Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/
tübitak

Turk J Math
(2021) 45: 1287 - 1299
© TÜBİTAK
doi:10.3906/mat-2006-93

General rotational ξ-surfaces in Euclidean spaces

Kadri ARSLAN(©), Yılmaz AYDIN©, Betül BULCA* (®)
Department of Mathematics, Faculty of Arts and Science, Bursa Uludağ University, Bursa, Turkey

| Received: 22.06 .2020 | Accepted/Published Online: 30.03 .2021 | Final Version: 20.05 .2021 |
| :--- | :--- | :--- | :--- | :--- |

Abstract

The general rotational surfaces in the Euclidean 4-space \mathbb{R}^{4} was first studied by Moore (1919). The Vranceanu surfaces are the special examples of these kind of surfaces. Self-shrinker flows arise as special solution of the mean curvature flow that preserves the shape of the evolving submanifold. In addition, ξ-surfaces are the generalization of self-shrinker surfaces. In the present article we consider ξ-surfaces in Euclidean spaces. We obtained some results related with rotational surfaces in Euclidean 4 -space \mathbb{R}^{4} to become self-shrinkers. Furthermore, we classify the general rotational ξ-surfaces with constant mean curvature. As an application, we give some examples of self-shrinkers and rotational ξ-surfaces in \mathbb{R}^{4}.

Key words: Mean curvature, self-shrinker, general rotational surface

1. Introduction

Let $x: M \rightarrow \mathbb{R}^{m}$ be an isometric immersion of an n-dimensional submanifold $M(m>n)$ into the Euclidean space \mathbb{R}^{m}. The position vector field x of M is very important object in differential geometry. It is the Euclidean vector $x=\overrightarrow{o p}$ known as the radius vector of M, where $p \in M$ and $o \in \mathbb{R}^{m}$ is the arbitrary reference point. The position vector field x of M has a natural decomposition given by

$$
\begin{equation*}
x=x^{T}+x^{N}, \tag{1.1}
\end{equation*}
$$

where $x^{T} \in T_{p} M$ and $x^{N} \in T_{p}^{\perp} M$ [9].
The mean curvature vector field \vec{H} is one of the most important invariants of the submanifold M. In physics, the average curvature vector field is the torsion field applied to the submanifold originated from \mathbb{R}^{m}. The mean curvature flow is the gradient flow of the area functional on the space of the submanifold M. The self-shrinker flows arise as special solution of the mean curvature flow that preserve the shape of the evolving submanifold [18]. The most important mean curvature flow is self-similar flow which is obtained by the following nonlinear elliptic system

$$
\vec{H}+x^{N}=0
$$

where x^{N} is the normal component of the position vector x [18].

[^0]In [14] Chang and Wei introduced a λ-hypersurfaces in Euclidean space giving a natural generalization of self-shrinkers in the hypersurface case. According to [14], a hypersurface $M \subset \mathbb{R}^{n+1}$ is called a λ-hypersurface and its mean curvature H satisfies

$$
H+\langle x, N\rangle=\lambda
$$

for some real function λ, where N is the unit normal of the hypersurface. Recently, Li and Chang made a generalization of both self-shrinkers and λ-hypersurfaces, by introducing the concepts of ξ-submanifolds [20]. By definition an immersed submanifold M^{n} in \mathbb{R}^{m} is called a ξ-submanifold if there is a parallel vector field ξ such that the mean curvature vector field \vec{H} satisfies

$$
\vec{H}+x^{N}=\xi
$$

This paper is organized as follows: In Section 2, we give some basic concepts of the second fundamental form and curvatures of the surfaces in \mathbb{R}^{m}. In Section 3, we give some well known results of self-shrinker surfaces in \mathbb{R}^{m}. Further, we give some well known examples satisfying the self-shrinking condition. In Section 4 we consider generalized rotational surfaces in \mathbb{R}^{4}. We obtained some results related with generalized rotational surfaces in Euclidean 4 -space \mathbb{R}^{4} to become self-shrinkers. Furthermore, we classify the general rotational ξ-surfaces with constant mean curvature. As an application, we give some examples of self-shrinkers and rotational ξ-surfaces in \mathbb{R}^{4}.

2. Preliminaries

Let $x: M \rightarrow \mathbb{R}^{m}$ be an immersed surface in the Euclidean space \mathbb{R}^{m}. Denote $\chi(M)$ and $\chi^{\perp}(M)$ with the space of the smooth vector fields tangent and normal to M, respectively. Given any local orthonormal vector fields e_{1}, e_{2} tangent to M, consider the second fundamental form

$$
\begin{equation*}
h\left(e_{i}, e_{j}\right)=\widetilde{\nabla}_{e_{i}} e_{j}-\nabla_{e_{i}} e_{j}, \quad 1 \leq i, j \leq 2 \tag{2.1}
\end{equation*}
$$

where ∇ and $\widetilde{\nabla}$ are the induced connection of M and the Riemannian connection of \mathbb{R}^{m}, respectively. This map is well-defined, symmetric and bilinear [9]. For any arbitrary orthonormal frame field $\left\{N_{1}, N_{2}, \ldots, N_{m-n}\right\}$ of M, recall the shape operator

$$
\begin{equation*}
A_{N_{\alpha}} e_{j}=-\widetilde{\nabla}_{e_{j}} N_{\alpha}+D_{e_{j}} N_{\alpha}, \quad 1 \leq \alpha \leq m-n, 1 \leq j \leq 2 \tag{2.2}
\end{equation*}
$$

where D denotes the normal connection of M. This operator is bilinear, selfadjoint and satisfies the following equation:

$$
\begin{equation*}
\left\langle A_{N_{\alpha}} e_{j}, e_{i}\right\rangle=\left\langle h\left(e_{i}, e_{j}\right), N_{\alpha}\right\rangle=h_{i j}^{\alpha}, \quad 1 \leq i, j \leq 2 ; \quad 1 \leq \alpha \leq m-n \tag{2.3}
\end{equation*}
$$

where $h_{i j}^{\alpha}$ are the coefficients of the second fundamental form.
Eqs. (2.1) and (2.2) are called Gaussian formula and Weingarten formula, respectively. In addition,

$$
\begin{equation*}
h\left(e_{i}, e_{j}\right)=\sum_{\alpha=1}^{m-n} h_{i j}^{\alpha} N_{\alpha}, 1 \leq i, j \leq 2 \tag{2.4}
\end{equation*}
$$

holds. Consequently, the squares length $\|h\|^{2}$ of the second fundamental form h is defined by

$$
\begin{equation*}
\|h\|^{2}=\sum_{i, j=1}^{2}\left(h_{i j}^{\alpha}\right)^{2} \tag{2.5}
\end{equation*}
$$

The Gaussian curvature K and mean curvature vector \vec{H} of M are given by

$$
\begin{equation*}
K=\left\langle h\left(e_{1}, e_{1}\right), h\left(e_{2}, e_{2}\right)\right\rangle-\left\langle h\left(e_{1}, e_{2}\right), h\left(e_{1}, e_{2}\right)\right\rangle \tag{2.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\vec{H}=\frac{1}{2}\left\{h\left(e_{1}, e_{1}\right)+h\left(e_{2}, e_{2}\right)\right\} \tag{2.7}
\end{equation*}
$$

respectively. The norm of the mean curvature vector $H=\|\vec{H}\|$ is called the mean curvature of M. Recall that a surface M is said to be flat (resp. minimal) if its Gauss curvature (resp. mean curvature vector) vanishes identically [9].

3. ξ-surfaces in Euclidean spaces

Let $x: M \rightarrow \mathbb{R}^{m}$ be an immersed surface in the Euclidean space \mathbb{R}^{m}. The mean curvature flow of x is a family $x_{t}: M \rightarrow \mathbb{R}^{m}$ that satisfies

$$
\begin{equation*}
\left(\frac{\partial}{\partial t} x_{t}(p)\right)^{\perp}=H(p, t), x_{0}=x \tag{3.1}
\end{equation*}
$$

where $H(p, t)$ is the mean curvature vector of $x_{t}(M)$ at $x_{t}(p)$ and $(.)^{\perp}$ denotes the projection into the normal space of $x_{t}(M)$ [18].

Definition 3.1 An immersed surface M in the Euclidean space \mathbb{R}^{m} is called self-shrinker solution of (3.1) if the curvature vector field \vec{H} of M satisfies the following nonlinear elliptic system:

$$
\begin{equation*}
\vec{H}+x^{N}=0 \tag{3.2}
\end{equation*}
$$

where x^{N} is the normal component of x [18].
In [23] K. Smooczyk proved the following results.

Theorem 3.2 [23] Let $x: M \rightarrow \mathbb{R}^{m}$ be a closed self-shrinker then M is a minimal surface of the sphere $S^{m-1}(\sqrt{2})$ if and only if $\vec{H} \neq 0$ and $\nabla^{\perp} v=0$, where $v=\frac{\vec{H}}{\|\vec{H}\|}$ is the principal normal of the surface M.

Theorem 3.3 [23] Let $x: M \rightarrow \mathbb{R}^{m}(d \geq 1)$ be a 2 - dimensional compact self-shrinker. Then M is spherical surface if and only if $\vec{H} \neq 0$ and $\nabla^{\perp} v=0$ hold identically.

Theorem 3.4 [13] Let $x: M \rightarrow \mathbb{R}^{n+d}(d=m-n)$ be a 2 -dimensional complete proper self-shrinker (i.e. $H \neq 0)$ without boundary and with $H>0$. If the principal normal $v=\frac{\vec{H}}{\|\vec{H}\|}$ is parallel in the normal bundle of M and the squared norm of the second fundamental form is constant then M is one of the following;
(i) $S^{k}(\sqrt{k}) \times \mathbb{R}^{2-k}, 1 \leq k \leq 2,\|h\|^{2}=1$,
(ii) the Boruvka sphere $S^{k}(\sqrt{m(m+1)})$ in $S^{2 m}(\sqrt{2})$ with

$$
d=2 m-1 \text { and }\|h\|^{2}=2-\frac{2}{m(m+1)},
$$

(iii) a compact flat, minimal surface in $S^{2 m+1}(\sqrt{2})$ with $d=2 m,\|h\|^{2}=2$.

Definition 3.5 An immersed surface M in \mathbb{R}^{m} is called a ξ-surface if there is a parallel vector field ξ such that the mean curvature vector field \vec{H} satisfies the following nonlinear elliptic system:

$$
\begin{equation*}
\vec{H}+x^{N}=\xi \tag{3.3}
\end{equation*}
$$

where x^{N} is the normal component of x.
Identifying \mathbb{R}^{4} with \mathbb{C}^{2} recall the Lagrangian submanifold M in $\mathbb{R}^{2 n}$ as follows:
Definition 3.6 A submanifold $M \subset \mathbb{R}^{2 n}$ is called Lagrangian if $J\left(T_{p} M\right)=T_{p}^{\perp} M$ holds for any $p \in M$, where J is the complex structure of $\mathbb{R}^{2 n}, T_{p} M$ and $T_{p}^{\perp} M$ denote the tangent space and normal space at p.

In [20] Li and Chang proved the following result.
Proposition 3.7 [20] Let $x: M^{2} \rightarrow \mathbb{C}^{2}$ be a compact orientable Lagrangian self-shrinker. If $\|h\|^{2}+\|H\|^{2} \leq 4$, then $\|h\|^{2}+\|H\|^{2} \equiv 4$ and $x\left(M^{2}\right)=S^{1}(1) \times S^{1}(1)$ up to a holomorphic isometry on \mathbb{C}^{2}.

4. General rotational ξ-surfaces

Rotational surfaces in \mathbb{R}^{4} was first introduced by Moore in 1919 [22]. In the recent years some mathematicians have taken an interest in the rotational surfaces in \mathbb{R}^{4}; see for example [7, 16, 17]. In [17], the authors applied the invariance theory of surfaces in \mathbb{R}^{4} to the class of general rotational surfaces whose meridians lie in two dimensional planes in order to find all minimal surfaces (see also $[15,26]$ for the rotational surfaces with constant Gaussian curvature in \mathbb{R}^{4}).

A general rotational surface M in \mathbb{R}^{4} is defined by the parametrization (see, [22]);

$$
\begin{equation*}
X(u, v)=(f(u) \cos c v, f(u) \sin c v, g(u) \cos d v, g(u) \sin d v), \tag{4.1}
\end{equation*}
$$

where $u \in J, 0 \leq v<2 \pi$, and $\alpha(u)=(f(u), g(u))$ is the meridian curve of the rotation satisfying $c^{2} f^{2}+d^{2} g^{2}>0$ and $\left(f^{\prime}\right)^{2}+\left(g^{\prime}\right)^{2}>0$.

The orthonormal frame field of M is given by

$$
\begin{align*}
& e_{1}=\frac{1}{\psi(u)} \frac{\partial}{\partial u}, e_{2}=\frac{1}{\varphi(u)} \frac{\partial}{\partial v} \\
& e_{3}=\frac{1}{\psi(u)}\left(g^{\prime}(u) \cos c v, g^{\prime}(u) \sin c v,-f^{\prime}(u) \cos d v,-f^{\prime}(u) \sin d v\right) \tag{4.2}\\
& e_{4}=\frac{1}{\varphi(u)}(-d g(u) \sin c v, d g(u) \cos c v, c f(u) \sin d v,-c f(u) \cos d v)
\end{align*}
$$

where

$$
\begin{align*}
\psi(u) & =\sqrt{\left(f^{\prime}(u)\right)^{2}+\left(g^{\prime}(u)\right)^{2}} \tag{4.3}\\
\varphi(u) & =\sqrt{c^{2} f^{2}(u)+d^{2} g^{2}(u)}
\end{align*}
$$

are the smooth functions on $M[7]$. With respect to this frame we can obtain the second fundamental maps;

$$
\begin{align*}
h\left(e_{1}, e_{1}\right) & =\frac{\kappa}{\psi^{3}} e_{3} \\
h\left(e_{1}, e_{2}\right) & =\frac{\eta}{\psi \varphi^{2}} e_{4} \tag{4.4}\\
h\left(e_{2}, e_{2}\right) & =\frac{\beta}{\psi \varphi^{2}} e_{3}
\end{align*}
$$

where

$$
\begin{align*}
\kappa & =f^{\prime \prime} g^{\prime}-f^{\prime} g^{\prime \prime} \\
\lambda & =c^{2} f f^{\prime}+d^{2} g g^{\prime} \\
\beta & =c^{2} f^{\prime} g-d^{2} f g^{\prime} \tag{4.5}\\
\eta & =c d\left(f^{\prime} g-f g^{\prime}\right) \\
\delta & =c d\left(f f^{\prime}+g g^{\prime}\right)
\end{align*}
$$

are the smooth functions on M. Consequently, by the use of Eqs. (2.6) and (2.7) with Eq. (4.4) the Gaussian curvature and mean curvature vector \vec{H} of M become

$$
\begin{equation*}
K=\frac{1}{\psi^{2} \varphi^{2}}\left(\frac{\kappa \beta}{\psi^{2}}-\frac{\eta^{2}}{\varphi^{2}}\right) \tag{4.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\vec{H}=\frac{1}{2 \psi}\left(\frac{\kappa}{\psi^{2}}+\frac{\beta}{\varphi^{2}}\right) e_{3} \tag{4.7}
\end{equation*}
$$

respectively [7].
From the orthogonal decomposition (1.1) of the position vector x of M we obtain

$$
\begin{equation*}
x^{N}=x-\frac{\rho^{\prime}(u)}{\psi(u)} e_{1} \tag{4.8}
\end{equation*}
$$

where $\rho(u)=\frac{1}{2}\|x\|^{2}$ is the square norm of the distance function of the position vector x such that

$$
\begin{equation*}
\rho^{\prime}(u)=f(u) f^{\prime}(u)+g(u) g^{\prime}(u) \tag{4.9}
\end{equation*}
$$

holds. The gradient of the distance function is given by

$$
\begin{equation*}
\operatorname{grad}(\|x\|)=\sum_{j=1}^{2} \frac{\left\langle x, e_{j}\right\rangle}{\|x\|} e_{j}=\frac{\rho^{\prime}(u)}{\psi(u)\|x\|} e_{1} \tag{4.10}
\end{equation*}
$$

Due to [10] we obtain the following results.

ARSLAN et al./Turk J Math

Theorem 4.1 Let M be a general rotational surface in \mathbb{R}^{4} given with the parametrization (4.1). Then $x=x^{N}$ holds identically if and only if M is a spherical surface of \mathbb{R}^{4}.

Proof Assume that M is a general rotational surface in \mathbb{R}^{4} given with the parametrization (4.1). If $x=x^{N}$ holds identically, then $\rho^{\prime}(u)=0$ holds. Therefore, Eq. (4.10) yields the the distance function of M has zero gradient so by Example 4.1. of [11] M is a spherical surface in \mathbb{R}^{4}. Infact,

$$
\begin{equation*}
f_{1}(u) f_{1}^{\prime}(u)+f_{2}(u) f_{2}^{\prime}(u)=0 \tag{4.11}
\end{equation*}
$$

i.e. $f_{1}^{2}(u)+f_{2}^{2}(u)=r_{0}^{2}$ implies that the meridian curve α is an open part of a circle parametrized by

$$
\begin{equation*}
f_{1}(u)=r_{0} \cos \left(\frac{u}{r_{0}}\right), f_{2}(u)=r_{0} \sin \left(\frac{u}{r_{0}}\right) \tag{4.12}
\end{equation*}
$$

where r_{0} is a positive real number.
The converse is clear.

Remark 4.2 The general rotational surface given with the meridian curve (4.12) is H-parallel and minimal surface in $\mathbb{S}^{3}\left(r_{0}\right) \subset \mathbb{R}^{4}$.

Theorem 4.3 Let M be a general rotational surface in \mathbb{R}^{4} given with the parametrization (4.1). Then $x=x^{T}$ holds identically if and only if M is a conic surface with the vertex at the origin.

Proof Assume that M is a general rotational surface in \mathbb{R}^{4} given with the parametrization (4.1). If $x=x^{T}$ holds identically, then $x=\frac{\rho^{\prime}(u)}{\psi(u)} e_{1}$ holds identically. Therefore, Eq. (4.10) yields that gradient of the distance function has constant length

$$
\begin{equation*}
\|\operatorname{grad}(\|x\|)\|=\frac{\left|\left\langle x, e_{1}\right\rangle\right|}{\|x\|}=1 \tag{4.13}
\end{equation*}
$$

By Proposition 5.2 of [11] M is a conic surface in \mathbb{R}^{4} with the vertex at the origin. Infact, $x=\rho^{\prime}(u) e_{1}$ yields $f^{\prime} g-f g^{\prime}=0$. Consequently the meridian curve α is an open part of a straight line passing through origin. The converse is clear.

Definition 4.4 A surface M in the Euclidean space \mathbb{R}^{m} is called self-shrinker if the curvature vector field \vec{H} of M satisfies the following nonlinear elliptic system:

$$
\begin{equation*}
\vec{H}+x^{N}=0 \tag{4.14}
\end{equation*}
$$

where x^{N} is the normal component of x.
It is well known that the Euclidean plane \mathbb{R}^{2}, the unit sphere $S^{2}(1)$, the cylinder $S^{1}(1) \times \mathbb{R}$ and the Clifford torus $S^{1}(1) \times S^{1}(1)$ are the canonical self-shrinkers in \mathbb{R}^{4}. Besides the standard examples there are many examples of complete self-shrinkers in \mathbb{R}^{4}. For examples, compact minimal surfaces in the sphere $S^{3}(2)$ are compact self-shrinkers in \mathbb{R}^{4} [12]. One can get the following well-know examples.

ARSLAN et al./Turk J Math

Example 4.5 Let $\Gamma_{1}(s)=\left(x_{1}(s), y_{1}(s)\right), 0 \leq s<L_{1}$ and $\Gamma_{2}(t)=\left(x_{2}(t), y_{2}(t)\right), 0 \leq t<L_{2}$ be two selfshrinker curves in \mathbb{R}^{2} given with arclength parameters. Consider the Riemannian product $M=\Gamma_{1}(s) \times \Gamma_{2}(t)$ defined by

$$
\Gamma_{1}(s) \times \Gamma_{2}(t)=\left(x_{1}(s), x_{2}(t), y_{1}(s), y_{2}(t)\right)
$$

In [12] the authors showed that $\Gamma_{1}(s) \times \Gamma_{2}(t)$ is a Lagrangian self-shrinker in \mathbb{R}^{4} with vanishing Gaussian curvature.

Example 4.6 Let $\Gamma(t)=\left(x_{1}(t), x_{2}(t)\right), 0 \leq t<L_{1}$ be a closed self-shrinker curves in \mathbb{R}^{2} then its curvature κ_{Γ} satisfies

$$
\kappa_{\Gamma_{i}}=c \frac{e^{\frac{r^{2}}{2}}}{r^{2}}, r=\|\Gamma\|
$$

with a positive constant

$$
c^{2}=r^{4}\left(1-\left(r^{\prime}\right)^{2}\right) e^{r^{2}}
$$

In [3] Anciaux proved that the (rotational) surface

$$
x(t, s)=\left(x_{1}(t) \cos s, x_{1}(t) \sin s, x_{2}(t) \cos s, x_{2}(t) \sin s\right)
$$

defines a compact Lagrangian self-shrinkers in \mathbb{R}^{4} which is called Anciaux torus. The squared norm of the mean curvature and the second fundamental form of the Anciaux torus are given by

$$
\begin{aligned}
\|\vec{H}\|^{2} & =c^{2} \frac{e^{r^{2}}}{r^{2}} \\
\|h\|^{2} & =c^{2} \frac{e^{\frac{r^{2}}{2}}}{r^{2}}\left(r^{4}+2 r^{2}+4\right)
\end{aligned}
$$

Example 4.7 For positive integers $m, n,(m, n)=1$, consider the surface M in \mathbb{R}^{4} given with the parametrization

$$
x(t, s)=\left(\cos \sqrt{\frac{m}{n}} t \frac{\cos s}{\sqrt{n}}, \cos \sqrt{\frac{m}{n}} t \frac{\sin s}{\sqrt{n}}, \sin \sqrt{\frac{n}{m}} t \frac{\cos s}{\sqrt{n}}, \sin \sqrt{\frac{n}{m}} t \frac{\sin s}{\sqrt{n}}\right) .
$$

In [19] Li and Wang proved that this surface is self-shrinker. Therefore, it is called Li-Wang tori.

Example 4.8 For any $n_{1}, n_{2} \in \mathbb{N}$, $n_{1}+n_{2}=n$, the Clifford torus $S^{n_{1}}\left(\sqrt{n_{1}}\right) \times S^{n_{2}}\left(\sqrt{n_{d}}\right)$ in \mathbb{R}^{n+2} is a compact self-shrinker with $\|h\|^{2}=2$ (see, [8]).

Example 4.9 [8] The product of n-circles $S^{1} \times \ldots \times S^{1}$ in $\mathbb{R}^{2 n}$ is a compact self-shrinkers with $\|h\|^{2}=n$.
For the self-shrinker surface case we have the following result.

Theorem 4.10 Let M be a general rotational surface in \mathbb{R}^{4} given with the parametrization (4.1). If M is a self-shrinker then

$$
\begin{equation*}
\frac{\kappa}{\psi^{2}}+\frac{\beta}{\varphi^{2}}=2 \eta \tag{4.15}
\end{equation*}
$$

holds, where φ, ψ, κ and β are smooth functions defined in (4.3) and (4.5) and

$$
\begin{equation*}
\eta=f^{\prime} g-f g^{\prime} \tag{4.16}
\end{equation*}
$$

Proof Assume that M is a general rotational surface in \mathbb{R}^{4} given with the parametrization (4.1). If M is a self-shrinker then by (4.9) and (4.14)

$$
\begin{equation*}
H e_{3}+x-\frac{\rho^{\prime}(u)}{\psi(u)} e_{1}=0 \tag{4.17}
\end{equation*}
$$

holds identically. Consequently substituting

$$
\begin{equation*}
H=\frac{1}{2 \psi}\left(\frac{\kappa}{\psi^{2}}+\frac{\beta}{\varphi^{2}}\right) \tag{4.18}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\langle x, e_{3}\right\rangle=\frac{f g^{\prime}-f^{\prime} g}{\psi} \tag{4.19}
\end{equation*}
$$

into (4.17) we obtain (4.15).

Corollary 4.11 [3] Let M be a general rotational surface in \mathbb{R}^{4} given with the parametrization (4.1) with $c=d=1$. If M is a self-shrinker surface then it is an Anciaux torus in \mathbb{R}^{4}.

Definition 4.12 The Vranceanu surface in \mathbb{R}^{4} is defined by the following parametrization;

$$
\begin{equation*}
f(u)=r(u) \cos u, g(u)=r(u) \sin u, c=d=1 \tag{4.20}
\end{equation*}
$$

where $r(u)$ is a real valued nonzero function [24].

Consequently, substituting Eq. (4.20) into Eqs. (4.6) and (4.7) one can get

$$
\begin{equation*}
K=\frac{\left(r^{\prime}\right)^{2}-r r^{\prime \prime}}{\left(r^{2}+\left(r^{\prime}\right)^{2}\right)^{2}} \tag{4.21}
\end{equation*}
$$

and

$$
\begin{equation*}
\vec{H}=\frac{r r^{\prime \prime}-3\left(r^{\prime}\right)^{2}-2 r^{2}}{2\left(r^{2}+\left(r^{\prime}\right)^{2}\right)^{\frac{3}{2}}} e_{3} \tag{4.22}
\end{equation*}
$$

respectively [5]. As a consequence of Eqs. (4.21) and (4.22) we get the following results.

Corollary 4.13 [26] Let M be a Vranceanu rotation surface given with the parametrization (4.20). If M has vanishing Gaussian curvature, then

$$
r(u)=\lambda e^{\mu u}
$$

holds, where λ and μ are real constants.

ARSLAN et al./Turk J Math

Corollary 4.14 [6] Let M be a Vranceanu rotation surface given with the parametrization (4.20). If M is minimal then

$$
\begin{equation*}
r(u)=\frac{ \pm 1}{\sqrt{a \sin 2 u-b \cos 2 u}} \tag{4.23}
\end{equation*}
$$

where, a and b are real constants.

By the use of (4.15) with (4.20) we obtain the following result.

Corollary 4.15 Let M be a Vranceanu surface given with the parametrization (4.20). If M is a self-shrinking surface then

$$
\begin{equation*}
\frac{r r^{\prime \prime}-3\left(r^{\prime}\right)^{2}-2 r^{2}}{2\left(r^{2}+\left(r^{\prime}\right)^{2}\right)}+1=0 \tag{4.24}
\end{equation*}
$$

holds identically.

Example 4.16 The flat Vranceanu surface given with $r(u)=1$ is a Clifford torus, that is; it is the product of two plane circles with same radius. Consequently, it is easy to show that Eq. (4.24) holds. Therefore, the Clifford torus is a self-shrinking surface of Euclidean 4-space \mathbb{R}^{4}.

Theorem 4.17 [8] Let M be a compact self-shrinking surface in Euclidean 4-space \mathbb{R}^{4}. If $\|H\|$ is constant or $\|h\| \leq 0$ or $\|h\| \geq 0$ then M is a Clifford torus.

In Example 4.16 we have shown that the converse statement of Theorem 4.17 is also valid.

Definition 4.18 An immersed surface M in \mathbb{R}^{2+d} is called a ξ-surface if there is a parallel vector field ξ such that the mean curvature vector field \vec{H} satisfies the following nonlinear elliptic system:

$$
\begin{equation*}
\vec{H}+x^{N}=\xi \tag{4.25}
\end{equation*}
$$

where x^{N} is the normal component of x.
We have the following results.

Lemma 4.19 Let M be an immersed surface in \mathbb{R}^{2+d}. Then M is a ξ-surface if and only if for each $e_{i} \in T_{p} M$

$$
\begin{equation*}
D_{e_{i}} \vec{H}=\sum_{j=1}^{2}\left\langle x, e_{j}\right\rangle h\left(e_{i}, e_{j}\right), \tag{4.26}
\end{equation*}
$$

and

$$
\begin{equation*}
A_{\xi} e_{i}=e_{i}-\nabla_{e_{i}} x^{T}+A_{H} e_{i} \tag{4.27}
\end{equation*}
$$

hold identically, where x^{T} is the tangent component of x.

Proof By the definition of a ξ-surface, we have $\vec{H}=\xi-x^{N}$. By the Gauss and Weingarten formulas it follows that, for any $v \in T_{p} M$,

$$
\begin{align*}
A_{H} v & =-\widetilde{\nabla}_{v} \vec{H}+D_{v} \vec{H} \\
& =-\widetilde{\nabla}_{v} \xi+\widetilde{\nabla}_{v} x-\widetilde{\nabla}_{v} x^{T}+D_{v} \vec{H} \tag{4.28}\\
& =-\widetilde{\nabla}_{v} \xi+v-\nabla_{e_{i}} x^{T}-h\left(v, x^{T}\right)+D_{v} \vec{H}
\end{align*}
$$

where $x^{N}=x-x^{T}$ and $\widetilde{\nabla}_{v} x=v$ are well-known relations. Consequently, the tangent and normal parts of (4.28) gives (4.27) and (4.26), respectively.

Lemma 4.20 Let M be a general rotational surface in \mathbb{R}^{4} given with the parametrization (4.1). If M is a ξ-surface of \mathbb{R}^{4} then

$$
\begin{equation*}
\frac{\partial H}{\partial u} \eta \psi^{2}-H \delta \kappa=0 \tag{4.29}
\end{equation*}
$$

holds identically.
Proof Assume that M is a general rotational surface in \mathbb{R}^{4} differentiating (4.7) with respect to e_{1}, e_{2} a straight-forward computation gives

$$
\begin{equation*}
D_{e_{1}} \vec{H}=\frac{1}{\psi} \frac{\partial H}{\partial u} e_{3}, D_{e_{2}} \vec{H}=\frac{H \delta}{\psi \varphi^{2}} e_{4} \tag{4.30}
\end{equation*}
$$

Since M is a ξ-surface in \mathbb{R}^{4} then by Lemma 4.19 we get

$$
\begin{gather*}
D_{e_{1}} \vec{H}=\left\langle x, e_{1}\right\rangle h\left(e_{1}, e_{1}\right)+\left\langle x, e_{2}\right\rangle h\left(e_{1}, e_{2}\right) \\
D_{e_{2}} \vec{H}=\left\langle x, e_{1}\right\rangle h\left(e_{2}, e_{1}\right)+\left\langle x, e_{2}\right\rangle h\left(e_{2}, e_{2}\right) \tag{4.31}
\end{gather*}
$$

Further, substituting the equations in Eq. (4.9) with $\left\langle x, e_{1}\right\rangle=\frac{\rho^{\prime}}{\psi},\left\langle x, e_{2}\right\rangle=0$ into Eq. (4.31) we obtain

$$
\begin{equation*}
D_{e_{1}} \vec{H}=\frac{\kappa \rho^{\prime}}{\psi^{4}} e_{3}, D_{e_{2}} \vec{H}=\frac{\eta \rho^{\prime}}{\psi^{2} \varphi^{2}} e_{4} \tag{4.32}
\end{equation*}
$$

Hence, comparing Eq. (4.30) with Eq. (4.32) after some computation we get the result.
As a consequence of Lemma 4.20 we get the following results.

Theorem 4.21 Let M be a general rotational surface in \mathbb{R}^{4} with constant mean curvature. If M is a ξ-surface of \mathbb{R}^{4} then M is one of the following;
(i) a minimal surface of \mathbb{R}^{4}, or
(ii) a spherical surface of \mathbb{R}^{4}, or
(iii) a rotational surface of \mathbb{R}^{4} whose profile curve is a straight line.

Proof Assume that M is a general rotational surface in \mathbb{R}^{4}. If M is a ξ-surface of \mathbb{R}^{4} then the equation (4.29) holds. Since M has constant mean curvature then $H \delta \kappa=0$. So we have three possible cases, $H=0$,

ARSLAN et al./Turk J Math

or $\delta=0$, or $\kappa=0$. For the first case M is a minimal surface of \mathbb{R}^{4}. Further, from (4.5) $\delta=0$ implies that $\rho^{\prime}=0$, i.e. $x=x^{N}$. Therefore, by Theorem 4.1 it is easy to deduce that M is a spherical surface of \mathbb{R}^{4}. Finally, $\kappa=0$ implies that the profile curve is a straight line.

Theorem 4.22 Let M be a Vranceanu surface given with the parametrization (4.20). If M is a ξ-surface then

$$
r(u)=e^{\int \varphi(z) d z+c_{2}}
$$

holds identically, where

$$
u=\int \frac{e^{\int \varphi(z) d z+c_{2}}}{\sqrt{z-e^{\int \varphi(z) d z+2 c_{2}}}} d z+c_{1}
$$

is the parametric function such that the smooth functions

$$
\begin{aligned}
z & =r(u)^{2}+r^{\prime}(u)^{2} \\
\varphi(z) & =\frac{1}{2 r(u)\left(r(u)^{2}+r^{\prime}(u)^{2}\right)}
\end{aligned}
$$

satisfy the equality

$$
\frac{\partial}{\partial z} \varphi(z)=\frac{12 z^{2} \varphi(z)^{3}+z(3 z-5) \varphi(z)^{2}-(3 z-1) \varphi(z)}{z^{2}}
$$

Proof Assume that M is a Vranceanu surface given with the parametrization (4.20). Then using (4.5), (4.22) with (4.20) we get

$$
\begin{align*}
H & =\frac{r(u) r^{\prime \prime}(u)-3\left(r^{\prime}(u)\right)^{2}-2 r^{2}(u)}{2\left(r^{2}(u)+\left(r^{\prime}(u)\right)^{2}\right)^{\frac{3}{2}}}, \\
\kappa & =r(u) r^{\prime \prime}(u)-2\left(r^{\prime}(u)\right)^{2}-r^{2}(u), \tag{4.33}\\
\psi^{2} & =r^{2}(u)+\left(r^{\prime}(u)\right)^{2}, \\
\delta & =r(u) r^{\prime}(u), \\
\eta & =-r^{2}(u) .
\end{align*}
$$

Since M is a ξ-surface then (4.29) holds. Therefore, substituting (4.33) into (4.29) we get the following differential equation

$$
r\left(r^{2}+\left(r^{\prime}\right)^{2}\right)\left(\frac{r r^{\prime \prime}-3\left(r^{\prime}\right)^{2}-2 r^{2}}{2\left(r^{2}+\left(r^{\prime}\right)^{2}\right)^{\frac{3}{2}}}\right)_{u}+r^{\prime}\left(r r^{\prime \prime}-2\left(r^{\prime}\right)^{2}-r^{2}\right)\left(\frac{r r^{\prime \prime}-3\left(r^{\prime}\right)^{2}-2 r^{2}}{2\left(r^{2}+\left(r^{\prime}\right)^{2}\right)^{\frac{3}{2}}}\right)=0
$$

By the use of the Maple programing command;

$$
\begin{aligned}
&>H 1(u):=r(u) * \operatorname{diff}(r(u), u, u)-3 * \operatorname{diff}(r(u), u)^{\wedge} 2-2 * r(u)^{\wedge} 2: \\
&>z(u):=\operatorname{diff}(r(u), u)^{\wedge} 2+r(u)^{\wedge} 2: \\
&>H(u):=H 1(u) /\left(2 * z(u)^{\wedge}(3 / 2)\right): \\
&>k(u):=r(u) * \operatorname{diff}(r(u), u, u)-2 * \operatorname{diff}(r(u), u)^{\wedge} 2-r(u)^{\wedge} 2: \\
&>\text { ode } 1:=r(u) * z(u)^{\wedge} 2 * \operatorname{diff}(H(u), u)+\operatorname{diff}(r(u), u) * k(u) * H(u)=0: \\
&>\text { dsolve }(o d e 1) ;
\end{aligned}
$$

we get

$$
r(u)=e^{\left(\int g(f) d f+c_{2}\right)}
$$

where

$$
\begin{array}{r}
\frac{d}{d f} g(f)=12 g(f)^{3}+\frac{(-5+3 f) g(f)^{2}}{f}-\frac{1}{2} \frac{(3 f-1) g(f)}{f^{2}} \\
f=\left(\frac{d}{d u} r(u)\right)^{2}+r(u)^{2}, \quad g(f)=\frac{1}{2} \frac{1}{r(u)\left(\frac{d^{2}}{d u^{2}} r(u)+r(u)^{2}\right)} \\
u=\int \frac{g(f) e^{\left(\int g(f) d f+c_{2}\right)}}{\sqrt{f-e^{\left(2 \int g(f) d f+2 c_{2}\right)}} d f+c_{1}, \quad r(u)=e^{\left(\int g(f) d f+c_{2}\right)}}
\end{array}
$$

This completes the proof of the theorem.

References

[1] Abresch U, Langer J. The normalized curve shortening flow and homothetic solutions. Journal of Differential Geometry 1986; 23: 175-196.
[2] Aminov Yu. The Geometry of Submanifolds. London, UK: Gordon and Breach Science Publication, 2001.
[3] Anciaux H. Construction of Lagrangian self-similar solutions to the mean curvature flow in \mathbb{C}^{n}. Geometriae Dedicata 2006; 120: 37-48.
[4] Arezzo C, Sun J. Self-shrinkers for the mean curvature flow in arbitrary codimension. Mathematische Zeitschrift 2013; 274: 993-1027.
[5] Arslan K, Bayram B, Bulca B, Kim YH, Murathan C et al. Rotational embeddings in \mathbb{E}^{4} with pointwise 1-type Gauss map. Turkish Journal of Mathematics 2011; 35: 493-499.
[6] Arslan K, Bayram B, Bulca B, Öztürk G. General rotation surfaces in \mathbb{E}^{4}. Results in Mathematics 2012; 61 (3): 315-327.
[7] Arslan K, Bulca B, Kosova D. On generalized rotational surfaces in Euclidean spaces. Journal of the Korean Mathematical Society 2017; 54 (3): 999-1013.
[8] Castro I, Lerma AM. The Clifford torus as a self-shrinker for the Lagrangian mean curvature flow. International Mathematics Research Notices 2014; 16: 1515-1527.
[9] Chen BY. Geometry of Submanifolds. New York, NY, USA: Dekker, 1973.
[10] Chen BY. Differential geometry of rectifying submanifolds. International Electronic Journal of Geometry 2016; 9 (2):1-8.
[11] Chen BY. More on convolution of Riemannian manifolds. Beitrage zur Algebra und Geometrie 2003; 44: 9-24.
[12] Cheng QM, Hori H, Wei G. Complete Lagrangian self-shrinkers in \mathbb{R}^{4}. arXiv 2018; arXiv:1802.02396.
[13] Cheng QM, Peng Y. Complete self-shrinkers of the mean curvature flow. Calculus of Variations Partial Differential Equations 2015; 52: 497-506.
[14] Cheng QM, Wei G. Complete λ-hypersurfaces of the weighted volume-preserving mean curvature flow. arXiv 2015; arXiv:1403.3177.
[15] Coung DV. Surfaces of revolution with constant Gaussian curvature in four space. Asian-European Journal of Mathematics 2013; 6: 1350021.
[16] Dursun U, Turgay NC. General rotational surfaces in Euclidean space \mathbb{E}^{4} with pointwise 1-type Gauss map. Mathematical Communications 2012; 17: 71-81.
[17] Ganchev G, Milousheva V. On the theory of surfaces in the four dimensional Euclidean space. Kodai Mathematical Journal 2008; 31: 183-198.
[18] Joyse D, Lee Y, Tsui MP. Self-similar solutions and translating solutions for Lagrangian mean curvature flow. Journal of Differential Geometry 2010; 84: 127-161.
[19] Li H, Wang X. New characterizations of the Clifford torus as a Lagrangian self-shrinker. The Journal of Geometric Analysis 2017; 27: 1393-1412.
[20] Li X, Chang X. A rigidity theorem of $\xi-$ submanifolds in \mathbb{C}^{2}. Geometriae Dedicata 2016; 185: 155-169.
[21] Li X, Li Z. Variational characterization of ξ-submanifolds in the Euclidean space \mathbb{R}^{m+p}. Annali di Mathematica Pura ed Applicata 2020; 199: 1491-1518.
[22] Moore C. Surfaces of rotations in a space of four dimensions. Annals of Mathematics 1919; 21: 81-93.
[23] Smoczyk K. Self-shrinkers of the mean curvature flow in arbitrary codimension. International Mathematics Research Notices 2005; 48: 1983-3004.
[24] Vranceanu G. Surfaces de rotation dans \mathbb{E}^{4}. Revue Roumaine de Mathematıques Pures et Appliquees 1977; 22: 857-862.
[25] Wong YC. Contributions to the theory of surfaces in 4-space of constant curvature. Transactions of the American Mathematical Society 1946; 59: 467-507.
[26] Yoon DW. Some properties of the Clifford torus as rotation surface. Indian Journal of Pure and Applied Mathematics 2003; 34: 907-915.

[^0]: *Correspondence: bbulca@uludag.edu.tr
 2010 AMS Mathematics Subject Classification: 53C40, 53C42

