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Abstract: The general rotational surfaces in the Euclidean 4-space R* was first studied by Moore (1919). The
Vranceanu surfaces are the special examples of these kind of surfaces. Self-shrinker flows arise as special solution of the
mean curvature flow that preserves the shape of the evolving submanifold. In addition, £—surfaces are the generalization
of self-shrinker surfaces. In the present article we consider £—surfaces in Euclidean spaces. We obtained some results
related with rotational surfaces in Euclidean 4—space R* to become self-shrinkers. Furthermore, we classify the general
rotational £—surfaces with constant mean curvature. As an application, we give some examples of self-shrinkers and

rotational £—surfaces in R*.
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1. Introduction

Let x : M — R™ be an isometric immersion of an n— dimensional submanifold M (m > n) into the Euclidean
space R™. The position vector field x of M is very important object in differential geometry. It is the Euclidean
vector r = @ known as the radius vector of M, where p € M and o € R™ is the arbitrary reference point.

The position vector field x of M has a natural decomposition given by
r=zl +a, (1.1)

where z7 € T,M and 2 € T;-M [9].

The mean curvature vector field ﬁ is one of the most important invariants of the submanifold M. In
physics, the average curvature vector field is the torsion field applied to the submanifold originated from R™.
The mean curvature flow is the gradient flow of the area functional on the space of the submanifold M. The
self-shrinker flows arise as special solution of the mean curvature flow that preserve the shape of the evolving
submanifold [18]. The most important mean curvature flow is self-similar flow which is obtained by the following

nonlinear elliptic system

ﬁ—f—xN:O,

where 2V is the normal component of the position vector = [18].
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In [14] Chang and Wei introduced a A— hypersurfaces in Euclidean space giving a natural generalization of
self-shrinkers in the hypersurface case. According to [14], a hypersurface M C R™*! is called a A—hypersurface

and its mean curvature H satisfies
H+ (z,N) = ),

for some real function A, where N is the unit normal of the hypersurface. Recently, Li and Chang made a
generalization of both self-shrinkers and A—hypersurfaces, by introducing the concepts of €—submanifolds [20].

By definition an immersed submanifold M"™ in R™ is called a £—submanifold if there is a parallel vector field

& such that the mean curvature vector field ﬁ satisfies
ﬁ +aN =¢.

This paper is organized as follows: In Section 2, we give some basic concepts of the second fundamental
form and curvatures of the surfaces in R™. In Section 3, we give some well known results of self-shrinker surfaces
in R™. Further, we give some well known examples satisfying the self-shrinking condition. In Section 4 we
consider generalized rotational surfaces in R*. We obtained some results related with generalized rotational
surfaces in Euclidean 4—space R* to become self-shrinkers. Furthermore, we classify the general rotational
£—surfaces with constant mean curvature. As an application, we give some examples of self-shrinkers and

rotational &—surfaces in R*.

2. Preliminaries

Let # : M — R™ be an immersed surface in the Euclidean space R™. Denote x(M) and x*(M) with the
space of the smooth vector fields tangent and normal to M, respectively. Given any local orthonormal vector

fields ey, es tangent to M , consider the second fundamental form
h(eie,)=Vee, —Vee,  1<ij<2 (2.1)

where V and V are the induced connection of M and the Riemannian connection of R™ | respectively. This
map is well-defined, symmetric and bilinear [9]. For any arbitrary orthonormal frame field {Ny, Na, ..., Ny }

of M, recall the shape operator
ANaej:fﬁejNaJrDeJ_Na, l1<a<m-n1<j<2 (2.2)

where D denotes the normal connection of M. This operator is bilinear, selfadjoint and satisfies the following

equation:

(An,ej,ei) = (h(ei,e;), No) = hi,

iy 1<4,7<2; 1<a<m-—n, (2.3)

where h% are the coefficients of the second fundamental form.

Egs. (2.1) and (2.2) are called Gaussian formula and Weingarten formula, respectively. In addition,
h(eie;) =Y hEiNa, 1<i,5 <2 (2.4)
a=1
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holds. Consequently, the squares length Hh||2 of the second fundamental form h is defined by
2

al* =S (ng)”. (2.5)

i,j=1

The Gaussian curvature K and mean curvature vector ﬁ of M are given by

K= <h(€13 61), h(GQa 62)> - <h(61, 62)7 h(elv 62)> ’ (26)
and
1
H= 5 {h(e1,e1) + hlez, e2)}, (2.7
respectively. The norm of the mean curvature vector H = Hﬁ is called the mean curvature of M. Recall that

a surface M is said to be flat (resp. minimal) if its Gauss curvature (resp. mean curvature vector) vanishes

identically [9].

3. £{—surfaces in Euclidean spaces

Let  : M — R™ be an immersed surface in the Euclidean space R™. The mean curvature flow of z is a family
x¢ : M — R™ that satisfies

(;%@QL=H@@,m:x (3.1)

where H(p,t) is the mean curvature vector of x;(M) at x:(p) and (.)* denotes the projection into the normal
space of x¢(M) [18].

Definition 3.1 An immersed surface M in the Euclidean space R™ is called self-shrinker solution of (3.1) if

the curvature vector field ﬁ of M satisfies the following nonlinear elliptic system:

o+ =0, (3.2)

N

where " is the normal component of x [18].

In [23] K. Smooczyk proved the following results.

Theorem 3.2 [23] Let © : M — R™ be a closed self-shrinker then M is a minimal surface of the sphere
S™=1(\/2) if and only if H} #0 and V+tu =0, where v = f[}?“ is the principal normal of the surface M .

Theorem 3.3 [25] Let x : M — R™ (d > 1) be a 2— dimensional compact self-shrinker. Then M is spherical
surface if and only if ﬁ #0 and Vv =0 hold identically.

Theorem 3.4 [13] Let v : M — R (d = m —n) be a 2— dimensional complete proper self-shrinker (i.e.

H # 0) without boundary and with H > 0. If the principal normal v = Hgﬂ is parallel in the normal bundle

of M and the squared norm of the second fundamental form is constant then M is one of the following;
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(i) S*(VE) x R*F, 1<k <2, |[]* =1,
(ii ) the Boruvka sphere S*(\/m(m + 1)) in S>™(\/2) with

2

d=2m—1and |h|>=2—- ———,
m(m+ 1)

(iii ) a compact flat, minimal surface in S*™1(v/2) with d = 2m, ||h|° =2.

Definition 3.5 An immersed surface M in R™ is called a &— surface if there is a parallel vector field & such

that the mean curvature vector field ﬁ satisfies the following nonlinear elliptic system:

H4aV =¢ (3.3)

N

where x is the normal component of x.

Identifying R* with C? recall the Lagrangian submanifold M in R?" as follows:

Definition 3.6 A submanifold M C R*" is called Lagrangian if J(T,M) = T;M holds for any p € M, where

J is the complex structure of R*", T,M and T;M denote the tangent space and normal space at p.

In [20] Li and Chang proved the following result.

Proposition 3.7 [20] Let x: M2 — C2 be a compact orientable Lagrangian self-shrinker. If ||h||> + || H|* < 4,
then ||h|* + |H|*> = 4 and z(M?) = S*(1) x SY(1) up to a holomorphic isometry on C2.

4. General rotational {—surfaces

Rotational surfaces in R? was first introduced by Moore in 1919 [22]. In the recent years some mathematicians
have taken an interest in the rotational surfaces in R*; see for example [7, 16, 17]. In [17], the authors applied
the invariance theory of surfaces in R* to the class of general rotational surfaces whose meridians lie in two
dimensional planes in order to find all minimal surfaces (see also [15, 26] for the rotational surfaces with constant
Gaussian curvature in R*).

A general rotational surface M in R* is defined by the parametrization (see, [22]);
X(u,v) = (f(u)cos cv, f(u)sin cv, g(u) cos dv, g(u) sin dv), (4.1)

where u € J,0 < v < 27, and a(u) = (f(u), g(u)) is the meridian curve of the rotation satisfying ¢ f2+d?g? > 0
and (f')?+ (¢')* > 0.
The orthonormal frame field of M is given by

1 0 1 0
oS P T o
]‘ / / . ! / .
es = m(g (u) cos cv, ¢’ (u) sin cv, — f'(u) cos dv, — f'(u) sin dv) (4.2)
1 ) .
ey = m(—dg(u)smcv,dg(u)coscv,cf(u)smdv,—cf(u)cosdv)
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where

U(u) = /(') + (' ()2,
p(u) = /22 (u) + d2g?(u),

(4.3)

are the smooth functions on M [7]. With respect to this frame we can obtain the second fundamental maps;

h(ei,e1) = %63

h(e1,e3) = #64

h(ea,ea) = %63
where

so= - 1

= Efff +dgy
flg—dfg
= cd(f'9-fg")
= cd(ff' +g9")

S, I ™ >
I

are the smooth functions on M. Consequently, by the use of Egs. (2.6) and (2.7) with Eq. (4.4) the Gaussian

curvature and mean curvature vector ﬁ of M become

_ 1 (ﬁﬁ_”z>
S22 \ Y2 @2

and

respectively [7].

From the orthogonal decomposition (1.1) of the position vector & of M we obtain

2N — Pl(u)e
wu)

where p(u) = % ||| is the square norm of the distance function of the position vector

p'(w) = f(u)f'(u) + g(u)g'(u)

holds. The gradient of the distance function is given by

[\~]

(x,e; p'(u)
grad (Jo]) = 3_ ||x||J G ]

Jj=1

Due to [10] we obtain the following results.

such that

(4.9)

(4.10)
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Theorem 4.1 Let M be a general rotational surface in R* given with the parametrization (4.1). Then x = xv

holds identically if and only if M is a spherical surface of R*.

Proof Assume that M is a general rotational surface in R* given with the parametrization (4.1). If x = 2V

holds identically, then p'(u) = 0 holds. Therefore, Eq. (4.10) yields the the distance function of M has zero
gradient so by Example 4.1. of [11] M is a spherical surface in R*. Infact,

fi(u) fi(w) + f2(u) f3(u) = 0, (4.11)

ie. f2(u)+ f2(u) =r¢ implies that the meridian curve « is an open part of a circle parametrized by

fi(u) = ro cos (;Z) , fo(u) = rosin (;2) : (4.12)

where rq is a positive real number.

The converse is clear. O

Remark 4.2 The general rotational surface given with the meridian curve (4.12) is H— parallel and minimal
surface in S?(rg) C R%.
Theorem 4.3 Let M be a general rotational surface in R* given with the parametrization (4.1). Then x = T

holds identically if and only if M is a conic surface with the vertex at the origin.

Proof Assume that M is a general rotational surface in R* given with the parametrization (4.1). If z = 2T

holds identically, then x = Z}l((z)) e1 holds identically. Therefore, Eq. (4.10) yields that gradient of the distance

function has constant length

lgrad (Jlz])] = K=l y. (4.13)

]

By Proposition 5.2 of [11] M is a conic surface in R? with the vertex at the origin. Infact, x = p/(u)e; yields
f'g — fg' = 0. Consequently the meridian curve « is an open part of a straight line passing through origin.
The converse is clear. O

Definition 4.4 A surface M in the Fuclidean space R™ is called self-shrinker if the curvature vector field ﬁ

of M satisfies the following nonlinear elliptic system:

42N =0, (4.14)

N

where x" is the normal component of x.

It is well known that the Euclidean plane R?, the unit sphere S?(1), the cylinder S*(1) x R and the
Clifford torus S1(1) x S1(1) are the canonical self-shrinkers in R*. Besides the standard examples there are
many examples of complete self-shrinkers in R*. For examples, compact minimal surfaces in the sphere S3(2)

are compact self-shrinkers in R* [12]. One can get the following well-know examples.
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Example 4.5 Let T'1(s) = (z1(s), y1(s)), 0 < s < Ly and Ta(t) = (x2(t), y2(t)), 0 <t < Laybe two self-
shrinker curves in R? given with arclength parameters. Consider the Riemannian product M = T'1(s) x T'a(t)
defined by

Iy (s) x Ta(t) = (z1(s), z2(t), y1(s), y2(t)) -

In [12] the authors showed that T'1(s) x Ta(t) is a Lagrangian self-shrinker in R* with vanishing Gaussian

curvature.

Example 4.6 Let I'(t) = (z1(t), z2(t)), 0 <t < Ly be a closed self-shrinker curves in R? then its curvature
Kr satisfies
e
kr, = c—, =T

i ,',,2

with a positive constant

In [3] Anciaux proved that the (rotational) surface
x(t,s) = (x1(¢t) cos s, z1(t) sin s, x2(t) cos s, x2(t) sin s)

defines a compact Lagrangian self-shrinkers in R* which is called Anciauzx torus. The squared norm of the mean

curvature and the second fundamental form of the Anciauz torus are given by

7 - o

|
Q

ez
Inl* = =g (207 - 4).
Example 4.7 For positive integers m,n, (m,n) = 1, consider the surface M in R* given with the parametriza-

(t,5) o mtcoss . mtsins i ntcoss . ntsins
x(t,s) = Sy/—t——,c084/ —t——,8in /| —t——,s8in | —t——— | .
’ n n’ n n’ m /n’ m \/n

In [19] Li and Wang proved that this surface is self-shrinker. Therefore, it is called Li-Wang tori.

tion

Example 4.8 For any ni,ny € N, ny+ng = n, the Clifford torus S™ (y/ny) x S™2(y/nq) in R"*2 is a compact
self-shrinker with ||h||> = 2 (see, [8]).

Example 4.9 [8] The product of n— circles S* x ... x S* in R2" is a compact self-shrinkers with ||h||> = n.
For the self-shrinker surface case we have the following result.

Theorem 4.10 Let M be a general rotational surface in R* given with the parametrization (4.1). If M is a

self-shrinker then

— 2 (4.15)
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holds, where @,k and B are smooth functions defined in (4.3) and (4.5) and

n=1Ffg-fg. (4.16)

Proof Assume that M is a general rotational surface in R* given with the parametrization (4.1). If M is a
self-shrinker then by (4.9) and (4.14)

p'(u)
H — =0 4.17
es+z b(w) e1 ( )
holds identically. Consequently substituting
1 K I}
1= (55 ) e
and
r_ el
(z,e3) = fg-79 (4.19)
(G
into (4.17) we obtain (4.15). O

Corollary 4.11 [3] Let M be a general rotational surface in R* given with the parametrization (/.1) with

c=d=1. If M is a self-shrinker surface then it is an Anciauz torus in R*.

Definition 4.12 The Vranceanu surface in R* is defined by the following parametrization;
fw) =r(u)cosu, g(u) =r(u)sinu, c=d=1, (4.20)
where r(u) is a real valued nonzero function [24].
Consequently, substituting Eq. (4.20) into Egs. (4.6) and (4.7) one can get

5

and

“T e 4.22
2(r2 4 (1)) (422

respectively [5]. As a consequence of Eqgs. (4.21) and (4.22) we get the following results.

Corollary 4.13 [26] Let M be a Vranceanu rotation surface given with the parametrization (4.20). If M has

vanishing Gaussian curvature, then

r(u) = e

holds, where A\ and p are real constants.
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Corollary 4.14 [6] Let M be a Vranceanu rotation surface given with the parametrization (4.20). If M s
minimal then
+1

N Vasin 2u — bcos 2u’

r(u) (4.23)

where, a and b are real constants.

By the use of (4.15) with (4.20) we obtain the following result.

Corollary 4.15 Let M be a Vranceanu surface given with the parametrization (4.20). If M is a self-shrinking
surface then
rr’ —3(r")? — 2r?
207+ (7))

+1=0 (4.24)
holds identically.

Example 4.16 The flat Vranceanu surface given with r(u) = 1 is a Clifford torus, that is; it is the product
of two plane circles with same radius. Consequently, it is easy to show that Eq. (4.24) holds. Therefore, the

Clifford torus is a self-shrinking surface of FEuclidean 4— space R*.

Theorem 4.17 [8] Let M be a compact self-shrinking surface in Euclidean 4-space R*. If |[H|| is constant or
Rl <0 or ||h]| >0 then M is a Clifford torus.

In Example 4.16 we have shown that the converse statement of Theorem 4.17 is also valid.

Definition 4.18 An immersed surface M in R%>t% is called a &— surface if there is a parallel vector field &

such that the mean curvature vector field ﬁ satisfies the following nonlinear elliptic system:

4V =c¢ (4.25)

N

where x" is the normal component of x.

We have the following results.

Lemma 4.19 Let M be an immersed surface in R*t¢. Then M is a &— surface if and only if for each
e; € TpM

Deiﬁ = Z(x,ej)h(ei,ej), (4.26)

and

Acei =e; — Ve,z" + Apye; (4.27)

hold identically, where x7 is the tangent component of x.
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Proof By the definition of a £—surface, we have ﬁ = ¢ — 2V, By the Gauss and Weingarten formulas it
follows that, for any v € T, M,

Agv = —ﬁvﬁ + Dvﬁ
= V4V VT +DH (4.28)

= —Vyé+v—Vezl —h (v,2") + Dvﬁ

where zV = z — 27 and V,z = v are well-known relations. Consequently, the tangent and normal parts of

(4.28) gives (4.27) and (4.26), respectively. O

Lemma 4.20 Let M be a general rotational surface in R* given with the parametrization ({.1). If M is a
&—surface of R* then

H
——mp? — Hék = 0, (4.29)
holds identically.

Proof Assume that M is a general rotational surface in R* differentiating (4.7) with respect to e;, ey a

straight-forward computation gives

1 0H H(S
D, H=~ 5 ucs D D, H = (4.30)

Since M is a £—surface in R* then by Lemma 4.19 we get

Dplﬁ (z,e1)h(er,e1) + (x,e2) h(er,ea)

(4.31)
D.,H = (z,e1) h(ea,e1) + (x,e2) h(ea,e2).
Further, substituting the equations in Eq. (4.9) with (z,e1) = %, (x,e2) =0 into Eq. (4.31) we obtain
/
D H= 63, D, H = W e (4.32)
Hence, comparing Eq. (4.30) with Eq. (4.32) after some computation we get the result. O

As a consequence of Lemma 4.20 we get the following results.

Theorem 4.21 Let M be a general rotational surface in R* with constant mean curvature. If M is a &— surface
of R* then M is one of the following;

(i) a minimal surface of R*, or
(ii ) a spherical surface of R*, or

(iii ) a rotational surface of R* whose profile curve is a straight line.

Proof Assume that M is a general rotational surface in R*. If M is a é—surface of R* then the equation

(4.29) holds. Since M has constant mean curvature then Hdx = 0. So we have three possible cases, H = 0,
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or § =0, or k =0. For the first case M is a minimal surface of R*. Further, from (4.5) § = 0 implies that

p' =0, ie x = V. Therefore, by Theorem 4.1 it is easy to deduce that M is a spherical surface of R*.
Finally, x = 0 implies that the profile curve is a straight line. O

Theorem 4.22 Let M be a Vranceanu surface given with the parametrization (4.20). If M is a £— surface
then

'r(u) — ef p(z)dz+cz2

holds identically, where

eJ e(z)dztcz
U= / dz + ¢

\ z — ef @(z)dz+2ca

is the parametric function such that the smooth functions

s = ),
() = :
ST ) (@) (W)
satisfy the equality
%W(z) _ 1222p(2)3 + 2(32 — 52)290(,2)2 — (32— 1)(,0(2).

Proof Assume that M is a Vranceanu surface given with the parametrization (4.20). Then using (4.5), (4.22)
with (4.20) we get

g o rr(u) =30 (w)? - 27“2(“)’
2(r*(u) + (r'(u))?)?
ko= r)r’(u) =20 (v)? - r*(u), (4.33)

Since M is a &—surface then (4.29) holds. Therefore, substituting (4.33) into (4.29) we get the following

differential equation

, rr’ — 3(r")2 — 2r2 Lo , rr’ —3(r")? — 2r?
r(r? 4 (r')? ( 37) . ) 4+ (" = 2(r")* — 12 ( . )zO.
( ) 2 (762 + (T/)Q)E u ( ) 2 (7“2 + (T/)2)§
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By the use of the Maple programing command,;

>Hl(uw): = r(u)«dif f(r(u),u,u) —3*xdif f(r(u),u)"2—2%r(u)"2:
>z(u): = diff(r(u),u) 2+r(u)"2:
HGw: = HI(w)/(2% () (3/2)) :
k(w): = r(u)xdif f(r(u),u,u) —2xdif f(r(u),u)"2 —r(u)"2:

>odel: = r(u)sz(u) 2% dif f(H(u),u) +dif f(r(u), u) * k(u) * H(u) =0
> dsolve(odel);

we get
r(u) = el 9U)df +e2)
where
d (=5+3f)g(f)>  1Bf-1g(f)
— =12¢9(f)? — =
dfg(f) 9(f)” + 7 5 72
; (d<>)2+<>2 (=1 :
= —r(u r(u), = -
du g 2 r(u) (Zor(u) + r(u)?)
df +c
v / felS o(h)df+e2) & +c1, r(u) = e 9D +e2)
Vf — e a(h)df+2e2)
This completes the proof of the theorem. O
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