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Abstract: m -symmetric operator plays a crucial role in the development of operator theory and has been widely
studied due to unexpected intimate connections with differential equations, particularly conjugate point theory and
disconjugacy. For positive integers m and k , an operator T is said to be a k -quasi-m -symmetric operator if

T ∗k(
m∑

j=0

(−1)j(mj )T ∗m−jT j)T k = 0 , which is a generalization of m -symmetric operator. In this paper, some basic

structural properties of k -quasi-m -symmetric operators are established with the help of operator matrix representation.
In particular, we also show that every k -quasi-3 -symmetric operator has a scalar extension. Finally, we prove that
generalized Weyl’s theorem holds for k -quasi-3 -symmetric operators.
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1. Introduction
Let B(H) denote the algebra of all bounded linear operators on the complex separable Hilbert space H . An
operator T ∈ B(H) is called 3 -symmetric if

T ∗3 − 3T ∗2T + 3T ∗T 2 − T 3 = 0,

where T ∗ is the adjoint operator of T . Helton in [13] introduced 3 -symmetric operators as a generalization
of selfadjoint operators. In a series of papers [12–14], he modelled these operators as multiplication t on a
Sobolev space, established their connections to Sturm–Liouville operators, and showed, under some additional
hypotheses, that they are the restriction to an invariant subspace of a Jordan operator of order two. Later in
[1] Agler illustrated the connection between the above result and the classical disconjugacy theory by example.
In [12] Helton initiated the study of m -symmetric operator, for a positive integer m , an operator T ∈ B(H) is
said to be m -symmetric if

m∑
j=0

(−1)j(mj )T ∗m−jT j = 0.

Hence T is 1 -symmetric if and only if T is selfadjoint. It is well known that if T is m -symmetric, then T

is n -symmetric for all n ≥ m . The notion of m -symmetric operator can be generalized in a natural way to
k -quasi-m -symmetric operator as follows.
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Definition 1.1 For positive integers m and k , an operator T ∈ B(H) is called k -quasi-m-symmetric if

T ∗k(

m∑
j=0

(−1)j(mj )T ∗m−jT j)T k = 0.

In particular, for m = 3 , an operator T is said to be k -quasi-3 -symmetric if

T ∗k(T ∗3 − 3T ∗2T + 3T ∗T 2 − T 3)T k = 0.

Example 1.2 Let T =

 0 0 0
1 0 0
0 2 0

 ∈ B(C3) . A simple calculation shows that T is a k -quasi-3-symmetric

operator, but T is not a 3-symmetric operator.

A bounded linear operator T on H is called scalar of order m if it possesses a spectral distribution of
order m , i.e. if there is a continuous unital morphism of topological algebras

Φ : Cm
0 (C) → B(H)

such that Φ(z) = T , where z stands for the identity function on C , and Cm
0 (C) stands for the space of

compactly supported functions on C , continuously differentiable of order m, 0 ≤ m ≤ ∞ . An operator is
subscalar if it is similar to the restriction of a scalar operator to an invariant subspace. In 1984, Putinar [21]
proved that every hyponormal operator has a scalar extension, which has been extended from hyponormal
operators to analytic extensions of M -hyponormal operators [17]. In this paper, we study various properties
of a k -quasi-3 -symmetric operator. We show that every k -quasi-3 -symmetric operator is subscalar. As an
application, we prove that if T is a k -quasi-3 -symmetric operator, then Weyl’s theorem holds for f(T ) where
f is an analytic function on an open neighborhood of σ(T ) and f is not constant on each connected component
of the open set U containing σ(T ) .

2. Preliminaries
Throughout this paper, the closure of a set M will be denoted by M . If T ∈ B(H) , we shall write N(T ) ,
R(T ) , σ(T ) and isoσ(T ) for the null space, the range space, the spectrum and the isolated spectrum point of
T , respectively.

An operator T ∈ B(H) is said to have the single valued extension property at λ0 ∈ C , abbreviated SVEP
at λ0 , if for every open neighborhood G of λ0 , the only analytic function f : G → H which satisfies the equation
(T − λI)f(λ) = 0 for all λ ∈ G is the function f ≡ 0 . An operator T is said to have SVEP if T has SVEP at
every point λ ∈ C . For a Banach space X , let ξ(U,X ) (resp., O(U,X )) denote the Fréchet space of all infinite
differentiable X -value functions on U (resp., of all analytic X -value functions on U ). An operator T ∈ B(X )

is said to have property (β)ε at λ ∈ C if there exists a neighbourhood D of λ such that for every open subset U

of D and X -value functions sequence {fn} in ξ(U,X ) , (T − zI)fn(z) → 0 in ξ(U,X ) ⇒ fn(z) → 0 in ξ(U,X ),

and T ∈ B(X ) is said to have property (β) at λ ∈ C if there exists an r > 0 such that for every subset
U of the open discD(λ; r) of radius r centered at λ and sequence {fn} of X -value functions in O(U,X ) ,
(T − zI)fn(z) → 0 in O(U,X ) ⇒ fn(z) → 0 in O(U,X ). An operator T ∈ B(H) is said to have property (β)ε
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(resp., (β )) if T has property (β)ε (resp., (β )) at every point λ ∈ C . For T ∈ B(H) and x ∈ H , the set
ρT (x) is defined to consist of elements z0 ∈ C such that there exists an analytic function f(z) defined in a
neighborhood of z0 , with values in H , which verifies (T − zI)f(z) = x , and it is called the local resolvent set
of T at x . We denote the complement of ρT (x) by σT (x) , called the local spectrum of T at x , and define the
local spectral subspace of T , HT (F ) = {x ∈ H : σT (x) ⊂ F} for each subset F of C . An operator T ∈ B(H)

is said to have Dunford’s property (C) if HT (F ) is closed for each closed subset F of C . It is well known that

property (β)ε ⇒ property (β) ⇒ Dunford’s property (C) ⇒ SVEP.

An operator T ∈ B(H) is called Fredholm if it has closed range with finite dimension null space and
its range of finite codimension. Let α(T ) :=dimN(T ) , β(T ) :=dimN(T ∗) . The index of a Fredholm operator
T ∈ B(H) is given by i(T ) = α(T )−β(T ). An operator T ∈ B(H) is called Weyl if it is Fredholm of index zero.
The Weyl spectrum w(T ) of T is defined by w(T ) := {λ ∈ C : T −λ is not Weyl}. Following [11], we say that
Weyl’s theorem holds for T if σ(T )\w(T ) = π00(T ), where π00(T ) := {λ ∈ isoσ(T ) : 0 < dimN(T − λ) < ∞}.
More generally, Berkani investigated B -Fredholm theory (see [6–8]). An operator T is called B -Fredholm if
there exists n ∈ N such that R(Tn) is closed and the induced operator T[n] : x ∈ R(Tn) → Tx ∈ R(Tn)

is Fredholm, i.e. R(T[n]) = R(Tn+1) is closed, α(T[n]) < ∞ and β(T[n]) = dimR(Tn)/R(T[n]) < ∞ .
Similarly, a B -Fredholm operator T is called B -Weyl if i(T[n]) = 0 . The B -Weyl spectrum σBW (T ) is
defined by σBW (T ) = {λ ∈ C : T − λ is not B-Weyl}. We say that generalized Weyl’s theorem holds for
T if σ(T ) \ σBW (T ) = E(T ), where E(T ) denotes the set of all isolated points of the spectrum which are
eigenvalues (no restriction on multiplicity). Note that, if generalized Weyl’s theorem holds for T , then so does
Weyl’s theorem [7].

3. Main results
We begin with the following theorem which is a structural theorem for k -quasi-m -symmetric operators.

Theorem 3.1 Suppose that R(T k) is not dense. Then the following statements are equivalent:
(1) T is a k -quasi-m-symmetric operator;

(2) T =

(
T1 T2

0 T3

)
on H = R(T k) ⊕ N(T ∗k), where T1 is an m-symmetric operator and T k

3 = 0.

Furthermore, σ(T ) = σ(T1) ∪ {0}.

Proof (1) ⇒ (2) Consider the matrix representation of T with respect to the decomposition H = R(T k) ⊕
N(T ∗k) :

T =

(
T1 T2

0 T3

)
.

Let P be the projection onto R(T k) . Since T is a k -quasi-m -symmetric operator, we have

P (

m∑
j=0

(−1)j(mj )T ∗m−jT j)P = 0.
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Therefore
m∑
j=0

(−1)j(mj )T ∗m−j
1 T j

1 = 0.

On the other hand, for any x = (x1, x2) ∈ H, we have

(T k
3 x2, x2) = (T k(I − P )x, (I − P )x) = ((I − P )x, T ∗k(I − P )x) = 0,

which implies T k
3 = 0. Since σ(T1) ∩ {0} has no interior point, by [10, Corollary 7] σ(T ) = σ(T1) ∪ {0}.

(2) ⇒ (1) Suppose that T =

(
T1 T2

0 T3

)
on H = R(T k) ⊕ N(T ∗k) , where T1 is an m -symmetric operator

and T k
3 = 0. We have

T k =

 T k
1

k−1∑
j=0

T j
1T2T

k−1−j
3

0 0

 .

Since

T ∗k(

m∑
j=0

(−1)j(mj )T ∗m−jT j)T k

=

 T ∗k
1 0

(
k−1∑
j=0

T j
1T2T

k−1−j
3 )∗ 0

 m∑
j=0

(−1)j(mj )T ∗m−j
1 T j

1 ∗

∗ ∗

 T k
1

k−1∑
j=0

T j
1T2T

k−1−j
3

0 0



=


T ∗k
1 (

m∑
j=0

(−1)j(mj )T ∗m−j
1 T j

1 )T
k
1 T ∗k

1 (
m∑
j=0

(−1)j(mj )T ∗m−j
1 T j

1 )
k−1∑
j=0

T j
1T2T

k−1−j
3

(
k−1∑
j=0

T j
1T2T

k−1−j
3 )∗(

m∑
j=0

(−1)j(mj )T ∗m−j
1 T j

1 )T
k
1 (

k−1∑
j=0

T j
1T2T

k−1−j
3 )∗(

m∑
j=0

(−1)j(mj )T ∗m−j
1 T j

1 )
k−1∑
j=0

T j
1T2T

k−1−j
3


=0,

for some nonspecified entries ∗ . Hence T is a k -quasi-m -symmetric operator. 2

Corollary 3.2 Suppose that T is a k -quasi-m-symmetric operator and R(T k) is dense. Then T is an m-
symmetric operator.

Proof This is a result of Theorem 3.1. 2

Corollary 3.3 Suppose that T is a k -quasi-m-symmetric operator. Then Tn is also a k -quasi-m-symmetric
operator for any n ∈ N , where N is the set of natural numbers.

Proof If T k has a dense range, then T is an m -symmetric operator, and so is Tn for any n ∈ N by [9, Theorem

2.4]. If T k does not have a dense range, we decompose T as T =

(
T1 T2

0 T3

)
on H = R(T k)⊕N(T ∗k) , where

T1 is an m -symmetric operator, and so is Tn
1 . Since

Tn =

 Tn
1

n−1∑
j=0

T j
1T2T

n−1−j
3

0 Tn
3

 on H = R(T k)⊕N(T ∗k),
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it follows from Theorem 3.1 that Tn is a k -quasi-m -symmetric operator for any n ∈ N . 2

Remark The converse of Corollary 3.3 is not true in general as shown in the following example.

Example 3.4 Let T =


0 0 0 0
1 0 0 0
0 2 0 0
0 0 1 0

 ∈ B(C4) . A simple calculation shows that T ∗2(T ∗6 − 3T ∗4T 2 +

3T ∗2T 4−T 6)T 2 = 0 and T ∗(T ∗3− 3T ∗2T +3T ∗T 2−T 3)T ̸= 0 . So, we obtain that T 2 is a quasi-3-symmetric
operator, but T is not a quasi-3-symmetric operator.

Corollary 3.5 Suppose that T is an invertible k -quasi-m-symmetric operator. Then T−1 is a k -quasi-m-
symmetric operator.

Proof Suppose that T is an invertible k -quasi-m -symmetric operator. Then T is an m -symmetric operator,
and so is T−1 . Hence T−1 is a k -quasi-m -symmetric operator. 2

Theorem 3.6 Suppose that T is a k -quasi-m-symmetric operator and M is an invariant subspace for T .
Then the restriction T |M is also a k -quasi-m-symmetric operator.

Proof Let T =

(
T1 T2

0 T3

)
on H = M ⊕M⊥ . Since T is a k -quasi-m -symmetric operator, i.e.

T ∗k(

m∑
j=0

(−1)j(mj )T ∗m−jT j)T k = 0,

we have

T ∗k(

m∑
j=0

(−1)j(mj )T ∗m−jT j)T k

=

 T ∗k
1 0

(
k−1∑
j=0

T j
1T2T

k−1−j
3 )∗ T ∗k

3

 m∑
j=0

(−1)j(mj )T ∗m−j
1 T j

1 ♯

♯ ♯

T k
1

k−1∑
j=0

T j
1T2T

k−1−j
3

0 T k
3



=

T ∗k
1 (

m∑
j=0

(−1)j(mj )T ∗m−j
1 T j

1 )T
k
1 ♯

♯ ♯


=0,

for some nonspecified entries ♯ , which implies T ∗k
1 (

m∑
j=0

(−1)j(mj )T ∗m−j
1 T j

1 )T
k
1 = 0 . Hence T |M is a k -quasi-m -

symmetric operator. 2

Proposition 3.7 Suppose that {Tn} is a sequence of k -quasi-m-symmetric operators such that lim
n→∞

||Tn −

T || = 0. Then T is a k -quasi-m-symmetric operator.
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Proof Suppose that {Tn} is a sequence of k -quasi-m -symmetric operators such that lim
n→∞

||Tn − T || = 0.

Then

||T ∗k
n (

m∑
j=0

(−1)j(mj )T ∗m−j
n T j

n)T
k
n − T ∗k(

m∑
j=0

(−1)j(mj )T ∗m−jT j)T k||

≤||T ∗k
n (

m∑
j=0

(−1)j(mj )T ∗m−j
n T j

n)T
k
n − T ∗k

n (

m∑
j=0

(−1)j(mj )T ∗m−jT j)T k||

+||T ∗k
n (

m∑
j=0

(−1)j(mj )T ∗m−jT j)T k − T ∗k(

m∑
j=0

(−1)j(mj )T ∗m−jT j)T k||

≤||T ∗k
n ||||

m∑
j=0

(−1)j(mj )T ∗m−j
n T j+k

n −
m∑
j=0

(−1)j(mj )T ∗m−jT j+k||

+||T ∗k
n − T ∗k||||

m∑
j=0

(−1)j(mj )T ∗m−jT j+k|| → 0.

Since {Tn} is a k -quasi-m -symmetric operator,

T ∗k
n (

m∑
j=0

(−1)j(mj )T ∗m−j
n T j

n)T
k
n = 0,

we have

T ∗k(

m∑
j=0

(−1)j(mj )T ∗m−jT j)T k = 0,

i.e. T is a k -quasi-m -symmetric operator. 2

Now we are ready to prove that every k -quasi-3 -symmetric operator has a scalar extension, we need the
following lemmas.

Lemma 3.8 Suppose that T ∈ B(H) is a 3-symmetric operator. Then T is subscalar of order 4.

Proof By [22] or [13], T is a 3 -symmetric operator if and only if T is unitarily equivalent to

J |M =

(
V E
0 V

)
|M

for some selfadjoint operator V acting on some Hilbert space H and some operator E on H which commutes
with V and some subspace M of H ⊕H which is invariant for the block operator. Clearly, every selfadjoint
operator is hyponormal and so J is a subscalar of order 4 by [16, Theorem 4.5]. Since T is unitarily equivalent
to the restriction of J to an invariant subspace, it is subscalar of order 4 . 2

Lemma 3.9 ([19, Lemma 1]) For T ∈ B(X ) , the following statements are equivalent:
(i) T is subscalar;
(ii) T has property (β)ε .
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Theorem 3.10 Suppose that T is a k -quasi-3-symmetric operator. Then T is subscalar.

Proof Assume that R(T k) is dense. Then T is a 3 -symmetric operator, it is subscalar of order 4 by Lemma 3.8.
So we may assume that T k does not have dense range. Then by Theorem 3.1 the operator T can be decomposed

as follows: T =

(
T1 T2

0 T3

)
on H = R(T k) ⊕ N(T ∗k), where T1 is a 3 -symmetric operator and T k

3 = 0.

Set σ(β)ε(S) = {µ ∈ σ(S) : S does not satisfy property (β)ε at µ} . Since T3 is nilpotent, σ(β)ε(T3) = φ .
Recall from [5, Theorem 2.1] that given operators S and R , λ ∈ σ(β)ε(RS) ⇔ λ ∈ σ(β)ε(SR) . Considering

T =

(
T1 T2

0 T3

)
=

(
I1 0
0 T3

)(
I1 T2

0 I2

)(
T1 0
0 I2

)
, let B =

(
I1 0
0 T3

)
, E =

(
I1 T2

0 I2

)
, A =

(
T1 0
0 I2

)
.

Then T = BEA . Suppose λ ∈ σ(β)ε(T ) ⇔ λ ∈ σ(β)ε(BEA) = σ(β)ε(EAB) . Hence, since E is invertible,
λ ∈ σ(β)ε(AB) = σ(β)ε(T1⊕T3) ⇒ λ ∈ σ(β)ε(T1) , contradiction. Thus T has property (β)ε , i.e. T is subscalar.

2

Corollary 3.11 Suppose that T is a k -quasi-3-symmetric operator. Then T has property (β) , Dunford’s
property (C) and SVEP.

Proof It suffices to prove that T has property (β) . Since property (β) is transmitted from an operator to
its restrictions to closed invariant subspace, we are reduced by Theorem 3.10 to the case of a scalar operator.
Since every scalar operator has property (β) [21], T has property (β) . 2

Corollary 3.12 Suppose that T is a quasi-nilpotent k -quasi-3-symmetric operator. Then T is nilpotent.

Proof Since a quasi-nilpotent subscalar operator is nilpotent, it follows by Theorem 3.10 that T is nilpotent.
2

Recall that a closed subspace of infinite dimensional Hilbert space H is said to be hyperinvariant for T

if it is invariant under every operator in the commutant {T}′ of T .

Theorem 3.13 Suppose that T is a k -quasi-3-symmetric operator with T ̸= λI for any λ ∈ C . If there exists
a nonzero x ∈ H such that σT (x) $ σ(T ) , then T has a nontrivial hyperinvariant subspace.

Proof Suppose that T is a k -quasi-3 -symmetric operator. Then T has property (β ) and Dunford’s property
(C) . If there exists a nonzero x ∈ H such that σT (x) $ σ(T ) , set

M = {y ∈ H : σT (y) ⊆ σT (x)},

then M is a T -hyperinvariant subspace from [18]. Since x ∈ M , we have that M ̸= {0} . Suppose that
M = H . Since T has SVEP, it follows from [18] that

σ(T ) =
∪

{σT (y) : y ∈ H} ⊆ σT (x) $ σ(T ).

So we have a contradiction. Hence M is a nontrivial hyperinvariant subspace. 2

It is known that an invariant subspace for an operator T may not be hyperinvariant. However, a sufficient
condition that an invariant subspace be hyperinvariant can be derived from the following corollary.
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Corollary 3.14 Suppose that T is a k -quasi-3-symmetric operator with T ̸= λI for any λ ∈ C . If T has a
nonzero invariant subspace M such that σ(T |M) & σ(T ) , then T has a nontrivial hyperinvariant subspace.

Proof For any nonzero x ∈ M , we have

σT (x) ⊆ σT |M(x) ⊆ σ(T |M) $ σ(T ).

Hence T has a nontrivial hyperinvariant subspace by Theorem 3.13. 2

Definition 3.15 An operator T ∈ B(H) is said to belong to the class H(p) if there exists a natural number
p := p(λ) such that

H0(λI − T ) = N(λI − T )p for allλ ∈ C,

where H0(λI − T ) := {x ∈ H : lim
n→∞

||(λI − T )nx|| 1
n = 0}.

Theorem 3.16 ([20]) Every subscalar operator T ∈ B(H) is H(p) .

Classical examples of subscalar operators are hyponormal operators. In this paper we will show that other
important classes of operators are H(p) .

Definition 3.17 An operator T ∈ B(H) is said to be polaroid if every λ ∈ isoσ(T ) is a pole of the resolvent
of T .

The condition of being polaroid may be characterized by means of the quasi-nilpotent part:

Theorem 3.18 ([4]) An operator T ∈ B(H) is polaroid if and only if there exists p := p(λI − T ) ∈ N such
that

H0(λI − T ) = N(λI − T )p for all λ ∈ isoσ(T ).

Note that every H(p) operator is polaroid. By using Theorem 3.10 and Theorem 3.16, we deduce the following
corollaries.

Corollary 3.19 Every k -quasi-3-symmetric operator is H(p) .

Corollary 3.20 Every k -quasi-3-symmetric operator is polaroid.

A bounded linear operator T is called isoloid if every isolated point of σ(T ) is an eigenvalue of T . Note that
if T is polaroid, then it is isoloid. However, the converse is not true. In the following, f is an analytic function
on an open neighborhood of σ(T ) and f is not constant on each connected component of the open set U

containing σ(T ) .

Theorem 3.21 Suppose that T is a k -quasi-3-symmetric operator. Then Weyl’s theorem holds for f(T ) .

Proof We use the fact that if T is polaroid and T has SVEP, then T satisfies Weyl’s theorem in [3, Theorem
3.3]. Suppose that T is a k -quasi-3 -symmetric operator. By Corollary 3.11 and Corollary 3.20 we have that
T satisfies Weyl’s theorem. We show next that Weyl’s theorem holds for f(T ) . Since T is polaroid and has
SVEP, then f(T ) is polaroid by [3, Lemma 3.11] and has SVEP by [2, Theorem 2.40]. Consequently, Weyl’s
theorem holds for f(T ) . 2
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Lemma 3.22 Suppose that T is a k -quasi-3-symmetric operator. Then Weyl’s theorem holds for T + F for
any finite rank operator F commuting with T .

Proof Since T is isoloid and Weyl’s theorem holds for T , the result follows by [15, Theorem 3.3]. 2

Theorem 3.23 Suppose that T is a k -quasi-3-symmetric operator. Then Weyl’s theorem holds for f(T ) + F

for any finite rank operator F commuting with T .

Proof Since T is isoloid, f(T ) is isoloid [15]. Since f(T ) obeys Weyl’s theorem by Theorem 3.21 and f(T )

is isoloid, the result holds by Lemma 3.22. 2

Since the SVEP for T entails that generalized Browder’s theorem holds for T , i.e. σBW (T ) = σD(T ) , where
σD(T ) denotes the Drazin spectrum, a sufficient condition for an operator T satisfying generalized Browder’s
theorem to satisfy generalized Weyl’s theorem is that T is polaroid. We have the following result.

Theorem 3.24 Suppose that T is a k -quasi-3-symmetric operator. Then generalized Weyl’s theorem holds for
T .

Proof It is obvious from Corollary 3.11, Corollary 3.20 and the statements of the above. 2

Acknowledgments The authors would like to express their thanks to anonymous referees for several delicate
comments and suggestion to revise the original manuscript.
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