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Abstract: In this paper, we investigate the coefficient bound estimates, second Hankel determinant, and Fekete–Szegö
inequality for the analytic bi-univalent function class, which we call Mocanu type bi-starlike functions, related to a
shell-shaped region in the open unit disk in the complex plane. Some interesting special cases of the results are also
discussed.
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1. Introduction and preliminaries
Let A denote the class of all complex valued functions f given by

f(z) = z + a2z
2 + a3z

3 + ...+ anz
n + ... = z +

∞∑
n=2

anz
n, an ∈ C, (1.1)

which are analytic in the open unit disk U = {z ∈ C : |z| < 1} in the complex plane. Furthermore, let
S be the class of all univalent functions in A . Some of the important and well-investigated subclasses of S

that include the classes S∗(α) and C(α) are given below, as the class of starlike and convex functions of order
α (α ∈ [0, 1)) , respectively. By definition (see [6, 9, 22])

S∗(α) =

{
f ∈ S : ℜ

(
zf ′(z)

f(z)

)
> α, z ∈ U

}
and

C(α) =

{
f ∈ S : ℜ

(
1 +

zf ′′(z)

f ′(z)

)
> α, z ∈ U

}
, α ∈ [0, 1)

An analytic function f is subordinate to an analytic function φ , written as f (z) ≺ φ (z) , provided that there
is an analytic function (that is, Schwarz function) ω defined on U with ω (0) = 0 and |ω (z)| < 1 satisfying
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f (z) = φ (ω (z)) . Ma and Minda [14] unified various subclasses of starlike and convex functions for which either

of the quantity zf ′(z)
f(z) or 1+ zf ′′(z)

f ′(z) is subordinate to a more general function. For this purpose, they considered

φ an analytic function with positive real part in U , satisfying φ (0) = 1, φ
′
(0) > 0 and φ (U) is symmetric

with respect to real axis. Such a function has a series expansion of the following form:

φ(z) = 1 + b1z + b2z
2 + b3z

3 + ... = 1 +

∞∑
n=2

bnz
n, b1 > 0.

It is well-known that (see [6]) every function f ∈ S has an inverse f−1 defined by

f−1 (f (z)) = z, z ∈ U, f−1 (f (w)) = w,w ∈ Ur0 = {w ∈ C : |w| < r0 (f)} ,

r0 (f) ≥ 1/4,

and

f−1 (w) = w +A2w
2 +A3w

3 +A4w
4 + ..., w ∈ Ur0 , (1.2)

where

A2 = −a2, A3 = 2a22 − a3, A4 = −5a32 + 5a2a3 − a4.

A function f ∈ A is called bi-univalent in U if both f and f−1 are univalent in U. Let Σ denote the
class of bi-univalent functions in U given by (1.1). For a short history and examples of functions in the class
Σ , see [21].

Firstly, Lewin [13] introduced the class of bi-univalent functions, obtaining the estimate |a2| ≤ 1.51 .
Subsequently, Brannan and Clunie [3] developed the result of Lewin to |a2| ≤

√
2 for f ∈ Σ . Accordingly,

Netanyahu [17] showed that |a2| ≤ 4
3 . Earlier, Brannan and Taha [2] introduced certain subclasses of bi-

univalent function class Σ , namely bi-starlike function of order α denoted S∗Σ (α) and bi-convex function of
order α denoted CΣ (α) corresponding to the function classes S∗ (α) and C(α) , respectively. For each of
the function classes S∗Σ (α) and CΣ (α) , nonsharp estimates on the first two Taylor–Maclaurin coefficients
were found in [2, 23]. Many researchers (see [21, 24]) have introduced and investigated several interesting
subclasses of bi-univalent function class Σ , and they have found nonsharp estimates on the first two Taylor–
Maclaurin coefficients. However, even so, the sharp estimates for each of the Taylor–Maclaurin coefficients
|an| , n = 2, 3, 4, ... is still an open problem (see, for example, [13, 17]). Recently, the upper bounds of
|H2 (2)| =

∣∣a2a4 − a23
∣∣ for the classes S∗Σ (α) and CΣ (α) were obtained by Deniz et al. [4] . Very soon,

Orhan et al. [19] reviewed the study of bound for the second Hankel determinant of the subclass Mα
Σ(β) of

bi-univalent functions and Mustafa et al.[16] improved the results obtained in [4].

Definition 1.1 [20] Let f ∈ A be normalized by f(0) = f ′(0)− 1 = 0 in the unit disc U . We denote by S∗(φ)

the class of analytic functions and satisfying the condition that

zf ′(z)

f(z)
≺ z +

√
1 + z2 =: φ(z),

where the branch of the square root is chosen to be the principal one, that is φ(0) = 1 .
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The function φ(z) := z +
√
1 + z2 maps the unit disc U onto a shell-shaped region on the right half

plane, and it is analytic and univalent on U . The range φ(U) is symmetric respecting the real axis and φ(z) is
a function with positive real part in U , with φ(0) = φ′(0) = 1 . Moreover, it is a starlike domain with respect
to the point φ(0) = 1(see Figure).

-
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Figure. The boundary of the set φ(U) .

Inspired by the aforementioned works, we define a subclass of bi-univalent functions namely Σ as follows.

Definition 1.2 A function f ∈ Σ given by (1.1) is said to be in the class MΣ (φ, β) ,

β ≥ 0 , if the following conditions are satisfied

(1− β)
zf ′(z)

f(z)
+ β

(
1 +

zf ′′(z)

f ′(z)

)
≺ φ (z) = z +

√
1 + z2, z ∈ U

and

(1− β)
wg′(w)

g(w)
+ β

(
1 +

wg′′(w)

g′(w)

)
≺ φ (w) = w +

√
1 + w2, w ∈ Ur0 ,

where g = f−1.

Remark 1.3 Taking β = 0 in the above definition, we have bi-starlike function class S∗
Σ (φ) , which satisfied

the following conditions

f ∈ S∗Σ (φ) ⇐⇒ zf ′(z)

f(z)
≺ φ (z) = z +

√
1 + z2, z ∈ U

and

wg′(w)

g(w)
≺ φ (w) = w +

√
1 + w2, w ∈ Ur0

where g = f−1.
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Remark 1.4 Taking β = 1 in the above defination, we have bi-convex function class CΣ (φ) , which satisfied
the following conditions.

f ∈ CΣ (φ) ⇐⇒ 1 +
zf ′′(z)

f ′(z)
≺ φ (z) = z +

√
1 + z2, z ∈ U

and

1 +
wg′′(w)

g′(w)
≺ φ (w) = w +

√
1 + w2, w ∈ Ur0 ,

where g = f−1.

In this paper, we give coefficient bound estimates, determine the upper bound estimate for the second
Hankel determinant, and solve the Fekete–Szegö problem for the functions belonging to the class MΣ (φ, β) and
in the special cases.

In order to prove our main results, we shall need the following lemma.

Lemma 1.5 [6] Let P be the class of all analytic functions p of the form

p(z) = 1 + p1z + p2z
2 + p3z

3 + ... = 1 +

∞∑
n=1

pnz
n (1.3)

satisfying ℜ (p (z)) > 0, z ∈ U and p (0) = 1 . Then,

|pn| ≤ 2, n = 1, 2, 3, ....

This ineuqality is sharp for each n. In particular, equality holds for all n for the function

p(z) =
1 + z

1− z
.

Lemma 1.6 [12] Let P be the class of all analytic functions p of the form

p(z) = 1 + p1z + p2z
2 + p3z

3 + ... = 1 +

∞∑
n=1

pnz
n

satisfying ℜ (p (z)) > 0, z ∈ U and p (0) = 1 . Then,

2p2 = p21 +
(
4− p21

)
x,

4p3 = p31 + 2
(
4− p21

)
p1x−

(
4− p21

)
p1x

2 + 2
(
4− p21

) (
1− |x|2

)
z,

for some x, z with |x| ≤ 1, |z| ≤ 1 .
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Lemma 1.7 [8] The power series given in (1.3) converges in U to the function p in P if and only if the
Toeplitz determinants

Dn =

∣∣∣∣∣∣∣∣∣∣∣∣

2 p1 p2 ... pn
p−1 2 p1 ... pn−1

. . . ... .

. . . ... .

. . . ... .
p−n p−n+1 p−n+2 ... 2

∣∣∣∣∣∣∣∣∣∣∣∣
, n = 1, 2, 3, ...

and p−n =
−
pn , are all nonnegative. They are strictly positive except for

p (z) =

n∑
n=1

ρnp0
(
eitnz

)
, ρn > 0, tn real

and tn ̸= tk for n ̸= k in this case Dn > 0 for n < m− 1 and Dn = 0 for n ≥ m .

Notation 1.8 Since p ∈ P , according to Lemma 1.7 D1 ≥ 0 and p−1 =
−
p1 ≥ 0. According to this

D1 =

∣∣∣∣ 2 p1
p1 2

∣∣∣∣ ≥ 0 and p1 =
−
p1 = p−1 ≥ 0. So 4− p21 ≥ 0 and p1 ≥ 0, which is equivalet to p1 ∈ [0, 2] . For

these reasons, for p1 , which is first coefficient in (1.3), we will assume that
∣∣4− p21

∣∣ = ∣∣∣4− |p1|2
∣∣∣ = 4− |p1|2

throughout our study.

2. Coefficients bound estimates
In this section, we prove the following theorem on upper bound estimates for the few initial coefficients of the
functions belonging to the class MΣ (φ, β) .

Theorem 2.1 Let the function f given by (1.1) be in the class MΣ (φ, β) . Then,

|a2| ≤ 1

1 + β
,

|a3| ≤

{
1

(1+β)2
if β ∈

[
0, 1 +

√
2
]

1
2(1+2β) if β ≥ 1 +

√
2,

|a4| ≤ 1

3 (1 + 3β)

{
2(1+4β)

(1+β)3
if β ∈ [0, β0] ,

1 if β ≥ β0,

where β0 = 1.3289 is the numerical solution of the equation β3 + 3β2 − 5β − 1 = 0.

Proof Let f ∈ MΣ (φ, β) , β ≥ 0 and g = f−1 . Then, there are analytic functions ω : U → U, ϖ : Ur0 → Ur0

with ω (0) = 0 = ϖ (0) , |ω (z)| ≤ 1, |ϖ (w)| ≤ 1 satisfying the following conditions

(1− β)
zf ′(z)

f(z)
+ β

(
1 +

zf ′′(z)

f ′(z)

)
= φ (ω (z)) = ω (z) +

√
1 + ω2 (z), z ∈ U (2.1)
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and

(1− β)
wg′(w)

g(w)
+ β

(
1 +

wg′′(w)

g′(w)

)
≺ φ (ϖ (w)) = ϖ (w) +

√
1 +ϖ2 (w), w ∈ Ur0 . (2.2)

We define the functions p, q ∈ P as follows:

p (z) :=
1 + ω (z)

1− ω (z)
= 1 + p1z + p2z

2 + p3z
3 + ... = 1 +

∞∑
n=1

pnz
n

and

q (w) :=
1 +ϖ (w)

1−ϖ (w)
= 1 + q1w + q2w

2 + q3w
3 + ... = 1 +

∞∑
n=1

qnw
n.

It follows that

ω (z) :=
p (z)− 1

p (z) + 1
=

1

2

[
p1z +

(
p2 −

p21
2

)
z2 +

(
p3 − p1p2 +

p31
4

)
z3 + ...

]
(2.3)

and

ϖ (z) :=
q (w)− 1

q (w) + 1
=

1

2

[
q1w +

(
q2 −

q21
2

)
w2 +

(
q3 − q1q2 +

q31
4

)
w3 + ...

]
. (2.4)

Thus, from (2.1), (2.3) and (2.2), (2.4), we write

(1− β)
zf ′(z)

f(z)
+ β

(
1 +

zf ′′(z)

f ′(z)

)
=
p (z)− 1

p (z) + 1
+

√
1 +

(
p (z)− 1

p (z) + 1

)2

, z ∈ U (2.5)

and

(1− β)
wg′(w)

g(w)
+ β

(
1 +

wg′′(w)

g′(w)

)
=
q (w)− 1

q (w) + 1
+

√
1 +

(
q (w)− 1

q (w) + 1

)2

,w ∈ Ur0 . (2.6)

Also, from (2.1), (2.3) and (2.2), (2.4) for the functions φ (ω (z)) and φ (ϖ (w)) , we can write the following
expressions, respectively.

φ (ω (z)) = 1 +
p1
2
z +

(
p2
2

− p21
8

)
z2 +

(p3
2

− p1p2
4

)
z3 + ... (2.7)

and

φ (ϖ (w)) = 1 +
q1
2
w +

(
q2
2

− q21
8

)
w2 +

(q3
2

− q1q2
4

)
w3 + ... . (2.8)

From (2.1), (2.7) and (2.2), (2.8), we easily write

(1− β)
zf ′(z)

f(z)
+ β

(
1 +

zf ′′(z)

f ′(z)

)
= 1 +

p1
2
z +

(
p2
2

− p21
8

)
z2 +

(p3
2

− p1p2
4

)
z3 + ... (2.9)
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and

(1− β)
wg′(w)

g(w)
+ β

(
1 +

wg′′(w)

g′(w)

)
= 1 +

q1
2
w +

(
q2
2

− q21
8

)
w2 +

(q3
2

− q1q2
4

)
w3 + ... (2.10)

From the equalities (2.9) and (2.10) obtained

(1 + β) a2 =
p1
2
, (2.11)

2 (1 + 2β) a3 − (1 + 3β) a22 =
p2
2

− p21
8
, (2.12)

3 (1 + 3β) a4 − 3 (1 + 5β) a2a3 + (1 + 7β) a32 =
p3
2

− p1p2
4

(2.13)

and

(1 + β)A2 =
q1
2
, (2.14)

2 (1 + 2β)A3 − (1 + 3β)A2
2 =

q2
2

− q21
8
, (2.15)

3 (1 + 3β)A4 − 3 (1 + 5β)A2A3 + (1 + 7β)A3
2 =

q3
2

− q1q2
4

. (2.16)

Substituting the expressions of A2, A3 , and A4 in the (2.14), (2.15), and (2.16), we obtain

− (1 + β) a2 =
q1
2
, (2.17)

−2 (1 + 2β) a3 + (3 + 5β) a22 =
q2
2

− q21
8
, (2.18)

−3 (1 + 3β) a4 + (12 + 30β) a2a3 − (10 + 22β) a32 =
q3
2

− q1q2
4

(2.19)

From (2.11) and (2.17), we write

p1
2 (1 + β)

= a2 = − q1
2 (1 + β)

and p1 = −q1. (2.20)

From this, the first result of the theorem is clear.
Subtracting (2.18) from (2.12) and considering second equality of (2.20), we get

a3 = a22 +
p2 − q2

8 (1 + 2β)
;

that is,

a3 =
p21

4 (1 + β)
2 +

p2 − q2
8 (1 + 2β)

. (2.21)

Also, subtracting (2.19) from (2.13) and considering (2.20) and (2.21), we get

a4 =
(1 + 4β) p31

12 (1 + 3β) (1 + β)
3 +

5 (p2 − q2) p1
32 (1 + β) (1 + 2β)

+
p3 − q3

12 (1 + 3β)
− (p2 + q2) p1

24 (1 + 3β)
. (2.22)
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If we take into account that p1 = −q1 , according to Lemma 1.6, we have

p2 − q2 =
4− p21

2
(x− y) , p2 + q2 = p21 +

4− p21
2

(x+ y) (2.23)

and

p3 − q3 =
p31
2

+

(
4− p21

)
p1

2
(x+ y)−

(
4− p21

)
p1

4

(
x2 + y2

)
(2.24)

+
4− p21

2

[(
1− |x|2

)
z −

(
1− |y|2

)
w
]

for some x, y, z, w with |x| ≤ 1, |y| ≤ 1, |z| ≤ 1, |w| ≤ 1 .
Substituting the first expression (2.23) in (2.21) for the coefficient a3 , we write the following equality

a3 =
p21

4 (1 + β)
2 +

4− p21
16 (1 + 2β)

(x− y) .

Note that, if we take |p1| = t , we can write
∣∣4− p21

∣∣ = ∣∣∣4− |p1|2
∣∣∣ = ∣∣4− t2

∣∣ = 4 − t2 (see, Note 1.8 at

the end of the first section). That is, we may assume without restriction that t ∈ [0, 2] . In that case, setting
|x| = ξ and |y| = η and using triangle inequality for |a3| , we can write the following inequality

|a3| ≤
t2

4 (1 + β)
2 +

4− t2

16 (1 + 2β)
(ξ + η) := F (ξ, η) , ξ, η ∈ [0, 1] .

Since F (ξ, η) ≤ F (1, 1) , from the last inequality, we can write

|a3| ≤
−β2 + 2β + 1

8 (1 + 2β) (1 + β)
2 t

2 +
1

2 (1 + 2β)
:= ψ (t) , t ∈ [0, 2] .

Since 1 + 2β − β2 ≥ 0 for β ∈
[
0, 1 +

√
2
]

and 1 + 2β − β2 ≤ 0 for β ≥ 1 +
√
2 , the function ψ is

increasing function for β ∈
[
0, 1 +

√
2
]

and decreasing for β ≥ 1 +
√
2 . Therefore,

|a3| ≤ max {ψ (t) , t ∈ [0, 2]} =

{
1

(1+β)2
if β ∈

[
0, 1 +

√
2
]
,

1
2(1+2β) if β ≥ 1 +

√
2 .

From (2.22), using (2.23), (2.24) and triangle inequality, we obtain the following inequality for |a4|

|a4| ≤ c1 (t) + c2 (t) (ξ + η) + c3 (t)
(
ξ2 + η2

)
:= G (ξ, η) ,

where

c1 (t) =
1 + 4β

12 (1 + 3β) (1 + β)
2 t

3 +
4− t2

12 (1 + 3β)
,

c2 (t) =

(
8β2 + 57β + 19

) (
4− t2

)
t

192 (1 + β) (1 + 2β) (1 + 3β)
,
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c3 (t) =

(
4− t2

)
(t− 2)

48 (1 + 3β)
.

Now we need to maximize the function G in the square Ω = {(ξ, η) : ξ, η ∈ [0, 1]} for t ∈ [0, 2] . We must
investigate the maximum of G in the cases t = 0, t = 2 , and t ∈ (0, 2) .

For t = 0 , we write

G (ξ, η) =
1

3 (1 + 3β)
− 1

6 (1 + 3β)

(
ξ2 + η2

)
≤ max {G (ξ, η) : ξ, η ∈ [0, 1]}

=
1

3 (1 + 3β)
.

Let t = 2 , then the function G is constant as follows:

G (ξ, η) =
2 (1 + 4β)

3 (1 + 3β) (1 + β)
3 .

Now, let t ∈ (0, 2) . In this case, we must investigate the maximum of the function G according to
t ∈ (0, 2) by taking into account the sign of ∆(G) = Gξξ (ξ, η)Gηη (ξ, η) − (Gξη (ξ, η))

2 . It is clear that the

point (ξ0, η0) , where ξ0 = η0 = −c2(t)
2c3(t)

> 0 , is a critical point according to extremum for the function G . Let

say that −c2 (t) ≥ 2c3 (t) , some values of t ∈ (0, 2) and β ≥ 0 , so (ξ0, η0) ∈ Ω (in the case −c2 (t) ≤ 2c3 (t)

(ξ0, η0) /∈ Ω , ).
Since

Gξξ (ξ, η) = Gηη (ξ, η) = 2c3 (t) =

(
4− t2

)
(t− 2)

24 (1 + 3β)
< 0

and

∆(G) = Gξξ (ξ, η)Gηη (ξ, η)− (Gξη (ξ, η))
2
=

[(
4− t2

)
(t− 2)

24 (1 + 3β)

]2

> 0,

from the elementary calculus the function G has a local maximum and the maximum occurs at (ξ0, η0) .
Hence,

G (ξ, η) ≤ G (ξ0, η0) = c1 (t)−
c22 (t)

2c3 (t)
:= H (t) , t ∈ (0, 2)

in the square Ω .
We can easily see that

H (t) = l1 (β) t
3 + l2 (β) t

2 + l3 (β) ,

l1 (β) =
1

12 (1 + 3β) (1 + β)
2

[(
8β2 + 57β + 19

)2
128 (1 + 2β)

2 − 1 + 4β

1 + β

]
,

l2 (β) =
1

12 (1 + 3β)

[ (
8β2 + 57β + 19

)2
64 (1 + β)

2
(1 + 2β)

2 − 1

]
, l3 (β) =

1

(1 + 3β)
.
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Since l1 (β) ≥ 0 , l2 (β) ≥ 0 (it can be easily seen that l1 (β) ≥ 0 and l2 (β) ≥ 0 ) for β ≥ 0 , the function
H is an increasing function in the interval (0, 2) . Therefore, the function H cannot have a maximum in the
interval (0, 2) .

Thus, the function G cannot have a local maximum for (0, 2) and ξ, η ∈ [0, 1] .
Now we investigate the maximum of the function G on the boundary of the square Ω .
For ξ = 0 and η ∈ [0, 1] (η = 0 and ξ ∈ [0, 1] investigated similarly), we write

G (0, η) = c1 (t) + c2 (t) η + c3 (t) η
2.

By simple computation, we easily see that G
′
(0, η) ≤ 0 if η ≤ (−c2 (t)) / (2c3 (t)) and G

′
(0, η) ≥ 0

if η ≥ (−c2 (t)) / (2c3 (t)) . Therefore, the critical point η0 = (−c2 (t)) / (2c3 (t)) is a minimum point for the
function G (0, η) . Thus, in this case, the function G (0, η) (G (ξ, 0)) cannot have a maximum point in the
interval (0, 1) . However, since G (0, 0) = c1 (t) and G (0, 1) = c1 (t) + c2 (t) + c3 (t) in the extremes of the
interval [0, 1] , we write

max {G (0, η) : η ∈ [0, 1]} = max {c1 (t) , c1 (t) + c2 (t) + c3 (t)} .

Thus, in the case c2 (t) + c3 (t) ≤ 0

max {G (0, η) : η ∈ [0, 1]} = c1 (t)

and
max {G (0, η) : η ∈ [0, 1]} = c1 (t) + c2 (t) + c3 (t)

in the case c2 (t) + c3 (t) ≥ 0.

For ξ = 1 and η ∈ [0, 1] (η = 1 and ξ ∈ [0, 1] investigated similarly), we write

G (1, η) = c1 (t) + c2 (t) + c3 (t) + c2 (t) η + c3 (t) η
2.

Similarly, we easily see that G
′
(1, η) ≤ 0 if η ≤ (−c2 (t)) / (2c3 (t)) and G

′
(1, η) ≥ 0 if η ≥

(−c2 (t)) / (2c3 (t)) . Therefore, the critical point η0 = (−c2 (t)) / (2c3 (t)) is a minimum point for the func-
tion G (1, η) . Thus, in this case, the function G (1, η) (G (ξ, 1)) cannot have a maximum point in the interval
(0, 1) . However, since G (1, η) = c1 (t) + c2 (t) + c3 (t) and G (1, 1) = c1 (t) + 2 [c2 (t) + c3 (t)] in the extremes
of the interval [0, 1] , we write

max {G (1, η) : η ∈ [0, 1]} = max {c1 (t) , c1 (t) + 2 [c2 (t) + c3 (t)]} .

Thus,
max {G (1, η) : η ∈ [0, 1]} = c1 (t)

if c2 (t) + c3 (t) ≤ 0,

max {G (1, η) : η ∈ [0, 1]} = c1 (t) + 2 [c2 (t) + c3 (t)]

if c2 (t) + c3 (t) ≥ 0 ,

max {G (0, η) : η ∈ [0, 1]} ≤ max {G (1, η) : η ∈ [0, 1]}
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if c2 (t) + c3 (t) ≥ 0 .
Define the function h :→ R as follows

h (t) = c1 (t) + 2 [c2 (t) + c3 (t)] .

Since the functions

c1 (t) =
1

3 (1 + 3β)

[
1 + 4β

4 (1 + β)
3 t

3 − 1

4
t2 + 1

]

and
h (t) =

[
L1 (β) t

2 + L2 (β)
]
t,

where

L1 (β) =
1

12 (1 + β) (1 + 3β)

[
1 + 4β

(1 + β)
2 − 8β2 + 57β + 19

8 (1 + 2β)

]
≤ 0

L2 (β) =
1

6 (1 + 3β)

[
1 +

8β2 + 57β + 192

4 (1 + β) (1 + 2β)

]
≥ 0,

cannot have a maximum in the interval (0, 2) ; we can write

max {G (ξ, η) : ξ, η ∈ [0, 1]} =
1

3
max

{
2 (1 + 4β)

(1 + 3β) (1 + β)
3 ,

1

1 + 3β

}
;

that is,

|a4| ≤
1

3 (1 + 3β)
max

{
2 (1 + 4β)

(1 + β)
3 , 1

}

Since

max

{
2 (1 + 4β)

(1 + β)
3 , 1

}
=

{
2(1+4β)

(1+β)3
if β ∈ [0, β0] ,

1 if β ≥ β0,

where β0 = 1.3289 is the numerical solution of the equation β3+3β2−5β−1 = 0 , from the last inequality
we obtain the third inequality of theorem.

Thus, the proof of Theorem2.1 is completed. 2

3. The second Hankel determinant and Fekete–Szegö inequality
In this section, we give an upper bound estimate for the second Hankel determinant and to solve Fekete–Szegö
problem for the function belonging to the class MΣ (φ, β) .

Firstly, we prove the following theorem on the upper bound estimate of the second Hankel determinant.

Theorem 3.1 Let the function f given by (1.1) be in the class MΣ (φ, β) . Then,

∣∣a2a4 − a23
∣∣ ≤ {

1
3(1+3β)(1+β)3

if β ∈ [0, β1] ,
1

4(1+2β)2
if β ≥ β1

(3.1)
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where β1 = 0.16357 is numerical solution of the equation 9β4 + 30β3 + 20β2 + 2β − 1 = 0.

Proof Let f ∈MΣ (φ, β) , β ∈ [0, 1] . Then, from (2.20), (2.21), and (2.22), we write

a2a4 − a23 =
−1

48 (1 + 3β) (1 + β)
3 p

4
1 +

(p2 − q2) p
2
1

64 (1 + 2β) (1 + β)
2 +

(p3 − q3) p2
24 (1 + β) (1 + 3β)

− (p2 + q2) p
2
1

48 (1 + β) (1 + 3β)
− (p2 − q2)

2

64 (1 + 2β)
2 .

Using (2.23) and (2.24), then triangle inequality and letting |p1| = t, |x| = ξ , |y| = η from the last
equality, we obtain∣∣a2a4 − a23

∣∣ ≤ C1 (t) + C2 (t) (ξ + η) + C3 (t)
(
ξ2 + η2

)
+ C4 (t) (ξ + η)

2
:= Φ (ξ, η) , (3.2)

where

C1 (t) =
1

48 (1 + 3β) (1 + β)
3 t

4 +

(
4− t2

)
t

24 (1 + β) (1 + 3β)
≥ 0,

C2 (t) =

(
8β2 + 21β + 7

) (
4− t2

)
t2

384 (1 + 2β) (1 + 3β) (1 + β)
2 ≥ 0,

C3 (t) =

(
4− t2

)
(t− 2) t

96 (1 + β) (1 + 3β)
≤ 0,

C4 (t) =

(
4− t2

)2
256 (1 + 2β)

2 ≥ 0.

Now we need to maximize the function Φ in the closed square Ω = {(ξ, η) : ξ, η ∈ [0, 1]} for t ∈ [0, 2] .
We must investigate the maximum of the function Φ in the cases , t = 0, t = 2 and t ∈ (0, 2) .

Let t = 0 , then

Φ(ξ, η) =
1

16 (1 + 2β)
2 (ξ + η)

2 ≤ max {Φ(ξ, η) : ξ, η ∈ Ω} =
1

4 (1 + 2β)
2 .

For t = 2 , the function Φ(ξ, η) is constant as follows

Φ(ξ, η) =
1

3 (1 + 3β) (1 + β)
3 .

Now, let t ∈ (0, 2) . In this case, we must investigate the maximum of the function Φ according to
t ∈ (0, 2) taking into account the sign of ∆(Φ) = Φξξ (ξ, η)Φηη (ξ, η)− (Φξη (ξ, η))

2 .
Since ∆(Φ) = 4C3 (t) [C3 (t) + 2C4 (t)] and C3 (t) + 2C4 (t) > 0 for every t ∈ (0, 2) and each β ∈ [0, 1] ,

∆(Φ) < 0 ; that is, the function Φ(ξ, η) cannot have a local maximum in the interior of the square Ω .
Now, we investigate the maximum of Φ on the boundary of the square Ω .
For ξ = 0 and η ∈ [0, 1] (the case η = 0 and ξ ∈ [0, 1] investigated similarly), we write

Φ(0, η) = C1 (t) + C2 (t) η + [C3 (t) + C4 (t)] η
2 := φ1 (η) .
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It is clear that C3 (t) + C4 (t) ≤ 0 and C3 (t) + C4 (t) ≥ 0 for some values of t ∈ (0, 2) .
In the case C3 (t) + C4 (t) ≤ 0 , the function φ1 (η) cannot have a local maximum in the interval (0, 1) ,

but φ1 (0) = c1 (t) and φ1 (1) = C1 (t) + C2 (t) + C3 (t) + C4 (t) in the extremes of the interval [0, 1] .
Let C3 (t) + C4 (t) ≥ 0 for some values of t ∈ (0, 2) . Then, the function φ1 (η) is an increasing function

and the maximum occurs at η = 1 .
Therefore,

max {φ1 (η) : η ∈ [0, 1]} = φ1 (1) = C1 (t) + C2 (t) + C3 (t) + C4 (t) .

For ξ = 1 and η ∈ [0, 1] (the case η = 1 and ξ ∈ [0, 1] investigated similarly), we write

Φ(1, η) = [C3 (t) + C4 (t)] η
2 + [C2 (t) + 2C4 (t)] η

+ C1 (t) + C2 (t) + C3 (t) + C4 (t) = φ2 (η) .

Similar to the above, we write

max {φ2 (η) : η ∈ [0, 1]} = φ2 (1) = C1 (t) + 2C2 (t) + 2C3 (t) + 4C4 (t) .

Thus, since φ1 (1) ≤ φ2 (1) , the maximum of the function Φ(ξ, η) occurs at the point (1, 1) and

max {Φ(ξ, η) : ξ, η ∈ Ω} = Φ(1, 1) = φ2 (1)

on the boundary of the square Ω .
Define the function M : (0, 2) → R as follows

M (t) = C1 (t) + 2C2 (t) + 2C3 (t) + 4C4 (t) = Φ(1, 1).

Substituting the values C1, C2 (t) , C3 (t) and C4 (t) in the expression of the function M , we obtain

M (t) = −θ1 (β) t4 + θ2 (β) t
2 + θ3 (β) ,

where

θ1 (β) =
16β3 + 53β2 + 36β + 7

192 (1 + 2β) (1 + 3β) (1 + β)
3 > 0,

θ2 (β) =
14β3 + 40β2 + 25β + 5

48 (1 + 3β) (1 + β)
2
(1 + 2β)

2 > 0,

θ3 (β) =
1

4 (1 + 2β)
2 > 0.

Setting t2 = τ, we write

N (τ) = −θ1 (β) τ2 + θ2 (β) τ + θ3 (β) , τ ∈ [0, 4] .

From this, using standard result of solving quadratic equation, we obtain

N (τ) ≤ −16θ1 (β) + 4θ2 (β) + θ3 (β) =
1

3 (1 + 3β) (1 + β)
3 ;
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that is,

Φ(ξ, η) ≤ 1

3 (1 + 3β) (1 + β)
3 .

Thus, we have

max {Φ(ξ, η) : ξ, η ∈ Ω} = max

{
1

4 (1 + 2β)
2 ,

1

3 (1 + 3β) (1 + β)
3

}
.

Also, since

max

{
1

4 (1 + 2β)
2 ,

1

3 (1 + 3β) (1 + β)
3

}
=

{
1

3(1+3β)(1+β)3
if β ∈ [0, β1] ,

1
4(1+2β)2

if β ≥ β1

where β1 = 0.16357 is numerical solution of the equation 9β4 + 30β3 + 20β2 + 2β − 1 = 0 , from (3.2)
and last equality, we obtain the desired result of the theorem.

Thus, the proof of Theorem 3.1 is completed. 2

From the Theorem 3.1, we obtain the following results.

Corollary 3.2 Let the function f given by (1.1) be in the class S∗
Σ (φ) . Then,

∣∣a2a4 − a23
∣∣ ≤ 1

3
.

Corollary 3.3 Let the function f given by (1.1) be in the class CΣ (φ) . Then,

∣∣a2a4 − a23
∣∣ ≤ 1

36
.

Now, we give the following theorems on the Fekete–Szegö inequality.

Theorem 3.4 Let the function f given by (1.1) be in the class MΣ (φ, β) and µ ∈ C . Then,

∣∣a3 − µa22
∣∣ ≤ {

1
2(1+2β) if |1− µ| ≤ (1+β)2

2(1+2β) ,
|1−µ|
(1+β)2

if |1− µ| ≥ (1+β)2

2(1+2β) .
(3.3)

Proof Let f ∈MΣ (φ, β) , β ≥ 0 and µ ∈ C . Then, from the equalities (2.20), (2.21) and (2.23) the expression
a3 − µa22 is written as

a3 − µa22 = (1− µ)
p21

4 (1 + β)
2 +

4− p21
16 (1 + 2β)

(x− y) (3.4)

for some x, y with |x| ≤ 1, |y| ≤ 1 .
From the equality (3.4), we obtain

∣∣a3 − µa22
∣∣ ≤ |1− µ| t2

4 (1 + β)
2 +

4− t2

16 (1 + 2β)
(ξ + η) := ψ (ξ, η) (3.5)
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where t = |p1| , ξ = |x| and η = |y| .
It is clear that the maximum ψ (ξ, η) occurs at the point (1.1) and

max {(ξ, η) : ψ (ξ, η)} = ψ (1, 1) =
1

4 (1 + β)
2

[
|1− µ| − (1 + β)

2

2 (1 + 2β)

]
t2 +

1

2 (1 + 2β)
. (3.6)

Since the function υ : (0, 2) → R defined by

υ (t) =
1

4 (1 + β)
2

[
|1− µ| − (1 + β)

2

2 (1 + 2β)

]
t2 +

1

2 (1 + 2β)

is an increasing function for |1− µ| ≥ (1 + β)
2
/2 (1 + 2β) and a decreasing function for |1− µ| ≤

(1 + β)
2
/2 (1 + 2β) , from (3.4), (3.5) and (3.9) we obtain the result of theorem.

Thus, the proof of Theorem 3.4 is completed. 2

From the Theorem 3.4, we obtain the following results.

Corollary 3.5 Let the function f given by (1.1) be in the class S∗Σ (φ) and µ ∈ C . Then,

∣∣a3 − µa22
∣∣ ≤ {

1
2 if |1− µ| ≤ 1

2 ,
|1− µ| if |1− µ| ≥ 1

2 .

Corollary 3.6 Let the function f given by (1.1) be in the class CΣ (φ) and µ ∈ C . Then,

∣∣a3 − µa22
∣∣ ≤ { 1

6 if |1− µ| ≤ 2
3 ,

|1−µ|
4 if |1− µ| ≥ 2

3 .

In the case µ ∈ R , the Theorem 3.4 is given as follows.

Theorem 3.7 Let the function f given by (1.1) be in the class MΣ (φ, β) and µ ∈ R . Then,

∣∣a3 − µa22
∣∣ ≤


1−µ

(1+β)2
if µ ≤ 1− (1+β)2

2(1+2β) ,

1
2(1+2β) if 1− (1+β)2

2(1+2β) ≤ µ ≤ 1 + (1+β)2

2(1+2β) ,
µ−1

(1+β)2
if 1 + (1+β)2

2(1+2β) ≤ µ.

(3.7)

Proof Let f ∈MΣ (φ, β) , β ≥ 0 and µ ∈ R . Since in the case µ ∈ R inequalities

|1− µ| ≥ (1 + β)
2

2 (1 + 2β)
and |1− µ| ≤ (1 + β)

2

2 (1 + 2β)

are equivalent to the inequalities

µ ≤ 1− (1 + β)
2

2 (1 + 2β)
or µ ≥ 1 +

(1 + β)
2

2 (1 + 2β)
and 1− (1 + β)

2

2 (1 + 2β)
≤ µ ≤ 1 +

(1 + β)
2

2 (1 + 2β)
,

respectively; from the Theorem 3.4 we obtain the result of the theorem.
This completes the proof. 2
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From the Theorem 3.7, we obtain the following results.

Corollary 3.8 Let the function f given by (1.1) be in the class S∗
Σ (φ) and µ ∈ R . Then,

∣∣a3 − µa22
∣∣ ≤

 1− µ if µ ≤ 1
2 ,

1
2 if 1

2 ≤ µ ≤ 3
2 ,

µ− 1 if 3
2 ≤ µ.

Corollary 3.9 Let the function f given by (1.1) be in the class CΣ (φ) and µ ∈ R . Then,

∣∣a3 − µa22
∣∣ ≤


1−µ
4 if µ ≤ 1

3 ,
1
6 if 1

3 ≤ µ ≤ 5
3 ,

µ−1
4 if 5

3 ≤ µ.

Corollary 3.10 Let the function f given by (1.1) be in the class MΣ (φ, β) . Then,

∣∣a3 − a22
∣∣ ≤ 1

2 (1 + 2β)
.

Corollary 3.11 Let the function f given by (1.1) be in the class MΣ (φ, β) . Then,

|a3| ≤

{
1

(1+β)2
if β ∈

[
0, 1 +

√
2
]

1
2(1+2β) if β ≥ 1 +

√
2 .

Acknowledgement
We record our sincere thanks to the referee for his insightful suggestions.

References

[1] Altınkaya S, Yalcın S. Chebyshev polinomial coefficient bounds for a subclass of bi univalent functions. Remove
ArXiv:1605.08224v2 [math.CV] 9 Feb 2017. Khayyam Journal of Mathematics 2016; 2 (1): 1-5.

[2] Brannan DA, Taha TS. On some classes of bi-univalent functions. Studia Univ. Babes-Bolyai Mathematica 1986;
31: 70-77.

[3] Brannan DA, Clunie J. Aspects of contemporary complex analysis: London and New York, USA: Academic Press,
1980.

[4] Deniz E, Çağlar M, Orhan H. Second Hankel determinant for bi-stalike and bi-convex functions of order β . Applied
Mathematics and Computation 2015; 271: 301-307.

[5] Doha EH. The first and second kind Chebyshev coefficients of the mo-ments of the general-order derivative of an
infinitely differentiable function. International Journal of Computer Mathematics 1994; 15: 21-35.

[6] Duren PL. Univalent Functions: In: Grundlehren der Mathematischen Wissenschaften. Band 259. New York, Berlin,
Heidelberg and Tokyo: Springer-Verlag, 1983.

[7] Fekete M, Szegö G. Eine Bemerkung über ungerade schichte Funktionen. Journal of the London Mathematical
Society 1933; 8: 85-89.

[8] Grenander U, Szegö G. Toeplitz form and their applications: California Monographs in Mathematical Sciences.
Berkeley, USA: University California Press, 1958.

[9] Goodman AW. Univalent Functions: Volume I. Washington, USA: Polygonal, 1983.

1285



MUSTAFA and MURUGUSUNDARAMOORTHY/Turk J Math

[10] Hummel J. The coefficient regions of starlike functions. Pacific Journal of Mathematics 1957; 7: 1381-1389.

[11] Hummel J. Extremal problems in the class of starlike functions. Proceedings of the American Mathematical Society
1960; 11: 741-749.

[12] Keogh FR and Merkes EP. A coefficient inequality for certain classes of analytic functions. Proceedings of the
American Mathematical Society 1969; 20: 8-12.

[13] Lewin M. On a coefficient problem for bi-univalent functions. Proceedings of the American Mathematical Society
1967; 18: 63-68.

[14] Ma WC, Minda D. A unified treatment of some special classes of functions. In: Proceedings of the Conference on
Complex Analysis, Tianjin, 1992; 157-169, Conference Proceedings Lecture Notes Analysis 1. International Press,
Cambridge, MA; 1994.

[15] Mason JC. Chebyshev polynomials approximations for the embrane eigenvalue problem. SIAM Journal on Applied
Mathematics 1967; 15: 172-186.

[16] Mustafa N, Mrugusundaramoorthy G, Janani T. Second Hankel determinant for certain subclass of bi-univalent
functions. Mediterranean Journal of Mathematics 2018; 15: 119-136.

[17] Netanyahu E. The minimal distance of the image boundary from the origin and the second coefficient of a univalent
function in |z| < 1 . Archive for Rational Mechanics and Analysis 1969; 32: 100-112.

[18] Noonan JW, Thomas DK. On the second Hankel determinant of a really mean p-valent functions. Transactions of
the American Mathematical Society 1976; 223: 337-346.

[19] Orhan H, Magesh N, Yamini J. Bounds for the second Hankel determinant of certain bi-univalent functions. Turkish
Journal of Mathematics 2016; 40: 678-687.

[20] Raina RK, Sokół J. On Coefficient estimates for a certain class of starlike functions. Hacettepe Journal of
Mathematics and Statistics 2015; 44 (6): 1427-1433.

[21] Srivastava HM, Mishra AK, Gochhayat P. Certain sublcasses of analytic and bi-univalent functions. Applied
Mathematics Letters 2010; 23: 1188-1192.

[22] Srivastava HM, Owa S. Current Topics in Analytic Function Theory: Singapore: World Scientific, 1992.

[23] Taha TS. Topics in Univalent Function Theory. Ph.D, University of London, London, UK, 1981.

[24] Xu QH, Xiao HG, Srivastava HM. A certain general subclass of analytic and bi-univalent functions and associated
coefficient estimate problems. Applied Mathematics and Computation 2012; 218: 11461-11465.

1286


	Introduction and preliminaries
	Coefficients bound estimates
	The second Hankel determinant and Fekete–Szegö inequality

