ ) = 1, for all i ∈ {1, 2} and
(
pi

ℓ

)
4
̸=
(

ℓ
pi

)
4

for at least one i ∈ {1, 2} .

ii. or (p1

ℓ ) = −(p2

ℓ ) = −1 and
(
p2

ℓ

)
4
=
(

ℓ
p2

)
4

.

3. n = 2p1p2 , (pi

ℓ ) = −1 for all i ∈ {1, 2} and
(
2
ℓ

)
4
̸= (−1)

ℓ−1
8 .

4. n = p1p2p3 and

i. either (pi

ℓ ) = −1 for all i ∈ {1, 2, 3} ,

ii. or (p1

ℓ ) = (p2

ℓ ) = −(p3

ℓ ) = −1 and
(
p3

ℓ

)
4
̸=
(

ℓ
p3

)
4

.

5. n = δq1q2q3 and ( qiℓ ) = −1 for all i ∈ {1, 2, 3}

6. n = q1q2q3q4 and there exist at most one of symbols ( qiℓ ) for i ∈ {1, 2, 3, 4} equal 1 .

7. n = 2q1q2 and ( qiℓ ) = −1 for at least one i ∈ {1, 2} .

8. n = δp1p2q , (pi

ℓ ) = −1 for all i ∈ {1, 2} and ( qℓ ) = −1 .

9. n = δpq and (pℓ ) ̸= ( qℓ ) .

10. n = p1p2q1q2 , (pi

ℓ ) = −1 for all i ∈ {1, 2} and ( qiℓ ) = 1 for at most one i ∈ {1, 2} .

11. n = pq1q2 and one of the following cases holds:

i. (pℓ ) = 1 and at most one of the symbols ( qiℓ ) , i ∈ {1, 2} , is 1 .
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ii. (pℓ ) = −1 and ( qiℓ ) = 1 for all i ∈ {1, 2} .

Example 6.8

1. For n = p1p2p3 = 37.41.61 ≡ 1 (mod 4) and ℓ = 89 ≡ 1 (mod 8) , we have (p1

ℓ ) = (p2

ℓ ) = (p3

ℓ ) = −1

and H is of type (2, 2, 2) . For n = p1p2p3 = 89.97.73 ≡ 1 (mod 4) and ℓ = 41 ≡ 1 (mod 8) , we have

(p1

ℓ ) = (p2

ℓ ) = −(p3

ℓ ) = −1 and
(
p3

ℓ

)
4
= −

(
ℓ
p3

)
4

= −1 , H is of type (2, 2, 2).

2. For n = p1p2 = 89.97 ≡ 1 (mod 4) and ℓ = 73 ≡ 1 (mod 8) , we have (p1

ℓ ) = (p2

ℓ ) = 1 and
(
p2

ℓ

)
4
=

−
(

ℓ
p2

)
4

= −1 , H is of type (2, 4, 4) . For n = p1p2 = 61.73 ≡ 1 (mod 4) and ℓ = 89 ≡ 1 (mod 8) , we have

(p1

ℓ ) = −(p2

ℓ ) = −1 and
(
p2

ℓ

)
4
=
(

ℓ
p2

)
4

= 1 , H is of type (2, 2, 4).

3. For n = 2p = 2.97 ≡ 2 (mod 4) and ℓ = 41 ≡ 1 (mod 8) , we have (pℓ ) = −1 and
(
2
ℓ

)
4
= (−1)

ℓ−1
8 = −1 ,

H is of type (2, 2, 2) . For n = 2p = 2.97 ≡ 2 (mod 4) and ℓ = 89 ≡ 1 (mod 8) , we have (pℓ ) = 1 ,(
2
ℓ

)
4
= −(−1)

ℓ−1
8 = 1 and

(
p
ℓ

)
4
= −

(
ℓ
p

)
4

= 1 , H is of type (2, 4, 4).

4. For n = 2p1p2 = 2.73.97 ≡ 1 (mod 4) and ℓ = 17 ≡ 1 (mod 8) , we have (p1

ℓ ) = (p2

ℓ ) = −1 and(
2
ℓ

)
4
= −(−1)

ℓ−1
8 = −1 , H is of type (2, 2, 2).

5. For n = q1q2q3 = 67.71.83 ≡ 3 (mod 4) and ℓ = 97 ≡ 1 (mod 8) , we have ( q1ℓ ) = ( q2ℓ ) = ( q3ℓ ) = −1

and H is of type (2, 2, 2) . For n = 2q1q2q3 = 59.67.83 ≡ 2 (mod 4) and ℓ = 97 ≡ 1 (mod 8) , we have
( q1ℓ ) = ( q2ℓ ) = ( q3ℓ ) = −1 and H is of type (2, 2, 2).

6. For n = q1q2q3q4 = 11.23.31.7 ≡ 1 (mod 4) and ℓ = 17 ≡ 1 (mod 8) , we have ( q1ℓ ) = ( q2ℓ ) = ( q3ℓ ) = ( q3ℓ ) =

−1 and H is of type (2, 2, 2) .

7. For n = 2q1q2 = 71.83 ≡ 2 (mod 4) and ℓ = 97 ≡ 1 (mod 8) , we have ( q1ℓ ) = ( q2ℓ ) = −1 and H is of type
(2, 2, 4) . For n = 2q1q2 = 71.83 ≡ 2 (mod 4) and ℓ = 41 ≡ 1 (mod 8) , we have ( q1ℓ ) = −( q2ℓ ) = −1 and H

is of type (2, 2, 2).

8. For n = p1p2q = 89.97.79 ≡ 3 (mod 4) and ℓ = 41 ≡ 1 (mod 8) , we have (p1

ℓ ) = (p2

ℓ ) = ( qℓ ) = −1

and H is of type (2, 2, 2) . For n = 2p1p2q = 2.89.97.79 ≡ 3 (mod 4) and ℓ = 41 ≡ 1 (mod 8) , we have
(p1

ℓ ) = (p2

ℓ ) = ( qℓ ) = −1 and H is of type (2, 2, 2).

9. For n = pq = 61.47 ≡ 3 (mod 4) and ℓ = 17 ≡ 1 (mod 8) , we have (pℓ ) = −( qℓ ) = −1 and H is of type
(2, 4, 8) . For n = 2pq = 2.97.47 ≡ 2 (mod 4) and ℓ = 17 ≡ 1 (mod 8) , we have (pℓ ) = −( qℓ ) = 1 and H is
of type (2, 2, 2).

10. For n = p1p2q1q2 = 61.73.71.79 ≡ 1 (mod 4) and ℓ = 17 ≡ 1 (mod 8) , we have (p1

ℓ ) = (p2

ℓ ) = ( q1ℓ ) = ( q2ℓ ) =

−1 and H is of type (2, 2, 2) . For n = p1p2q1q2 = 61.73.67.79 ≡ 1 (mod 4) and ℓ = 17 ≡ 1 (mod 8) , we
have (p1

ℓ ) = (p2

ℓ ) = −( q1ℓ ) = ( q2ℓ ) = −1 and H is of type (2, 2, 2).
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11. For n = pq1q2 = 97.83.79 ≡ 1 (mod 4) and ℓ = 89 ≡ 1 (mod 8) , we have (pℓ ) = −( q1ℓ ) = ( q2ℓ ) = 1 and H

is of type (2, 2, 2) .

6.2. Case ℓ = 2

Theorem 6.9 Let K = Q(
√
nϵ0

√
2) be a real cyclic quartic number field, n an odd square-free positive integer

and ϵ0 the fundamental unit of k = Q(
√
2) . The class number of K is odd if and only if n = 1 or n is a prime

integer congruent to 3 (mod 4) .

Example 6.10 For n = q = 59 ≡ 3 (mod 4) , we have
(

2
q

)
= −1 , H has order 5 . For n = q = 631 ≡ 3

(mod 4) , we have
(

2
q

)
= 1 , H has order 5 .

Theorem 6.11 Let K = Q(
√
nϵ0

√
2) be a real cyclic quartic number field, n an odd square-free positive integer

and ϵ0 the fundamental unit of k = Q(
√
2) . H is cyclic if and only if one of the following assertions holds:

1. n = p and either ( 2p ) = −1 or ( 2p ) = 1 and
(

2
p

)
4
̸=
(
p
2

)
4
.

2. n = q1q2 and ( 2
q1
) = −1 or ( 2

q2
) = −1 .

3. n = pq and ( 2p ) = −1 .

Example 6.12

1. For n = p = 61 ≡ 1 (mod 4) , we have ( 2p ) = −1 and H is cyclic of order 2 . For n = p = 89 ≡ 1 (mod 4) ,

( 2p ) = 1 ,
(

2
p

)
4
= −

(
p
2

)
4
= 1 and H is cyclic of order 2 .

2. For n = q1q2 = 59.83 ≡ 1 (mod 4) , ( 2
q1
) = ( 2

q2
) = −1 and H is cyclic of order 2 . For n = q1q2 = 67.71 ≡ 1

(mod 4) , ( 2
q1
) = −( 2

q2
) = −1 and H is cyclic of order 2 .

3. For n = pq = 61.59 ≡ 3 (mod 4) , ( 2p ) = ( 2q ) = −1 and H is cyclic of order 2 . For n = pq = 61.47 ≡ 3

(mod 4) , ( 2p ) = −( 2q ) = −1 and H is cyclic of order 2 .

Theorem 6.13 Let K = Q(
√
nϵ0

√
2) be a real cyclic quartic number field, n an odd square-free positive integer

and ϵ0 the fundamental unit of k = Q(
√
2) . The rank r2(H) equals 2 if and only if n takes one of the following

forms.

1. n = p with ( 2p ) = 1 and
(

2
p

)
4
=
(
p
2

)
4

2. n = p1p2 and:

a. either ( 2
p1
) = ( 2

p2
) = −1
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b. or ( 2
pi
) = −( 2

pj
) = −1 and

(
2
pj

)
4
̸=
(pj

2

)
4

for i ̸= j in {1, 2} .

3. n = q1q2 with ( 2
q1
) = ( 2

q2
) = 1 .

4. n = q1q2q3 and at most one of the symbols ( 2
q1
) , ( 2

q2
) , ( 2

q3
) equals 1 .

5. n = p1p2q and ( 2
p1
) = ( 2

p2
) = −1 .

6. n = pq and ( 2p ) = 1 .

7. n = pq1q2 with ( 2p ) = −1 and ( 2
q1
) = −1 or ( 2

q2
) = −1.

Example 6.14

1. For n = p = 881 ≡ 1 (mod 4) ,
(

2
p

)
4
=
(
p
2

)
4
= 1 and H is of type (4, 4) .

2. For n = p1p2 = 877.997 ≡ 1 (mod 4) , ( 2
p1
) = ( 2

p2
) = −1 and H is of type (2, 2) . For n = p1p2 =

941.977 ≡ 1 (mod 4) , we have ( 2
p1
) = −( 2

p2
) = −1 and

(
2
p2

)
4
= −

(
p2

2

)
4
= −1 , H is of type (2, 2) .

3. For n = q1q2 = 47.79 ≡ 1 (mod 4) , we have ( 2
q1
) = ( 2

q2
) = 1 and H is of type (4, 4) .

4. For n = q1q2q3 = 67.83.43 ≡ 3 (mod 4) , we have ( 2
q1
) = ( 2

q2
) = ( 2

q3
) = −1 and H is of type (2, 2) . For

n = q1q2q3 = 67.83.47 ≡ 3 (mod 4) , we have ( 2
q1
) = ( 2

q2
) = −( 2

q3
) = −1 and H is of type (2, 2) .

5. For n = p1p2q = 53.61.83 ≡ 3 (mod 4) , we have ( 2
p1
) = ( 2

p2
) = ( 2

q3
) = −1 and H is of type (2, 2) . For

n = p1p2q3 = 53.61.71 ≡ 3 (mod 4) , we have ( 2
p1
) = ( 2

p2
) = −( 2

q3
) = −1 and H is of type (2, 2) .

6. For n = pq = 73.83 ≡ 3 (mod 4) , ( 2p ) = −( 2q ) = 1 and H is of type (2, 4) . For n = pq = 73.79 ≡ 3

(mod 4) , ( 2p ) = ( 2q ) = 1 and H is of type (2, 2) .

7. For n = pq1q2 = 61.43.67 ≡ 1 (mod 4) , we have ( 2p ) = ( 2
q1
) = ( 2

q2
) = −1 and H is of type (2, 2) . For

n = pq1q2 = 61.59.71 ≡ 1 (mod 4) , we have ( 2p ) = ( 2
q1
) = −( 2

q2
) = −1 and H is bicyclic and of type (2, 2) .

Theorem 6.15 Let K = Q(
√
nϵ0

√
2) be a real cyclic quartic number field, n an odd square-free positive integer

and ϵ0 the fundamental unit of k = Q(
√
2) . The rank r2(H) equals 3 if and only if n takes one of the following

forms.

1. n = p1p2 and

a. either ( 2
p1
) = ( 2

p2
) = 1 and

(
2
pi

)
4
̸=
(
pi

2

)
4

for at least one i ∈ {1, 2} .

b. or ( 2
pi
) = −( 2

pj
) = −1 and

(
2
pj

)
4
=
(pj

2

)
4

for i ̸= j ∈ {1, 2} .
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2. n = p1p2p3 and

a. either ( 2
pi
) = −1 for all i ∈ {1, 2, 3} .

b. or ( 2
pi
) = ( 2

pj
) = −( 2

pk
) = −1 and

(
2
pk

)
4
̸=
(
pk

2

)
4

for i , j and k different two by two in {1, 2, 3} .

3. n = q1q2q3 and only one of the symbols ( 2
qi
) , i ∈ {1, 2, 3} , equals −1 .

4. n = q1q2q3q4 and at most one of the symbols ( 2
qi
) , i ∈ {1, 2, 3, 4} , is 1 .

5. n = p1p2p3q and ( 2
pi
) = −1 for all i ∈ {1, 2, 3} .

6. n = pq1q2q3 with ( 2p ) = −1 and at most one of the symbols ( 2
qi
) , i = 1, 2, 3 , equals 1 .

7. n = p1p2q1q2 with ( 2
pi
) = −1 for all i ∈ {1, 2} and (( 2

q1
) or ( 2

q2
) = −1) .

8. n = pq1q2 and:

a. either ( 2p ) = 1 and ( 2
q1
) = −1 or ( 2

q2
) = −1 .

b. or ( 2p ) = −1 and ( 2
qi
) = 1 for all i ∈ {1, 2} .

9. n = p1p2q with ( 2
p1
) ̸= ( 2

p2
) .

Example 6.16

1. For n = p1p2 = 769.977 ≡ 1 (mod 4) , we have ( 2
p1
) = ( 2

p2
) = 1 ,

(
2
p1

)
4
= −

(
p1

2

)
4
= −1 and

(
2
p2

)
4
=

−
(
p2

2

)
4
= −1 H is of type (2, 2, 4) . For n = p1p2 = 797.953 ≡ 1 (mod 4) , we have ( 2

p1
) = −( 2

p2
) = −1

and
(

2
p2

)
4
=
(
p2

2

)
4
= −1 , H is of type (2, 4, 4) .

2. For n = p1p2p3 = 37.53.61 ≡ 1 (mod 4) , we have ( 2
pi
) = −1 for all i ∈ {1, 2, 3} and H is of type (2, 2, 2) .

For n = p1p2p3 = 53.61.89 ≡ 1 (mod 4) , we have ( 2
p1
) = ( 2

p2
) = −( 2

p3
) = −1 and

(
2
p3

)
4
= −

(
p3

2

)
4
= −1 ,

H is of type (2, 2, 2) .

3. For n = q1q2q3 = 71.79.67 ≡ 3 (mod 4) , we have ( 2
q1
) = ( 2

q2
) = −( 2

q3
) = 1 and H is of type (2, 2, 4) .

4. For n = q1q2q3q4 = 59.67.83.43 ≡ 1 (mod 4) , we have ( 2
q1
) = ( 2

q2
) = ( 2

q3
) = ( 2

q4
) = −1 and H is of type

(2, 2, 2) . For n = q1q2q3q4 = 59.67.83.79 ≡ 1 (mod 4) , we have ( 2
q1
) = ( 2

q2
) = ( 2

q3
) = −( 2

q4
) = −1 and H is

of type (2, 2, 2) .

5. For n = p1p2p3q = 37.53.61.67 ≡ 3 (mod 4) , we have ( 2
p1
) = ( 2

p2
) = ( 2

p3
) = ( 2q ) = −1 and H is of type

(2, 2, 2) . For n = p1p2p3q = 37.53.61.71 ≡ 3 (mod 4) , we have ( 2
p1
) = ( 2

p2
) = ( 2

p3
) = −( 2q ) = −1 and H is

of type (2, 2, 2) .
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6. For n = pq1q2q3 = 61.67.83.59 ≡ 3 (mod 4) , we have ( 2p ) = ( 2
q1
) = ( 2

q2
) = ( 2

q3
) = −1 and H is of type

(2, 2, 2) . For n = pq1q2q3 = 61.67.83.71 ≡ 3 (mod 4) , we have ( 2p ) = ( 2
q1
) = ( 2

q2
) = −( 2

q3
) = −1 and H is

of type (2, 2, 2) .

7. For n = p1p2q1q2 = 53.61.83.67 ≡ 1 (mod 4) , we have ( 2
p1
) = ( 2

p2
) = ( 2

q1
) = ( 2

q2
) = −1 and H is of type

(2, 2, 2) . For n = p1p2q1q2 = 53.61.83.79 ≡ 1 (mod 4) , we have ( 2
p1
) = ( 2

p2
) = ( 2

q1
) = −( 2

q2
) = −1 and H

is of type (2, 2, 2) .

8. For n = pq1q2 = 97.79.83 ≡ 1 (mod 4) , we have ( 2p ) = ( 2
q1
) = −( 2

q2
) = 1 and H is of type (2, 2, 2) . For

n = pq1q2 = 61.47.71 ≡ 1 (mod 4) , we have ( 2p ) = −( 2
q1
) = −( 2

q2
) = −1 and H is of type (2, 2, 4) .

9. For n = p1p2q = 61.73.83 ≡ 3 (mod 4) , we have ( 2
p1
) = −( 2

p2
) = ( 2q ) = −1 and H is of type (2, 2, 4) .

References

[1] Azizi A. Sur le 2 -groupe de classes de certains corps de nombres. Annales des sciences mathématiques du Québec
2004; 28 (1-2): 37-44.

[2] Azizi A, Mouhib A. Sur le rang du 2 -groupe de classes de Q(
√
m,

√
d) où m = 2 ou un premier p ≡ 1 mod 4 .

Transactions of the American Mathematical Society 2001; 353 (7): 2741-2752. doi: 10.1090/S0002-9947-01-02753-2.
[3] Azizi A, Mouhib A. Le 2 -rang du groupe de classes de certains corps biquadratiques et applications. International

Journal of Mathematics 2004; 15 (2): 169-182. doi: 10.1142/S0129167X04002235.
[4] Azizi A, Talbi M. Structure du groupe de galois pour certains corps de classes. International Journal of Algebra

2010; 4 (23): 1127-1136.
[5] Bauer H. Zur Berechnung der 2 -Klassenzahl der quadratischen Zahlkörper mit genau zwei verschieden Diskriminan-

tenprimteilern. Journal für die reine und angewandte Mathematik 1971; 248: 42-46. doi: 10.1515/crll.1971.248.42.
[6] Brown E, Parry CJ. The 2 -class group of certain biquadratic number fields. Journal für die reine und Angewandte

Mathematik 1977; 295: 61-71.
[7] Brown E, Parry CJ. The 2 -class group of certain biquadratic number fields II. Pacific Journal of Mathematics

1978; 78 (1): 11-26. doi: euclid.pjm/1102806295.
[8] Cohn H. Introduction to the construction of class fields. New York, NY, USA: Cambridge University Press, 1985.
[9] Gras G. Class Field Theory: From Theory to Practice. Corr. 2nd ed. , Springer Monongraphs in Mathematics.

Berlin, Heidelberg, Germany: Springer, 2005.
[10] Gras MN. Calcul du nombre de classes et des unités des extensions abéliennes réelles de Q . Bulletin des Sciences

Mathématiques 1977; 101: 97–129.
[11] Gras MN. Classes et unités des extensions cycliques réelles de degré 4 de Q . Annales de l’institut Fourier (Grenoble)

1979; 29: 107–124. doi: 10.5802/aif.729.
[12] Gras MN. Table numérique du nombre de classes et des unités des extensions cycliques réelles de degré 4 de Q .

Publications Mathématiques de Besançon. Algèbre et Théorie des Nombres, 1977-78; 2 (1). doi: 10.5802/pmb.a-17.
[13] Hasse H. An algorithm for determining the structure of the 2 -Sylow-subgroup of the divisor class group of a

quadratic number fleld. Symposia of Mathematics 1975; 15: 341-352.
[14] Hasse H. Arithmetische Bestimmung von Grundeinheit und Klassenzahl in zyklischen kubischen und biquadratishen

Zahlkorpern. Abhandlungen der Deutschen Akademie der Wissenschaften zu Berlin 1948; 2: 1-95.
[15] Hardy K, Hudson RH, Richman D, Williams KS, Holtz M. Calculation of the class numbers of imaginary cyclic

quartic fields. Mathematics of Computation 1987; 49 (180): 615-620. doi: 10.2307/2008334.

1268



AZIZI et al./Turk J Math

[16] Hilbert D. Bericht über die theorie der algebraischen Zahlkörper. Jahresbericht der Deutschen Mathematiker-
Vereinigung 1894-95; 4.

[17] Hymo JA, Parry CJ. On relative integral bases for cyclic quartic fields. Journal of Number Theory 1990; 34:
189-197. doi: 10.1016/0022-314X(90)90149-L.

[18] Lemmermeyer F. Reciprocity Laws. From Euler to Eisenstein. Springer Monographs in Mathematics. Berlin,
Germany: Springer, 2000.

[19] Leopoldt HW. Uber einheitengruppe und klassenzahl reeller abelscher zahlkörper. Abhandlungen der Deutschen
Akademie der Wissenschaften zu Berlin, Klasse für Mathematik 1953; 2: 1-48.

[20] McCall TM, Parry CJ, Ranalli RR. Imaginary bicyclic biquadratic fields with cyclic 2 -class group. Journal of
Number Theory 1995; 53: 88-99. doi: 10.1006/jnth.1995.1079.

[21] McCall TM, Parry CJ, Ranalli RR. The 2 -rank of the class group of imaginary bicyclic biquadratic fields. Canadian
Journal of Mathematics 1997; 49: 283-300. doi: 10.4153/CJM-1997-014-2.

[22] Parry CJ. A genus theory for quartic fields. Journal für die Reine und Angewandte Mathematik 1980; 314: 40-71.
[23] Parry CJ. Pure quartic number fields whose class numbers are even. Journal für die Reine und Angewandte

Mathematik 1975; 264: 102-112. doi: 10.1515/crll.1975.272.102.
[24] Parry CJ. Real quadratic fields with class number divisible by 5 . Mathematics of Computation 1977; 31: 1019-1029.

doi: 10.2307/2006134.
[25] Xianke Zh. Cyclic quartic fields and genus theory of their subfields. Journal of Number Theory 1984; 18: 350-355.

doi: 10.1016/0022-314X(84)90067-2.
[26] Zink O. Extensions cycliques de degré 2n sur Q . Séminaire delange-Pisot-Poitou. Théorie des nombres 1966-1967;

8 (2): 1-12. doi: SDPP_1966-1967_8_2_A7_0.

1269


	 Introduction
	 Preliminary results
	Quadratic norm residue symbol
	The case 1 8mu(mod6mu8)
	Case n = 1 
	Case n =2
	Case n=i=1tpi and, for all i, pi18mu(mod6mu4)
	Case n=2i=1tpi, and for all i, pi18mu(mod6mu4)
	Case n =i=1i=tpi with t odd, and for all i, pi38mu(mod6mu4)
	Case n=i=1tpi, with t even, and for all i pi38mu(mod6mu4)
	Case n =i=1i=tpij=1j=sqj, where  pi-qj18mu(mod6mu4)  for all  (i, j) and s is odd
	Case n =i=1i=tpij=1j=sqj, where  pi-qj18mu(mod6mu4)  for all  (i, j) and s is even

	 The Case =2
	Case n = 1 
	Case n=i=1tpi and, for all i, pi18mu(mod6mu4)
	Case n = i=1i=tpi with pi38mu(mod6mu4) for all i
	Case n =i=1i=tpij=1j=sqj, pi-qj18mu(mod6mu4) (i, j) 

	Applications
	Case 18mu(mod6mu8)
	Case =2


