

**Turkish Journal of Mathematics** 

http://journals.tubitak.gov.tr/math/

Turk J Math (2021) 45: 1287 – 1299 © TÜBİTAK doi:10.3906/mat-2006-93

**Research Article** 

# General rotational $\xi$ -surfaces in Euclidean spaces

Kadri ARSLAN<sup>®</sup>, Yılmaz AYDIN<sup>®</sup>, Betül BULCA<sup>\*</sup><sup>®</sup>

Department of Mathematics, Faculty of Arts and Science, Bursa Uludağ University, Bursa, Turkey

| Received: 22.06.2020 | • | Accepted/Published Online: 30.03.2021 | • | <b>Final Version:</b> 20.05.2021 |
|----------------------|---|---------------------------------------|---|----------------------------------|
|----------------------|---|---------------------------------------|---|----------------------------------|

Abstract: The general rotational surfaces in the Euclidean 4-space  $\mathbb{R}^4$  was first studied by Moore (1919). The Vranceanu surfaces are the special examples of these kind of surfaces. Self-shrinker flows arise as special solution of the mean curvature flow that preserves the shape of the evolving submanifold. In addition,  $\xi$ -surfaces are the generalization of self-shrinker surfaces. In the present article we consider  $\xi$ -surfaces in Euclidean spaces. We obtained some results related with rotational surfaces in Euclidean 4-space  $\mathbb{R}^4$  to become self-shrinkers. Furthermore, we classify the general rotational  $\xi$ -surfaces with constant mean curvature. As an application, we give some examples of self-shrinkers and rotational  $\xi$ -surfaces in  $\mathbb{R}^4$ .

Key words: Mean curvature, self-shrinker, general rotational surface

## 1. Introduction

Let  $x: M \to \mathbb{R}^m$  be an isometric immersion of an n-dimensional submanifold M (m > n) into the Euclidean space  $\mathbb{R}^m$ . The position vector field x of M is very important object in differential geometry. It is the Euclidean vector  $x = \overrightarrow{op}$  known as the radius vector of M, where  $p \in M$  and  $o \in \mathbb{R}^m$  is the arbitrary reference point. The position vector field x of M has a natural decomposition given by

$$x = x^T + x^N,\tag{1.1}$$

where  $x^T \in T_p M$  and  $x^N \in T_p^{\perp} M$  [9].

The mean curvature vector field  $\vec{H}$  is one of the most important invariants of the submanifold M. In physics, the average curvature vector field is the torsion field applied to the submanifold originated from  $\mathbb{R}^m$ . The mean curvature flow is the gradient flow of the area functional on the space of the submanifold M. The self-shrinker flows arise as special solution of the mean curvature flow that preserve the shape of the evolving submanifold [18]. The most important mean curvature flow is self-similar flow which is obtained by the following nonlinear elliptic system

$$\overrightarrow{H} + x^N = 0,$$

where  $x^N$  is the normal component of the position vector x [18].

<sup>2010</sup> AMS Mathematics Subject Classification: 53C40, 53C42



<sup>\*</sup>Correspondence: bbulca@uludag.edu.tr

In [14] Chang and Wei introduced a  $\lambda$ -hypersurfaces in Euclidean space giving a natural generalization of self-shrinkers in the hypersurface case. According to [14], a hypersurface  $M \subset \mathbb{R}^{n+1}$  is called a  $\lambda$ -hypersurface and its mean curvature H satisfies

$$H + \langle x, N \rangle = \lambda,$$

for some real function  $\lambda$ , where N is the unit normal of the hypersurface. Recently, Li and Chang made a generalization of both self-shrinkers and  $\lambda$ -hypersurfaces, by introducing the concepts of  $\xi$ -submanifolds [20]. By definition an immersed submanifold  $M^n$  in  $\mathbb{R}^m$  is called a  $\xi$ -submanifold if there is a parallel vector field  $\xi$  such that the mean curvature vector field  $\overrightarrow{H}$  satisfies

$$\overrightarrow{H} + x^N = \xi.$$

This paper is organized as follows: In Section 2, we give some basic concepts of the second fundamental form and curvatures of the surfaces in  $\mathbb{R}^m$ . In Section 3, we give some well known results of self-shrinker surfaces in  $\mathbb{R}^m$ . Further, we give some well known examples satisfying the self-shrinking condition. In Section 4 we consider generalized rotational surfaces in  $\mathbb{R}^4$ . We obtained some results related with generalized rotational surfaces in Euclidean 4–space  $\mathbb{R}^4$  to become self-shrinkers. Furthermore, we classify the general rotational  $\xi$ -surfaces with constant mean curvature. As an application, we give some examples of self-shrinkers and rotational  $\xi$ -surfaces in  $\mathbb{R}^4$ .

## 2. Preliminaries

Let  $x: M \to \mathbb{R}^m$  be an immersed surface in the Euclidean space  $\mathbb{R}^m$ . Denote  $\chi(M)$  and  $\chi^{\perp}(M)$  with the space of the smooth vector fields tangent and normal to M, respectively. Given any local orthonormal vector fields  $e_1, e_2$  tangent to M, consider the second fundamental form

$$h(e_i, e_j) = \widetilde{\nabla}_{e_i} e_j - \nabla_{e_i} e_j, \qquad 1 \le i, j \le 2$$

$$(2.1)$$

where  $\nabla$  and  $\widetilde{\nabla}$  are the induced connection of M and the Riemannian connection of  $\mathbb{R}^m$ , respectively. This map is well-defined, symmetric and bilinear [9]. For any arbitrary orthonormal frame field  $\{N_1, N_2, ..., N_{m-n}\}$ of M, recall the shape operator

$$A_{N_{\alpha}}e_{j} = -\widetilde{\nabla}_{e_{j}}N_{\alpha} + D_{e_{j}}N_{\alpha}, \quad 1 \le \alpha \le m - n, 1 \le j \le 2$$

$$(2.2)$$

where D denotes the normal connection of M. This operator is bilinear, selfadjoint and satisfies the following equation:

$$\langle A_{N_{\alpha}}e_j, e_i \rangle = \langle h(e_i, e_j), N_{\alpha} \rangle = h_{ij}^{\alpha}, \quad 1 \le i, j \le 2; \quad 1 \le \alpha \le m - n,$$

$$(2.3)$$

where  $h_{ij}^{\alpha}$  are the coefficients of the second fundamental form.

Eqs. (2.1) and (2.2) are called Gaussian formula and Weingarten formula, respectively. In addition,

$$h(e_i, e_j) = \sum_{\alpha=1}^{m-n} h_{ij}^{\alpha} N_{\alpha}, \ 1 \le i, j \le 2$$
(2.4)

holds. Consequently, the squares length  $||h||^2$  of the second fundamental form h is defined by

$$\|h\|^{2} = \sum_{i,j=1}^{2} \left(h_{ij}^{\alpha}\right)^{2}.$$
(2.5)

The Gaussian curvature K and mean curvature vector  $\overrightarrow{H}$  of M are given by

$$K = \langle h(e_1, e_1), h(e_2, e_2) \rangle - \langle h(e_1, e_2), h(e_1, e_2) \rangle,$$
(2.6)

and

$$\vec{H} = \frac{1}{2} \left\{ h(e_1, e_1) + h(e_2, e_2) \right\},$$
(2.7)

respectively. The norm of the mean curvature vector  $H = \left\| \overrightarrow{H} \right\|$  is called the mean curvature of M. Recall that a surface M is said to be flat (resp. minimal) if its Gauss curvature (resp. mean curvature vector) vanishes identically [9].

### 3. $\xi$ -surfaces in Euclidean spaces

Let  $x: M \to \mathbb{R}^m$  be an immersed surface in the Euclidean space  $\mathbb{R}^m$ . The mean curvature flow of x is a family  $x_t: M \to \mathbb{R}^m$  that satisfies

$$\left(\frac{\partial}{\partial t}x_t(p)\right)^{\perp} = H(p,t), \ x_0 = x \tag{3.1}$$

where H(p,t) is the mean curvature vector of  $x_t(M)$  at  $x_t(p)$  and  $(.)^{\perp}$  denotes the projection into the normal space of  $x_t(M)$  [18].

**Definition 3.1** An immersed surface M in the Euclidean space  $\mathbb{R}^m$  is called self-shrinker solution of (3.1) if the curvature vector field  $\overrightarrow{H}$  of M satisfies the following nonlinear elliptic system:

$$\vec{H} + x^N = 0, \tag{3.2}$$

where  $x^N$  is the normal component of x [18].

In [23] K. Smooczyk proved the following results.

**Theorem 3.2** [23] Let  $x : M \to \mathbb{R}^m$  be a closed self-shrinker then M is a minimal surface of the sphere  $S^{m-1}(\sqrt{2})$  if and only if  $\overrightarrow{H} \neq 0$  and  $\nabla^{\perp} \upsilon = 0$ , where  $\upsilon = \frac{\overrightarrow{H}}{\|\overrightarrow{H}\|}$  is the principal normal of the surface M.

**Theorem 3.3** [23] Let  $x: M \to \mathbb{R}^m$   $(d \ge 1)$  be a 2- dimensional compact self-shrinker. Then M is spherical surface if and only if  $\overrightarrow{H} \neq 0$  and  $\nabla^{\perp} \upsilon = 0$  hold identically.

**Theorem 3.4** [13] Let  $x : M \to \mathbb{R}^{n+d}$  (d = m - n) be a 2-dimensional complete proper self-shrinker (i.e.  $H \neq 0$ ) without boundary and with H > 0. If the principal normal  $v = \frac{\overrightarrow{H}}{\|\overrightarrow{H}\|}$  is parallel in the normal bundle of M and the squared norm of the second fundamental form is constant then M is one of the following;

(*i*)  $S^{k}(\sqrt{k}) \times \mathbb{R}^{2-k}$ ,  $1 \le k \le 2$ ,  $||h||^{2} = 1$ , (*ii*) the Boruvka sphere  $S^{k}(\sqrt{m(m+1)})$  in  $S^{2m}(\sqrt{2})$  with

$$d = 2m - 1$$
 and  $||h||^2 = 2 - \frac{2}{m(m+1)}$ ,

(iii) a compact flat, minimal surface in  $S^{2m+1}(\sqrt{2})$  with d = 2m,  $||h||^2 = 2$ .

**Definition 3.5** An immersed surface M in  $\mathbb{R}^m$  is called a  $\xi$ -surface if there is a parallel vector field  $\xi$  such that the mean curvature vector field  $\overrightarrow{H}$  satisfies the following nonlinear elliptic system:

$$\overrightarrow{H} + x^N = \xi, \tag{3.3}$$

where  $x^N$  is the normal component of x.

Identifying  $\mathbb{R}^4$  with  $\mathbb{C}^2$  recall the Lagrangian submanifold M in  $\mathbb{R}^{2n}$  as follows:

**Definition 3.6** A submanifold  $M \subset \mathbb{R}^{2n}$  is called Lagrangian if  $J(T_pM) = T_p^{\perp}M$  holds for any  $p \in M$ , where J is the complex structure of  $\mathbb{R}^{2n}$ ,  $T_pM$  and  $T_p^{\perp}M$  denote the tangent space and normal space at p.

In [20] Li and Chang proved the following result.

**Proposition 3.7** [20] Let  $x: M^2 \to \mathbb{C}^2$  be a compact orientable Lagrangian self-shrinker. If  $||h||^2 + ||H||^2 \leq 4$ , then  $||h||^2 + ||H||^2 \equiv 4$  and  $x(M^2) = S^1(1) \times S^1(1)$  up to a holomorphic isometry on  $\mathbb{C}^2$ .

## 4. General rotational $\xi$ -surfaces

Rotational surfaces in  $\mathbb{R}^4$  was first introduced by Moore in 1919 [22]. In the recent years some mathematicians have taken an interest in the rotational surfaces in  $\mathbb{R}^4$ ; see for example [7, 16, 17]. In [17], the authors applied the invariance theory of surfaces in  $\mathbb{R}^4$  to the class of general rotational surfaces whose meridians lie in two dimensional planes in order to find all minimal surfaces (see also [15, 26] for the rotational surfaces with constant Gaussian curvature in  $\mathbb{R}^4$ ).

A general rotational surface M in  $\mathbb{R}^4$  is defined by the parametrization (see, [22]);

$$X(u,v) = (f(u)\cos cv, f(u)\sin cv, g(u)\cos dv, g(u)\sin dv),$$

$$(4.1)$$

where  $u \in J, 0 \leq v < 2\pi$ , and  $\alpha(u) = (f(u), g(u))$  is the meridian curve of the rotation satisfying  $c^2 f^2 + d^2 g^2 > 0$ and  $(f')^2 + (g')^2 > 0$ .

The orthonormal frame field of M is given by

$$e_{1} = \frac{1}{\psi(u)} \frac{\partial}{\partial u}, \ e_{2} = \frac{1}{\varphi(u)} \frac{\partial}{\partial v}$$

$$e_{3} = \frac{1}{\psi(u)} (g'(u) \cos cv, g'(u) \sin cv, -f'(u) \cos dv, -f'(u) \sin dv)$$

$$e_{4} = \frac{1}{\varphi(u)} (-dg(u) \sin cv, dg(u) \cos cv, cf(u) \sin dv, -cf(u) \cos dv)$$
(4.2)

where

$$\begin{split} \psi(u) &= \sqrt{(f'(u))^2 + (g'(u))^2},\\ \varphi(u) &= \sqrt{c^2 f^2(u) + d^2 g^2(u)}, \end{split}$$
(4.3)

are the smooth functions on M [7]. With respect to this frame we can obtain the second fundamental maps;

$$h(e_1, e_1) = \frac{\kappa}{\psi^3} e_3$$

$$h(e_1, e_2) = \frac{\eta}{\psi\varphi^2} e_4$$

$$h(e_2, e_2) = \frac{\beta}{\psi\varphi^2} e_3$$
(4.4)

where

$$\kappa = f''g' - f'g''$$

$$\lambda = c^2 ff' + d^2 gg'$$

$$\beta = c^2 f'g - d^2 fg' \qquad (4.5)$$

$$\eta = cd (f'g - fg')$$

$$\delta = cd (ff' + gg')$$

are the smooth functions on M. Consequently, by the use of Eqs. (2.6) and (2.7) with Eq. (4.4) the Gaussian curvature and mean curvature vector  $\vec{H}$  of M become

$$K = \frac{1}{\psi^2 \varphi^2} \left( \frac{\kappa \beta}{\psi^2} - \frac{\eta^2}{\varphi^2} \right)$$
(4.6)

and

$$\overrightarrow{H} = \frac{1}{2\psi} \left( \frac{\kappa}{\psi^2} + \frac{\beta}{\varphi^2} \right) e_3 \tag{4.7}$$

respectively [7].

From the orthogonal decomposition (1.1) of the position vector x of M we obtain

$$x^{N} = x - \frac{\rho'(u)}{\psi(u)} e_{1}$$
(4.8)

where  $\rho(u) = \frac{1}{2} \|x\|^2$  is the square norm of the distance function of the position vector x such that

$$\rho'(u) = f(u)f'(u) + g(u)g'(u)$$
(4.9)

holds. The gradient of the distance function is given by

$$grad(\|x\|) = \sum_{j=1}^{2} \frac{\langle x, e_j \rangle}{\|x\|} e_j = \frac{\rho'(u)}{\psi(u) \|x\|} e_1.$$
(4.10)

Due to [10] we obtain the following results.

**Theorem 4.1** Let M be a general rotational surface in  $\mathbb{R}^4$  given with the parametrization (4.1). Then  $x = x^N$  holds identically if and only if M is a spherical surface of  $\mathbb{R}^4$ .

**Proof** Assume that M is a general rotational surface in  $\mathbb{R}^4$  given with the parametrization (4.1). If  $x = x^N$  holds identically, then  $\rho'(u) = 0$  holds. Therefore, Eq. (4.10) yields the distance function of M has zero gradient so by Example 4.1. of [11] M is a spherical surface in  $\mathbb{R}^4$ . Infact,

$$f_1(u)f'_1(u) + f_2(u)f'_2(u) = 0, (4.11)$$

i.e.  $f_1^2(u) + f_2^2(u) = r_0^2$  implies that the meridian curve  $\alpha$  is an open part of a circle parametrized by

$$f_1(u) = r_0 \cos\left(\frac{u}{r_0}\right), f_2(u) = r_0 \sin\left(\frac{u}{r_0}\right),$$
 (4.12)

where  $r_0$  is a positive real number.

The converse is clear.

**Remark 4.2** The general rotational surface given with the meridian curve (4.12) is H-parallel and minimal surface in  $\mathbb{S}^3(r_0) \subset \mathbb{R}^4$ .

**Theorem 4.3** Let M be a general rotational surface in  $\mathbb{R}^4$  given with the parametrization (4.1). Then  $x = x^T$  holds identically if and only if M is a conic surface with the vertex at the origin.

**Proof** Assume that M is a general rotational surface in  $\mathbb{R}^4$  given with the parametrization (4.1). If  $x = x^T$  holds identically, then  $x = \frac{\rho'(u)}{\psi(u)}e_1$  holds identically. Therefore, Eq. (4.10) yields that gradient of the distance function has constant length

$$\|grad(\|x\|)\| = \frac{|\langle x, e_1 \rangle|}{\|x\|} = 1.$$
(4.13)

By Proposition 5.2 of [11] M is a conic surface in  $\mathbb{R}^4$  with the vertex at the origin. Infact,  $x = \rho'(u)e_1$  yields f'g - fg' = 0. Consequently the meridian curve  $\alpha$  is an open part of a straight line passing through origin. The converse is clear.

**Definition 4.4** A surface M in the Euclidean space  $\mathbb{R}^m$  is called self-shrinker if the curvature vector field  $\vec{H}$  of M satisfies the following nonlinear elliptic system:

$$\vec{H} + x^N = 0, \tag{4.14}$$

where  $x^N$  is the normal component of x.

It is well known that the Euclidean plane  $\mathbb{R}^2$ , the unit sphere  $S^2(1)$ , the cylinder  $S^1(1) \times \mathbb{R}$  and the Clifford torus  $S^1(1) \times S^1(1)$  are the canonical self-shrinkers in  $\mathbb{R}^4$ . Besides the standard examples there are many examples of complete self-shrinkers in  $\mathbb{R}^4$ . For examples, compact minimal surfaces in the sphere  $S^3(2)$ are compact self-shrinkers in  $\mathbb{R}^4$  [12]. One can get the following well-know examples. **Example 4.5** Let  $\Gamma_1(s) = (x_1(s), y_1(s)), 0 \le s < L_1$  and  $\Gamma_2(t) = (x_2(t), y_2(t)), 0 \le t < L_2$  be two selfshrinker curves in  $\mathbb{R}^2$  given with arclength parameters. Consider the Riemannian product  $M = \Gamma_1(s) \times \Gamma_2(t)$ defined by

$$\Gamma_1(s) \times \Gamma_2(t) = (x_1(s), x_2(t), y_1(s), y_2(t)).$$

In [12] the authors showed that  $\Gamma_1(s) \times \Gamma_2(t)$  is a Lagrangian self-shrinker in  $\mathbb{R}^4$  with vanishing Gaussian curvature.

**Example 4.6** Let  $\Gamma(t) = (x_1(t), x_2(t)), \ 0 \le t < L_1$  be a closed self-shrinker curves in  $\mathbb{R}^2$  then its curvature  $\kappa_{\Gamma}$  satisfies

$$\kappa_{\Gamma_i} = c \frac{e^{\frac{r^2}{2}}}{r^2}, \ r = \|\Gamma\|$$

with a positive constant

$$c^2 = r^4 \left(1 - (r')^2\right) e^{r^2}.$$

In [3] Anciaux proved that the (rotational) surface

$$x(t,s) = (x_1(t)\cos s, x_1(t)\sin s, x_2(t)\cos s, x_2(t)\sin s)$$

defines a compact Lagrangian self-shrinkers in  $\mathbb{R}^4$  which is called Anciaux torus. The squared norm of the mean curvature and the second fundamental form of the Anciaux torus are given by

$$\left\| \overrightarrow{H} \right\|^2 = c^2 \frac{e^{r^2}}{r^2},$$
$$\left\| h \right\|^2 = c^2 \frac{e^{\frac{r^2}{2}}}{r^2} \left( r^4 + 2r^2 + 4 \right).$$

**Example 4.7** For positive integers m, n, (m, n) = 1, consider the surface M in  $\mathbb{R}^4$  given with the parametrization

$$x(t,s) = \left(\cos\sqrt{\frac{m}{n}}t\frac{\cos s}{\sqrt{n}}, \cos\sqrt{\frac{m}{n}}t\frac{\sin s}{\sqrt{n}}, \sin\sqrt{\frac{n}{m}}t\frac{\cos s}{\sqrt{n}}, \sin\sqrt{\frac{n}{m}}t\frac{\sin s}{\sqrt{n}}\right).$$

In [19] Li and Wang proved that this surface is self-shrinker. Therefore, it is called Li-Wang tori.

**Example 4.8** For any  $n_1, n_2 \in \mathbb{N}$ ,  $n_1 + n_2 = n$ , the Clifford torus  $S^{n_1}(\sqrt{n_1}) \times S^{n_2}(\sqrt{n_d})$  in  $\mathbb{R}^{n+2}$  is a compact self-shrinker with  $\|h\|^2 = 2$  (see, [8]).

**Example 4.9** [8] The product of n-circles  $S^1 \times ... \times S^1$  in  $\mathbb{R}^{2n}$  is a compact self-shrinkers with  $||h||^2 = n$ .

For the self-shrinker surface case we have the following result.

**Theorem 4.10** Let M be a general rotational surface in  $\mathbb{R}^4$  given with the parametrization (4.1). If M is a self-shrinker then

$$\frac{\kappa}{\psi^2} + \frac{\beta}{\varphi^2} = 2\eta \tag{4.15}$$

## ARSLAN et al./Turk J Math

holds, where  $\varphi, \psi, \kappa$  and  $\beta$  are smooth functions defined in (4.3) and (4.5) and

$$\eta = f'g - fg'. \tag{4.16}$$

**Proof** Assume that M is a general rotational surface in  $\mathbb{R}^4$  given with the parametrization (4.1). If M is a self-shrinker then by (4.9) and (4.14)

$$He_3 + x - \frac{\rho'(u)}{\psi(u)}e_1 = 0 \tag{4.17}$$

holds identically. Consequently substituting

$$H = \frac{1}{2\psi} \left( \frac{\kappa}{\psi^2} + \frac{\beta}{\varphi^2} \right) \tag{4.18}$$

and

$$\langle x, e_3 \rangle = \frac{fg' - f'g}{\psi} \tag{4.19}$$

into (4.17) we obtain (4.15).

**Corollary 4.11** [3] Let M be a general rotational surface in  $\mathbb{R}^4$  given with the parametrization (4.1) with c = d = 1. If M is a self-shrinker surface then it is an Anciaux torus in  $\mathbb{R}^4$ .

**Definition 4.12** The Vranceanu surface in  $\mathbb{R}^4$  is defined by the following parametrization;

$$f(u) = r(u)\cos u, \ g(u) = r(u)\sin u, \ c = d = 1,$$
(4.20)

where r(u) is a real valued nonzero function [24].

Consequently, substituting Eq. (4.20) into Eqs. (4.6) and (4.7) one can get

$$K = \frac{(r')^2 - rr''}{(r^2 + (r')^2)^2}$$
(4.21)

and

$$\overrightarrow{H} = \frac{rr'' - 3(r')^2 - 2r^2}{2\left(r^2 + (r')^2\right)^{\frac{3}{2}}} e_3$$
(4.22)

respectively [5]. As a consequence of Eqs. (4.21) and (4.22) we get the following results.

**Corollary 4.13** [26] Let M be a Vranceanu rotation surface given with the parametrization (4.20). If M has vanishing Gaussian curvature, then

$$r(u) = \lambda e^{\mu u}$$

holds, where  $\lambda$  and  $\mu$  are real constants.

**Corollary 4.14** [6] Let M be a Vranceanu rotation surface given with the parametrization (4.20). If M is minimal then

$$r(u) = \frac{\pm 1}{\sqrt{a\sin 2u - b\cos 2u}},\tag{4.23}$$

where, a and b are real constants.

By the use of (4.15) with (4.20) we obtain the following result.

**Corollary 4.15** Let M be a Vranceanu surface given with the parametrization (4.20). If M is a self-shrinking surface then

$$\frac{rr'' - 3(r')^2 - 2r^2}{2(r^2 + (r')^2)} + 1 = 0$$
(4.24)

holds identically.

**Example 4.16** The flat Vranceanu surface given with r(u) = 1 is a Clifford torus, that is; it is the product of two plane circles with same radius. Consequently, it is easy to show that Eq. (4.24) holds. Therefore, the Clifford torus is a self-shrinking surface of Euclidean 4-space  $\mathbb{R}^4$ .

**Theorem 4.17** [8] Let M be a compact self-shrinking surface in Euclidean 4-space  $\mathbb{R}^4$ . If ||H|| is constant or  $||h|| \leq 0$  or  $||h|| \geq 0$  then M is a Clifford torus.

In Example 4.16 we have shown that the converse statement of Theorem 4.17 is also valid.

**Definition 4.18** An immersed surface M in  $\mathbb{R}^{2+d}$  is called a  $\xi$ -surface if there is a parallel vector field  $\xi$  such that the mean curvature vector field  $\overrightarrow{H}$  satisfies the following nonlinear elliptic system:

$$\vec{H} + x^N = \xi, \tag{4.25}$$

where  $x^N$  is the normal component of x.

We have the following results.

**Lemma 4.19** Let M be an immersed surface in  $\mathbb{R}^{2+d}$ . Then M is a  $\xi$ -surface if and only if for each  $e_i \in T_p M$ 

$$D_{e_i} \overrightarrow{H} = \sum_{j=1}^{2} \langle x, e_j \rangle h(e_i, e_j), \qquad (4.26)$$

and

$$A_{\xi}e_i = e_i - \nabla_{e_i}x^T + A_H e_i \tag{4.27}$$

hold identically, where  $x^T$  is the tangent component of x.

**Proof** By the definition of a  $\xi$ -surface, we have  $\overrightarrow{H} = \xi - x^N$ . By the Gauss and Weingarten formulas it follows that, for any  $v \in T_p M$ ,

$$A_{H}v = -\widetilde{\nabla}_{v}\overrightarrow{H} + D_{v}\overrightarrow{H}$$
  
$$= -\widetilde{\nabla}_{v}\xi + \widetilde{\nabla}_{v}x - \widetilde{\nabla}_{v}x^{T} + D_{v}\overrightarrow{H}$$
  
$$= -\widetilde{\nabla}_{v}\xi + v - \nabla_{e_{i}}x^{T} - h\left(v, x^{T}\right) + D_{v}\overrightarrow{H}$$
  
(4.28)

where  $x^N = x - x^T$  and  $\widetilde{\nabla}_v x = v$  are well-known relations. Consequently, the tangent and normal parts of (4.28) gives (4.27) and (4.26), respectively.

**Lemma 4.20** Let M be a general rotational surface in  $\mathbb{R}^4$  given with the parametrization (4.1). If M is a  $\xi$ -surface of  $\mathbb{R}^4$  then

$$\frac{\partial H}{\partial u}\eta\psi^2 - H\delta\kappa = 0, \tag{4.29}$$

holds identically.

**Proof** Assume that M is a general rotational surface in  $\mathbb{R}^4$  differentiating (4.7) with respect to  $e_1$ ,  $e_2$  a straight-forward computation gives

$$D_{e_1}\overrightarrow{H} = \frac{1}{\psi}\frac{\partial H}{\partial u}e_3, \ D_{e_2}\overrightarrow{H} = \frac{H\delta}{\psi\varphi^2}e_4.$$
 (4.30)

Since M is a  $\xi$ -surface in  $\mathbb{R}^4$  then by Lemma 4.19 we get

$$D_{e_1} \overrightarrow{H} = \langle x, e_1 \rangle h(e_1, e_1) + \langle x, e_2 \rangle h(e_1, e_2)$$
  

$$D_{e_2} \overrightarrow{H} = \langle x, e_1 \rangle h(e_2, e_1) + \langle x, e_2 \rangle h(e_2, e_2).$$
(4.31)

Further, substituting the equations in Eq. (4.9) with  $\langle x, e_1 \rangle = \frac{\rho'}{\psi}$ ,  $\langle x, e_2 \rangle = 0$  into Eq. (4.31) we obtain

$$D_{e_1}\overrightarrow{H} = \frac{\kappa\rho'}{\psi^4}e_3, \ D_{e_2}\overrightarrow{H} = \frac{\eta\rho'}{\psi^2\varphi^2}e_4$$
(4.32)

Hence, comparing Eq. (4.30) with Eq. (4.32) after some computation we get the result.

As a consequence of Lemma 4.20 we get the following results.

**Theorem 4.21** Let M be a general rotational surface in  $\mathbb{R}^4$  with constant mean curvature. If M is a  $\xi$ -surface of  $\mathbb{R}^4$  then M is one of the following;

- (i) a minimal surface of  $\mathbb{R}^4$ , or
- (ii) a spherical surface of  $\mathbb{R}^4$ , or
- (iii) a rotational surface of  $\mathbb{R}^4$  whose profile curve is a straight line.

**Proof** Assume that M is a general rotational surface in  $\mathbb{R}^4$ . If M is a  $\xi$ -surface of  $\mathbb{R}^4$  then the equation (4.29) holds. Since M has constant mean curvature then  $H\delta\kappa = 0$ . So we have three possible cases, H = 0,

or  $\delta = 0$ , or  $\kappa = 0$ . For the first case M is a minimal surface of  $\mathbb{R}^4$ . Further, from (4.5)  $\delta = 0$  implies that  $\rho' = 0$ , i.e.  $x = x^N$ . Therefore, by Theorem 4.1 it is easy to deduce that M is a spherical surface of  $\mathbb{R}^4$ . Finally,  $\kappa = 0$  implies that the profile curve is a straight line.

**Theorem 4.22** Let M be a Vranceanu surface given with the parametrization (4.20). If M is a  $\xi$ -surface then

$$r(u) = e^{\int \varphi(z)dz + c_2}$$

holds identically, where

$$u = \int \frac{e^{\int \varphi(z)dz + c_2}}{\sqrt{z - e^{\int \varphi(z)dz + 2c_2}}} dz + c_1$$

is the parametric function such that the smooth functions

$$z = r(u)^{2} + r'(u)^{2},$$
  

$$\varphi(z) = \frac{1}{2r(u) (r(u)^{2} + r'(u)^{2})}$$

satisfy the equality

$$\frac{\partial}{\partial z}\varphi(z) = \frac{12z^2\varphi(z)^3 + z(3z-5)\varphi(z)^2 - (3z-1)\varphi(z)}{z^2}.$$

**Proof** Assume that M is a Vranceanu surface given with the parametrization (4.20). Then using (4.5), (4.22) with (4.20) we get

$$H = \frac{r(u)r''(u) - 3(r'(u))^2 - 2r^2(u)}{2(r^2(u) + (r'(u))^2)^{\frac{3}{2}}},$$
  

$$\kappa = r(u)r''(u) - 2(r'(u))^2 - r^2(u),$$
  

$$\psi^2 = r^2(u) + (r'(u))^2,$$
  

$$\delta = r(u)r'(u),$$
  

$$\eta = -r^2(u).$$
  
(4.33)

Since M is a  $\xi$ -surface then (4.29) holds. Therefore, substituting (4.33) into (4.29) we get the following differential equation

$$r\left(r^{2}+(r')^{2}\right)\left(\frac{rr''-3(r')^{2}-2r^{2}}{2\left(r^{2}+(r')^{2}\right)^{\frac{3}{2}}}\right)_{u}+r'\left(rr''-2(r')^{2}-r^{2}\right)\left(\frac{rr''-3(r')^{2}-2r^{2}}{2\left(r^{2}+(r')^{2}\right)^{\frac{3}{2}}}\right)=0.$$

By the use of the Maple programing command;

$$> H1(u): = r(u) * diff(r(u), u, u) - 3 * diff(r(u), u)^2 - 2 * r(u)^2:$$
  

$$> z(u): = diff(r(u), u)^2 + r(u)^2:$$
  

$$> H(u): = H1(u)/(2 * z(u)^3/2):$$
  

$$> k(u): = r(u) * diff(r(u), u, u) - 2 * diff(r(u), u)^2 - r(u)^2:$$
  

$$> ode1: = r(u) * z(u)^2 * diff(H(u), u) + diff(r(u), u) * k(u) * H(u) = 0$$

> dsolve(ode1);

we get

$$r(u) = e^{\left(\int g(f)df + c_2\right)}$$

where

$$\begin{aligned} \frac{d}{df}g(f) &= 12g(f)^3 + \frac{(-5+3f)g(f)^2}{f} - \frac{1}{2}\frac{(3f-1)g(f)}{f^2} \\ f &= \left(\frac{d}{du}r(u)\right)^2 + r(u)^2, \quad g(f) = \frac{1}{2}\frac{1}{r(u)\left(\frac{d^2}{du^2}r(u) + r(u)^2\right)} \\ u &= \int \frac{g(f)e^{(\int g(f)df + c_2)}}{\sqrt{f - e^{(2\int g(f)df + 2c_2)}}}df + c_1, \quad r(u) = e^{(\int g(f)df + c_2)} \end{aligned}$$

This completes the proof of the theorem.

#### References

- Abresch U, Langer J. The normalized curve shortening flow and homothetic solutions. Journal of Differential Geometry 1986; 23: 175-196.
- [2] Aminov Yu. The Geometry of Submanifolds. London, UK: Gordon and Breach Science Publication, 2001.
- [3] Anciaux H. Construction of Lagrangian self-similar solutions to the mean curvature flow in  $\mathbb{C}^n$ . Geometriae Dedicata 2006; 120: 37-48.
- [4] Arezzo C, Sun J. Self-shrinkers for the mean curvature flow in arbitrary codimension. Mathematische Zeitschrift 2013; 274: 993-1027.
- [5] Arslan K, Bayram B, Bulca B, Kim YH, Murathan C et al. Rotational embeddings in ℝ<sup>4</sup> with pointwise 1-type Gauss map. Turkish Journal of Mathematics 2011; 35: 493-499.
- [6] Arslan K, Bayram B, Bulca B, Öztürk G. General rotation surfaces in E<sup>4</sup>. Results in Mathematics 2012; 61 (3): 315-327.
- [7] Arslan K, Bulca B, Kosova D. On generalized rotational surfaces in Euclidean spaces. Journal of the Korean Mathematical Society 2017; 54 (3): 999-1013.
- [8] Castro I, Lerma AM. The Clifford torus as a self-shrinker for the Lagrangian mean curvature flow. International Mathematics Research Notices 2014; 16: 1515-1527.
- [9] Chen BY. Geometry of Submanifolds. New York, NY, USA: Dekker, 1973.
- [10] Chen BY. Differential geometry of rectifying submanifolds. International Electronic Journal of Geometry 2016; 9 (2):1-8.

### ARSLAN et al./Turk J Math

- [11] Chen BY. More on convolution of Riemannian manifolds. Beitrage zur Algebra und Geometrie 2003; 44: 9-24.
- [12] Cheng QM, Hori H, Wei G. Complete Lagrangian self-shrinkers in  $\mathbb{R}^4$ . arXiv 2018; arXiv:1802.02396.
- [13] Cheng QM, Peng Y. Complete self-shrinkers of the mean curvature flow. Calculus of Variations Partial Differential Equations 2015; 52: 497-506.
- [14] Cheng QM, Wei G. Complete λ-hypersurfaces of the weighted volume-preserving mean curvature flow. arXiv 2015; arXiv:1403.3177.
- [15] Coung DV. Surfaces of revolution with constant Gaussian curvature in four space. Asian-European Journal of Mathematics 2013; 6: 1350021.
- [16] Dursun U, Turgay NC. General rotational surfaces in Euclidean space E<sup>4</sup> with pointwise 1-type Gauss map. Mathematical Communications 2012; 17: 71-81.
- [17] Ganchev G, Milousheva V. On the theory of surfaces in the four dimensional Euclidean space. Kodai Mathematical Journal 2008; 31: 183-198.
- [18] Joyse D, Lee Y, Tsui MP. Self-similar solutions and translating solutions for Lagrangian mean curvature flow. Journal of Differential Geometry 2010; 84: 127-161.
- [19] Li H, Wang X. New characterizations of the Clifford torus as a Lagrangian self-shrinker. The Journal of Geometric Analysis 2017; 27: 1393-1412.
- [20] Li X, Chang X. A rigidity theorem of  $\xi$  submanifolds in  $\mathbb{C}^2$ . Geometriae Dedicata 2016; 185: 155-169.
- [21] Li X, Li Z. Variational characterization of  $\xi$ -submanifolds in the Euclidean space  $\mathbb{R}^{m+p}$ . Annali di Mathematica Pura ed Applicata 2020; 199: 1491-1518.
- [22] Moore C. Surfaces of rotations in a space of four dimensions. Annals of Mathematics 1919; 21: 81-93.
- [23] Smoczyk K. Self-shrinkers of the mean curvature flow in arbitrary codimension. International Mathematics Research Notices 2005; 48: 1983-3004.
- [24] Vranceanu G. Surfaces de rotation dans ℝ<sup>4</sup>. Revue Roumaine de Mathematiques Pures et Appliquees 1977; 22: 857-862.
- [25] Wong YC. Contributions to the theory of surfaces in 4-space of constant curvature. Transactions of the American Mathematical Society 1946; 59: 467-507.
- [26] Yoon DW. Some properties of the Clifford torus as rotation surface. Indian Journal of Pure and Applied Mathematics 2003; 34: 907-915.