Turkish Journal of Mathematics Turk J Math

(2021) 45: 1300 — 1309
© TUBITAK

T U B | TAK Research Article doi:10.3906/mat-2102-11

http://journals.tubitak.gov.tr/math/

A class of operators related to m-symmetric operators

Fei ZUOY*®, Salah MECHERI>
LCollege of Mathematics and Information Science, Henan Normal University, Xinxiang, China
2Department of Mathematics, Tebessa University, Tebessa, Algeria

Received: 04.02.2021 . Accepted/Published Online: 01.04.2021 . Final Version: 20.05.2021

Abstract: m-symmetric operator plays a crucial role in the development of operator theory and has been widely
studied due to unexpected intimate connections with differential equations, particularly conjugate point theory and

disconjugacy. For positive integers m and k, an operator T is said to be a k-quasi-m-symmetric operator if

TR (S (1) (;-")T*mijj)Tk = 0, which is a generalization of m-symmetric operator. In this paper, some basic

Jj=0
structural properties of k-quasi-m-symmetric operators are established with the help of operator matrix representation.
In particular, we also show that every k-quasi-3-symmetric operator has a scalar extension. Finally, we prove that

generalized Weyl’s theorem holds for k-quasi-3-symmetric operators.
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1. Introduction
Let B(H) denote the algebra of all bounded linear operators on the complex separable Hilbert space H. An
operator T' € B(H) is called 3-symmetric if

T*3 — 37**T + 3T*T?% — T3 =0,

where T* is the adjoint operator of T'. Helton in [13] introduced 3-symmetric operators as a generalization
of selfadjoint operators. In a series of papers [12-14], he modelled these operators as multiplication ¢ on a
Sobolev space, established their connections to Sturm—Liouville operators, and showed, under some additional
hypotheses, that they are the restriction to an invariant subspace of a Jordan operator of order two. Later in
[1] Agler illustrated the connection between the above result and the classical disconjugacy theory by example.
In [12] Helton initiated the study of m-symmetric operator, for a positive integer m, an operator T € B(H) is
said to be m-symmetric if

m

S (=TT = 0.

j=0
Hence T is 1-symmetric if and only if T is selfadjoint. It is well known that if T is m-symmetric, then T
is m-symmetric for all n > m. The notion of m-symmetric operator can be generalized in a natural way to

k-quasi-m-symmetric operator as follows.
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Definition 1.1 For positive integers m and k, an operator T € B(H) is called k-quasi-m -symmetric if
m
T (=1 (T I THTE = 0.
j=0
In particular, for m = 3, an operator T is said to be k-quasi-3-symmetric if
TR (T*3 — 3T*2T 4+ 37*T? — T)T* = 0.

00
0 0 | € B(C?). A simple calculation shows that T is a k-quasi-3-symmetric
0 2 0

operator, but T is not a 3-symmetric operator.

Example 1.2 Let T =

A bounded linear operator T" on H is called scalar of order m if it possesses a spectral distribution of

order m, i.e. if there is a continuous unital morphism of topological algebras
o : CJ*(C) — B(H)

such that ®(z) = T, where z stands for the identity function on C, and C§*(C) stands for the space of
compactly supported functions on C, continuously differentiable of order m, 0 < m < oco. An operator is
subscalar if it is similar to the restriction of a scalar operator to an invariant subspace. In 1984, Putinar [21]
proved that every hyponormal operator has a scalar extension, which has been extended from hyponormal
operators to analytic extensions of M -hyponormal operators [17]. In this paper, we study various properties
of a k-quasi-3-symmetric operator. We show that every k-quasi-3-symmetric operator is subscalar. As an
application, we prove that if T is a k-quasi-3-symmetric operator, then Weyl’s theorem holds for f(T") where
f is an analytic function on an open neighborhood of ¢(T") and f is not constant on each connected component

of the open set U containing o (7).

2. Preliminaries

Throughout this paper, the closure of a set M will be denoted by M. If T € B(H), we shall write N(T),
R(T), o(T) and isoo(T") for the null space, the range space, the spectrum and the isolated spectrum point of
T, respectively.

An operator T € B(H) is said to have the single valued extension property at Ag € C, abbreviated SVEP
at \g, if for every open neighborhood G of Ag, the only analytic function f : G — H which satisfies the equation
(T —XI)f(A) =0 for all A € G is the function f =0. An operator T is said to have SVEP if T has SVEP at
every point A € C. For a Banach space X, let £(U, X) (resp., O(U, X)) denote the Fréchet space of all infinite
differentiable X -value functions on U (resp., of all analytic X -value functions on U). An operator T € B(X)
is said to have property (8). at A € C if there exists a neighbourhood D of A such that for every open subset U
of D and X -value functions sequence {f,} in &(U,X), (T —2I)fn(z) = 0in E(U, X) = fo(z) = 0 in {(U, X),
and T € B(X) is said to have property (8) at A € C if there exists an r > 0 such that for every subset
U of the open discD(\;7) of radius r centered at A and sequence {f,} of X-value functions in O(U, X),
(T —z)fn(z2) > 0in O(U,X) = fo(z) = 0in O(U,X). An operator T € B(H) is said to have property (5)c
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(resp., (8)) if T has property (8): (resp., (£)) at every point A € C. For T € B(H) and z € H, the set
pr(z) is defined to consist of elements zy € C such that there exists an analytic function f(z) defined in a
neighborhood of zp, with values in H, which verifies (T'— 2I) f(z) = x, and it is called the local resolvent set
of T at . We denote the complement of pr(x) by or(x), called the local spectrum of T' at x, and define the
local spectral subspace of T', Hy(F) = {x € H : op(x) C F} for each subset F' of C. An operator T € B(H)
is said to have Dunford’s property (C) if Hp(F') is closed for each closed subset F' of C. It is well known that

property (8). = property (8) = Dunford’s property (C) = SVEP.

An operator T' € B(H) is called Fredholm if it has closed range with finite dimension null space and
its range of finite codimension. Let «(T) :=dim N(T), B(T) :=dim N(T*). The index of a Fredholm operator
T € B(H) is given by i(T) = «(T)—(T). An operator T € B(H) is called Weyl if it is Fredholm of index zero.
The Weyl spectrum w(T") of T is defined by w(T') := {A € C: T — X is not Weyl}. Following [11], we say that
Weyl’s theorem holds for T if o(T)\w(T) = moo(T"), where moo(T) := {A € isoo(T) : 0 < AImMN (T — \) < o0}
More generally, Berkani investigated B-Fredholm theory (see [6-8]). An operator T is called B-Fredholm if
there exists n € N such that R(T™) is closed and the induced operator T, : @ € R(T") — Tx € R(T")
is Fredholm, ie. R(Tj,) = R(T"') is closed, a(T},)) < oo and S(Tp,)) = dim R(T")/R(T},) < oco.
Similarly, a B-Fredholm operator T' is called B-Weyl if i(T},) = 0. The B-Weyl spectrum opw (1) is
defined by opw(T) = {A € C: T — Xis not B-Weyl}. We say that generalized Weyl’s theorem holds for
T if o(T)\ opw(T) = E(T), where E(T) denotes the set of all isolated points of the spectrum which are
eigenvalues (no restriction on multiplicity). Note that, if generalized Weyl’s theorem holds for 7', then so does
Weyl’s theorem [7].

3. Main results

We begin with the following theorem which is a structural theorem for k-quasi-m-symmetric operators.

Theorem 3.1 Suppose that R(T*) is not dense. Then the following statements are equivalent:
(1) T is a k-quasi-m-symmetric operator;

(2) T = ( gl ? ) on H = R(T*) @ N(T**), where T\ is an m-symmetric operator and T = 0.
3

Furthermore, o(T) = o(T1) U {0}.

Proof (1) = (2) Consider the matrix representation of 7' with respect to the decomposition H = R(T*) &
N(T**) :
(T T
= ( 0 T3 ) ’
Let P be the projection onto R(T*). Since T is a k-quasi-m-symmetric operator, we have

PO (-1 ()T T7)P = 0.
j=0
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Therefore
SN @I -0
7=0

On the other hand, for any « = (x1,z2) € H, we have
(T¥xq,25) = (T*(I — P)x, (I — P)z) = (I — P)x, T**(I — P)x) = 0,

which implies 7% = 0. Since (1) N {0} has no interior point, by [10, Corollary 7] o(T) = o(Ty) U {0}.

T Ty

(2) = (1) Suppose that T = ( o T

) on H = R(TF) & N(T**), where T} is an m-symmetric operator

and TF = 0. We have

. Rl .
T _ Ty Z TJT 2T, -
0 0
Since
T (-1 (T I T T
j=0
" 0 &, rm— k=1 —1—j
o ! - z( i (MT" T« TF S TIT, T
- TIT,TR—177y* 0 7=0 j=0
(J;O 14243 ) % % 0 0
oy R T— N m . M= — k 1—
T (3 (-1 (T T) T T (3 (-1 T) z =
_ i= j= j=0
| SR iy (8 )i myrEmiiyTk (S i TSR (1) (i S i k1
(ZO NIy ) (ZO(—l) GO T )Ty (ZO NIy ) (ZO(—l) G T Z TToTs
J= J= J= Jj= 7=0
:0’
for some nonspecified entries x. Hence T is a k-quasi-m-symmetric operator. O

Corollary 3.2 Suppose that T is a k-quasi-m -symmetric operator and R(T*) is dense. Then T is an m-

symmetric operator.

Proof This is a result of Theorem 3.1. O

Corollary 3.3 Suppose that T is a k-quasi-m-symmetric operator. Then T™ is also a k-quasi-m -symmetric

operator for any n € N, where N is the set of natural numbers.

Proof If T* has a dense range, then T is an m-symmetric operator, and so is 7™ for any n € N by [9, Theorem

T Ty

2.4]. If T* does not have a dense range, we decompose T as T = < 0 T
3

) on H = R(T*)® N(T**), where

T is an m-symmetric operator, and so is 77". Since

n—1 . .
" T, S
o= [ T on H = R(T) & N(T*),

0o T
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it follows from Theorem 3.1 that T™ is a k-quasi-m-symmetric operator for any n € N. O

Remark The converse of Corollary 3.3 is not true in general as shown in the following example.

0 0 0O
Example 3.4 Let T = (1) (2) 8 8 B(C*Y). A simple calculation shows that T**(T*% — 3T*4T? +
0 010

3T*2T* —TT? =0 and T*(T*2 —3T**T +3T*T? — T3)T # 0. So, we obtain that T? is a quasi-3-symmetric

operator, but T is not a quasi-3-symmetric operator.

Corollary 3.5 Suppose that T is an invertible k-quasi-m-symmetric operator. Then T~ is a k-quasi-m -
symmetric operator.

Proof Suppose that T is an invertible k-quasi-m-symmetric operator. Then T is an m-symmetric operator,

and so is T~1. Hence T~! is a k-quasi-m-symmetric operator. O

Theorem 3.6 Suppose that T is a k-quasi-m-symmetric operator and M is an invariant subspace for T .

Then the restriction Ty is also a k-quasi-m-symmetric operator.

Proof Let T = (1(;1 ;2) on H=M@® M-=*. Since T is a k-quasi-m-symmetric operator, i.e.
3
T (-1 (T T)T = 0,
j=0
we have
Ty (-1 (eI T T
7=0
Tk 0 m o k=1 L
(e T Y (Sevigmrony ) (1S pnn
o TJT Tt T3 I= J=0
(JE::O 243 ) 3 # # 0 Téc

(TS ey TE

7=0
i i
:O7

=t

for some nonspecified entries f, which implies 77 ( (—1)j(;71)Tfm7jT1j)T1k = 0. Hence Ty is a k-quasi-m-

0

J
symmetric operator. O

Proposition 3.7 Suppose that {T,,} is a sequence of k-quasi-m-symmetric operators such that lim ||T, —
n—oo

T|| =0. Then T is a k-quasi-m-symmetric operator.
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Proof Suppose that {T},} is a sequence of k-quasi-m-symmetric operators such that lim ||T,, — T|| = 0.
n—oo
Then
||T*k Z T*m jT] _ Tk Z T*m jT_])Tk”
7=0 7=0
<[TFQ (W (T T T = TR (1 (T T9) T
j=0 =0
HITFQ (=1 (T TH)TH =T (=17 ()T 1) T
§=0 §=0
<||T*k||||z PVTITIE =Y (1) (P)T IR
7=0
HITF — T”“HHZ JNT T 0.
7=0
Since {7} is a k-quasi-m-symmetric operator,
T (=) (T T T =0,
j=0
we have
T (-1 (T T)T = 0,
j=0
i.e. T is a k-quasi-m-symmetric operator. O

Now we are ready to prove that every k-quasi-3-symmetric operator has a scalar extension, we need the

following lemmas.

Lemma 3.8 Suppose that T € B(H) is a 3-symmetric operator. Then T is subscalar of order 4.

Proof By [22] or [13], T is a 3-symmetric operator if and only if T is unitarily equivalent to

V FE

for some selfadjoint operator V' acting on some Hilbert space H and some operator £ on H which commutes
with V' and some subspace M of H & H which is invariant for the block operator. Clearly, every selfadjoint
operator is hyponormal and so J is a subscalar of order 4 by [16, Theorem 4.5]. Since T is unitarily equivalent

to the restriction of J to an invariant subspace, it is subscalar of order 4. O

Lemma 3.9 ([19, Lemma 1]) For T € B(X), the following statements are equivalent:
(i) T is subscalar;
(ii) T has property (f)c.
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Theorem 3.10 Suppose that T is a k-quasi-3-symmetric operator. Then T is subscalar.

Proof Assume that R(T*) is dense. Then T is a 3-symmetric operator, it is subscalar of order 4 by Lemma 3.8.

So we may assume that T* does not have dense range. Then by Theorem 3.1 the operator T’ can be decomposed

Ty Tz) BITEY

as follows: T = (0 T. ] on H = R(T*) @ N(T**), where T; is a 3-symmetric operator and 7% = 0.
3

Set o). (S) = {u € o(S) : S does not satisfy property (8). at p}. Since T3 is nilpotent, o(g) (T3) = .
Recall from [5, Theorem 2.1] that given operators S and R, A € o()_(RS) < X € 05).(SR). Considering
(T T\ (L, O\ (L T\ (T, 0 (L 0 (I, T [Ty 0
r= (0 Tg) = (o T3> <0 12>(0 b)’ let B = (0 T3>’E = (0 12>’A = <o 12>'
Then T'= BEA. Suppose A € o). (T) & X € o). (BEA) = 0(3).(EAB). Hence, since E is invertible,

A€o (AB) = o) (Th ©T3) = X € 0(g)_(T1), contradiction. Thus T" has property ()., i.e. T is subscalar.
O

Corollary 3.11 Suppose that T is a k-quasi-3-symmetric operator. Then T has property (8), Dunford’s
property (C) and SVEP.

Proof It suffices to prove that 7' has property (f). Since property (f) is transmitted from an operator to
its restrictions to closed invariant subspace, we are reduced by Theorem 3.10 to the case of a scalar operator.
Since every scalar operator has property (8) [21], T has property (). O

Corollary 3.12 Suppose that T is a quasi-nilpotent k-quasi-3-symmetric operator. Then T is nilpotent.

Proof Since a quasi-nilpotent subscalar operator is nilpotent, it follows by Theorem 3.10 that 7' is nilpotent.
O

Recall that a closed subspace of infinite dimensional Hilbert space H is said to be hyperinvariant for T

if it is invariant under every operator in the commutant {T}/ of T.

Theorem 3.13 Suppose that T is a k-quasi-3-symmetric operator with T' # X for any A € C. If there exists

a nonzero x € H such that or(x) S o(T), then T has a nontrivial hyperinvariant subspace.

Proof Suppose that T is a k-quasi-3-symmetric operator. Then T has property () and Dunford’s property

(C). If there exists a nonzero x € H such that or(z) & o(T), set

M= {y cH: JT(y) - UT(.’E)},

then M is a T-hyperinvariant subspace from [18]. Since x € M, we have that M # {0}. Suppose that
M =H. Since T has SVEP, it follows from [18] that

o(T) = | Jor(y) 1y € H} Cor(x) S o(T).

So we have a contradiction. Hence M is a nontrivial hyperinvariant subspace. O

It is known that an invariant subspace for an operator 7" may not be hyperinvariant. However, a sufficient

condition that an invariant subspace be hyperinvariant can be derived from the following corollary.
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Corollary 3.14 Suppose that T is a k-quasi-3-symmetric operator with T' # X for any A € C. If T has a

nonzero invariant subspace M such that o(T|pm) & o(T), then T has a nontrivial hyperinvariant subspace.
Proof For any nonzero z € M, we have

or(z) Cop,,(z) Co(T|m) ; o(T).
Hence T has a nontrivial hyperinvariant subspace by Theorem 3.13. O
Definition 3.15 An operator T € B(H) is said to belong to the class H(p) if there exists a natural number

p:=p(A\) such that
Ho(M — T) = N(AM — T for all € C,

where Hy(A —T) := {z € H : lim [|(\I —T)"z||= = 0}.
n—oo

Theorem 3.16 ([20]) Every subscalar operator T € B(H) is H(p).

Classical examples of subscalar operators are hyponormal operators. In this paper we will show that other

important classes of operators are H(p).

Definition 3.17 An operator T € B(H) is said to be polaroid if every A € isoo(T) is a pole of the resolvent
of T.

The condition of being polaroid may be characterized by means of the quasi-nilpotent part:

Theorem 3.18 ([4]) An operator T € B(H) is polaroid if and only if there exists p := p(AI —T) € N such

that
Ho(M —T) =N —=T)? for all X € isoo(T).

Note that every H(p) operator is polaroid. By using Theorem 3.10 and Theorem 3.16, we deduce the following

corollaries.

Corollary 3.19 Ewvery k-quasi-3-symmetric operator is H(p).

Corollary 3.20 Every k-quasi-3-symmetric operator is polaroid.

A bounded linear operator T is called isoloid if every isolated point of o(T) is an eigenvalue of T'. Note that
if T is polaroid, then it is isoloid. However, the converse is not true. In the following, f is an analytic function
on an open neighborhood of ¢(T) and f is not constant on each connected component of the open set U

containing o (7).
Theorem 3.21 Suppose that T is a k-quasi-3-symmetric operator. Then Weyl’s theorem holds for f(T).

Proof We use the fact that if T is polaroid and T' has SVEP, then T satisfies Weyl’s theorem in [3, Theorem
3.3]. Suppose that T is a k-quasi-3-symmetric operator. By Corollary 3.11 and Corollary 3.20 we have that
T satisfies Weyl’s theorem. We show next that Weyl’s theorem holds for f(7). Since T is polaroid and has
SVEP, then f(T) is polaroid by [3, Lemma 3.11] and has SVEP by [2, Theorem 2.40]. Consequently, Weyl’s
theorem holds for f(T). O
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Lemma 3.22 Suppose that T is a k-quasi-3-symmetric operator. Then Weyl’s theorem holds for T + F for

any finite rank operator F commuting with T .

Proof Since T is isoloid and Weyl’s theorem holds for T', the result follows by [15, Theorem 3.3]. O

Theorem 3.23 Suppose that T is a k-quasi-3-symmetric operator. Then Weyl’s theorem holds for f(T)+ F

for any finite rank operator F commuting with T .

Proof Since T is isoloid, f(7') is isoloid [15]. Since f(T') obeys Weyl’s theorem by Theorem 3.21 and f(7')
is isoloid, the result holds by Lemma 3.22. O

Since the SVEP for T entails that generalized Browder’s theorem holds for T, i.e. opw (T) = op(T), where
op(T) denotes the Drazin spectrum, a sufficient condition for an operator T satisfying generalized Browder’s

theorem to satisfy generalized Weyl’s theorem is that T is polaroid. We have the following result.

Theorem 3.24 Suppose that T is a k-quasi-3 -symmetric operator. Then generalized Weyl’s theorem holds for
T.
Proof It is obvious from Corollary 3.11, Corollary 3.20 and the statements of the above. O
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