

Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/

Turk J Math (2021) 45: 1310 – 1318 © TÜBİTAK doi:10.3906/mat-2102-97

Research Article

Multipliers and \mathcal{I} -core for sequences

Mustafa GÜLFIRAT^{1,*}, Nilay ŞAHİN BAYRAM²

¹Department of Mathematics, Faculty of Science, Ankara University, Ankara, Turkey ²Department of Electrical and Electronics Engineering, Faculty of Engineering, Başkent University, Ankara, Turkey

Received: 20.02.2021 • Accepted/Published Online: 02.	• Final Version: 20.05.2021
---	------------------------------------

Abstract: In this paper we mainly deal with $\mathcal{I}_c^{(q)}$ – convergence. In particular we study bounded multipliers of bounded $\mathcal{I}_c^{(q)}$ – convergent sequences. We also give some \mathcal{I} – core results and characterize the inclusion K – core $\{Ax\} \subseteq \mathcal{I}$ – core $\{x\}$ for bounded sequences $x = (x_n)$.

Key words: Statistical convergence, ideal, ideal convergence, multipliers, Knopp's core theorem

1. Introduction

Kostyrko et al. [19] introduced and studied the concept of \mathcal{I} -convergence of sequences in metric spaces, where \mathcal{I} is an ideal of subsets of the set \mathbb{N} of positive integers and extended this concept to \mathcal{I} -convergence of a sequence of real functions defined on a metric space and proved some basic properties of these concepts.

In 1951 Fast [8] and Steinhaus [25] introduced the concept of statistical convergence independently and established a relationship with summability (see also [9, 21, 22]). Some applications of statistical convergence in number theory and mathematical analysis can be found in [3, 4, 8, 10, 11, 25]. In 2011 Gogolo et al. studied the properties of ideals $\mathcal{I}_{c}^{(q)}$ related to the notion of \mathcal{I} -convergence and they showed that $\mathcal{I}_{c}^{(q)}$ and $\mathcal{I}_{c}^{(q)*}$ -convergences are equivalent [15].

In the present work we mainly deal with $\mathcal{I}_c^{(q)}$ – convergence. In Section 2 we study results motivated by those of [7]. In particular we study bounded multipliers of bounded $\mathcal{I}_c^{(q)}$ – convergent sequences. Section 3 is devoted to \mathcal{I} – core results. We characterize the inclusion

$$K - core \{Ax\} \subseteq \mathcal{I} - core \{x\}$$

for bounded sequences $x = (x_n)$. In the last section we give an ideal version of Choudhary's theorem on Knopp's core.

Now we recall some notation and terminology of an ideal.

Ideal \mathcal{I} on $X \ (X \neq \emptyset)$ is a family of subsets, satisfying the following conditions: if $A, B \in \mathcal{I}$ then $A \cup B \in \mathcal{I}$ and if $A \in \mathcal{I}, B \subset A$ then $B \in \mathcal{I}$. Filter \mathcal{F} on $X \ (X \neq \emptyset)$ is a nonempty family of subsets, satisfying the following conditions: $\emptyset \notin \mathcal{F}$; if $A, B \in \mathcal{F}$ then $A \cap B \in \mathcal{F}$ and if $A \in \mathcal{F}, A \subset B$ then

^{*}Correspondence: mgulfirat@ankara.edu.tr

²⁰¹⁰ AMS Mathematics Subject Classification: 40A35; Secondary 40G15

 $B \in \mathcal{F}$. An ideal \mathcal{I} is called nontrivial if $\mathcal{I} \neq \emptyset$ and $X \notin \mathcal{I}$. Ideal \mathcal{I} on X is a nontrivial ideal if and only if $\mathcal{F}(\mathcal{I}) = \{X \setminus A : A \in \mathcal{I}\}$ is a filter on X. A nontrivial ideal \mathcal{I} on X containing all singletons is called admissible.

An admissible ideal \mathcal{I} on \mathbb{N} is said to satisfy property (AP) if for every countable family of mutually disjoint sets $\{A_1, A_2...\}$ belonging to \mathcal{I} there exists a countable family of sets $\{B_1, B_2...\}$ such that $A_j \Delta B_j$ is a finite set for $j \in \mathbb{N}$ and $B = \bigcup_{i=1}^{\infty} B_j \in \mathcal{I}$ [19].

Let \mathcal{I} be a nontrivial ideal on \mathbb{N} . Then a sequence $x = (x_n)$ of real numbers is said to be \mathcal{I} -convergent to $L \in \mathbb{R}$ and we write $\mathcal{I} - \lim x = L$, if and only if for each $\varepsilon > 0$ the set $A(\varepsilon) = \{n \in \mathbb{N} : |x_n - L| \ge \varepsilon\}$ belongs to the ideal \mathcal{I} . Another type of convergence closely related to the ideal \mathcal{I} is \mathcal{I}^* -convergence. A sequence $x = (x_n)$ of real numbers is said to be \mathcal{I}^* -convergent to $L \in \mathbb{R}$ and we write $\mathcal{I}^* - \lim x = L$, if and only if there exists a set $M \in \mathcal{F}(\mathcal{I})$, $M = \{m_1 < m_2 < ... < m_k < ...\}$ such that $\lim_{k \to \infty} x_{m_k} = L$ (see e.g., [19]).

For every admissible ideal \mathcal{I} , Kostyrko et al. [19] proved that

$$\mathcal{I}^* - \lim x = L \Rightarrow \mathcal{I} - \lim x = L$$

Let an admissible ideal \mathcal{I} on \mathbb{N} . For an arbitrary sequence $x = (x_n)$ of real numbers and each $L \in \mathbb{R}$, $\mathcal{I} - \lim x = L$ implies $\mathcal{I}^* - \lim x = L$, then \mathcal{I} has property (AP) [19].

For any $q \in (0, 1]$ the set

$$\mathcal{I}_{c}^{(q)} = \left\{ E \subseteq \mathbb{N} : \sum_{i \in E} \frac{1}{i^{q}} < \infty \right\}$$

is an admissible ideal. Gogolo et al. [15] proved that $\mathcal{I}_c^{(q)}$ and $\mathcal{I}_c^{(q)*}$ -convergences are equivalent. Recall that $\mathcal{I}_c^{(q)} \subset \mathcal{I}_d$ (see e.g., [15]), where the ideal \mathcal{I}_d is the class of all subsets of positive integers that has asymptotic density zero.

Let \mathcal{I} be an admissible ideal on \mathbb{N} . Motivated by that of [13] the \mathcal{I} -limit superior of a real number sequence x is defined by

$$\mathcal{I} - \limsup x = \begin{cases} \sup B_x &, & \text{if } B_x \neq \emptyset \\ -\infty &, & \text{if } B_x = \emptyset \end{cases}$$

where $B_x := \{b \in \mathbb{R} : \{n : x_n > b\} \notin \mathcal{I}\}$ (see e.g., [6]). The real number sequence $x = (x_n)$ is said to be \mathcal{I} -bounded if there is a number B such that $\{n : |x_n| > B\} \in \mathcal{I}$.

By $c^{\mathcal{I}(q)}, c^{\mathcal{I}(q)}(b)$ we denote the set of all $\mathcal{I}_c^{(q)}$ – convergent sequences, the set of all bounded $\mathcal{I}_c^{(q)}$ - convergent sequences, respectively.

2. Bounded multipliers

Gogolo et al. [15] introduced the class \mathcal{T}_q of lower triangular nonnegative matrices as follows:

A matrix $T = (t_{nk})$ belongs to the class \mathcal{T}_q if and only if it satisfies the following conditions:

(I) $\lim_{n \to \infty} \sum_{k=1}^{n} t_{nk} = 1$ (q) $E \subset \mathbb{N}$ and $E \in \mathcal{I}_{c}^{(q)}$, then $\lim_{n \to \infty} \sum_{k \in E} t_{nk} = 0, q \in (0, 1].$

Note that every matrix of the class \mathcal{T}_q is regular.

Let l_{∞} be the space of all real bounded sequences and let $T = (t_{nk})$ be an infinite matrix with real entries. Tx is the sequence whose *n*th term is given by $(Tx)_n = \sum_{k=1}^{\infty} t_{nk}x_k$ whenever the series converges for each *n*. From now on the bounded summability field of the matrix $T \in \mathcal{T}_q$ will be denoted by $c_T(b)$, i.e.

$$c_T(b) = \left\{ x \in l_\infty : \lim_n (Tx)_n \text{ exists} \right\}$$

(see [7]).

Theorem 2.1 ([15]) Let $q \in (0,1]$. Then the bounded sequence $x = (x_n)$ of real numbers $\mathcal{I}_c^{(q)}$ - converges to $L \in \mathbb{R}$ if and only if it is T-summable to $L \in \mathbb{R}$ for each matrix $T \in \mathcal{T}_q$ (i.e. $c^{\mathcal{I}(q)}(b) = \bigcap_{T \in \mathcal{T}_q} c_T(b)$).

We say that x is strongly T-summable to a real number a if

$$\lim_{n}\sum_{k=1}^{\infty}t_{nk}|x_k-a|=0$$

In this case, the bounded strong summability field of the matrix $T \in \mathcal{T}_q$ is given by

$$W_b(T) = \left\{ x \in l_\infty : \lim_n \sum_{k=1}^\infty t_{nk} |x_k - a| = 0 \text{ for some } a \right\}.$$

Assume that two sequence spaces, E and F, are given. We say that a sequence u is a bounded multiplier of E into F, and we write M(E,F), if $u.x \in F$ whenever $x \in E$, i.e.

$$M(E,F) = \{ u \in l_{\infty} : u \cdot x \in F \text{ for all } x \in E \}$$

where the multiplication is coordinatewise. If F = E, then we write M(E) instead of M(E, E).

It is known that

$$M\left(c_T\left(b\right)\right) = W_b\left(T\right) \tag{2.1}$$

provided that $t_{nk} \ge 0$ for all n and k (see [17]).

We also mention the following result of [17] that we need in the sequel.

Theorem 2.2 If T is a regular matrix, then the bounded sequence x is strongly T-summable to a if and only if there exists a subset Z of \mathbb{N} such that $\chi_{\mathbb{N}\backslash Z}$ is strongly T-summable to zero and $\lim_{n \in \mathbb{Z}} x_n = a$.

This section addresses the bounded multiplier space of $c^{\mathcal{I}(q)}(b)$ and then give an analogue of Theorem 2.1 for bounded multipliers.

Theorem 2.3 $x \in M(c^{\mathcal{I}(q)}(b))$ if and only if $x \in c^{\mathcal{I}(q)}(b)$.

Proof Let $x \in M(c^{\mathcal{I}(q)}(b))$. Since $\chi_{\mathbb{N}} \in c^{\mathcal{I}(q)}(b)$ and $x \in M(c^{\mathcal{I}(q)}(b))$ we get $\chi_{\mathbb{N}} \cdot x \in c^{\mathcal{I}(q)}(b)$; hence $x \in c^{\mathcal{I}(q)}(b)$.

Conversely, assume that $x \in c^{\mathcal{I}(q)}(b)$. We claim that $x.y \in c^{\mathcal{I}(q)}(b)$ for an arbitrary $y \in c^{\mathcal{I}(q)}(b)$. As in Proposition 4.3 of [23] since $x, y \in c^{\mathcal{I}(q)}(b)$ for each $\varepsilon > 0$ the sets $\{n \in \mathbb{N} : |x_n - L_x| \le \varepsilon\}$ and $\{n \in \mathbb{N} : |y_n - L_y| \le \varepsilon\}$ belong to the filter $\mathcal{F}(\mathcal{I}_c^{(q)})$.

On the other hand we get

$$\begin{aligned} x_n y_n - L_x L_y | &= |x_n y_n - x_n L_y + x_n L_y - L_x L_y| \\ &\leq |x_n| |y_n - L_y| + |x_n - L_x| |L_y| \\ &\leq 2 ||x|| \varepsilon \end{aligned}$$

where $||x|| = \sup_n |x_n|$.

Then for each $\varepsilon > 0$ we have

$$\{n \in \mathbb{N} : |x_n y_n - L_x L_y| \le \varepsilon\} \in \mathcal{F}\left(\mathcal{I}_c^{(q)}\right)$$

Thus $x.y \in c^{\mathcal{I}(q)}(b)$.

Now using the same technique as in Theorem 6 of Demirci and Orhan [7], we give an analogue of Theorem 2.1 for bounded multiplier space, but first we need some properties of $\beta\mathbb{N}$, the Stone-Čech compactification of positive integers \mathbb{N} . For each $B \subseteq \mathbb{N}$, let $cl_{\beta\mathbb{N}}B$ be the closure of B in $\beta\mathbb{N}$ and let $B^* = (cl_{\beta\mathbb{N}}B) \setminus B$. It is well-known [14] that the sets $\{B^* : B \subseteq \mathbb{N}\}$ form a basis for the topology of $\beta\mathbb{N} \setminus B$.

Recall that, for a regular matrix A, the support set K_A is defined by

$$K_A = \bigcap \{ B^* : B \subseteq \mathbb{N} \text{ and } \chi_B \text{ is } A - \text{summable to } 1 \}$$

which is nonempty compact subset of $\beta \mathbb{N} \setminus B$ [1]. Observe that if $B^* \supseteq K_A$, then χ_B is A-summable to 1. Furthermore, the intersection of any sequence of neighborhoods of K_A is again a neighborhood of K_A . Also, if B and D are infinite subsets of \mathbb{N} , then D^* is contained in B^* if and only if $D \setminus B$ is finite [26].

Now we give the main result of this section.

Theorem 2.4 $M(c^{\mathcal{I}(q)}(b)) = \bigcap_{T \in \mathcal{T}_q} M(c_T(b)).$

Proof Let $x \in \bigcap_{T \in \mathcal{T}_q} M(c_T(b))$. We claim that $x.y \in c^{\mathcal{I}(q)}(b)$ for an arbitrary $y \in c^{\mathcal{I}(q)}(b)$. By Theorem 2.1, $c^{\mathcal{I}(q)}(b) \subseteq c_T(b)$ for every $T \in \mathcal{T}_q$. This implies that $x.y \in c_T(b)$. Hence $x.y \in \bigcap_{T \in \mathcal{T}_q} c_T(b)$. By Theorem 2.1, we get that $x.y \in c^{\mathcal{I}(q)}(b)$. Thus $\bigcap_{T \in \mathcal{T}_q} M(c_T(b)) \subseteq M(c^{\mathcal{I}(q)}(b))$.

In order to prove the converse inclusion, assume that $x \in M(c^{\mathcal{I}(q)}(b))$ and $T \in \mathcal{T}_q$. Then by previous theorem we have $x \in c^{\mathcal{I}(q)}(b)$. Let $K(k) := \{n \in \mathbb{N} : |x_n - a| < \frac{1}{k}\}$. Then $K^c(k) \in \mathcal{I}_c^{(q)}$. Hence $\chi_{K(k)} \in c^{\mathcal{I}(q)}(b)$ and $\chi_{K(k)}$ is $\mathcal{I}_c^{(q)}$ -convergent to 1. Therefore Theorem 2.1 implies that, for each k, $\chi_{K(k)} \in \bigcap_{T \in \mathcal{T}_q} c_T(b)$. Thus $\chi_{K(k)}$ is T-summable to 1 (for each k). This means that $K^*(k) \supseteq K_T$ for each kand $\bigcap_{k=1}^{\infty} K^*(k) \supseteq K_T$. As K_T is compact and the sets $\{B^* : B \subseteq \mathbb{N}\}$ form a basis for the topology of $\beta \mathbb{N} \setminus \mathbb{N}$, there exists a set $K \subseteq \mathbb{N}$ such that $\bigcap_{k=1}^{\infty} K^*(k) \supseteq K^* \supseteq K_T$. Moreover $\lim_n (T\chi_K)_n = 1$. Since $K^*(k) \supseteq K^*$ for each k, there are at most a finite number of members of K not in K(k). Hence $|x_n - a| < \frac{1}{k}$ for all but a finite number of $n \in K$. As k is arbitrary, one can conclude that

$$\lim_{n \in K} x_n = a. \tag{2.2}$$

Now we have

$$\lim_{n} \sum_{j=1}^{\infty} t_{nj} = \lim_{n} \sum_{j \in K} t_{nj} + \lim_{n} \sum_{j \in \mathbb{N} \setminus K} t_{nj}.$$

Since T is regular and $\lim_n (T\chi_K)_n = 1$, we get $\lim_n \sum_{j \in \mathbb{N} \setminus K} t_{nj} = 0$. So $\chi_{\mathbb{N} \setminus K}$ is strongly T-summable to zero. Combining this with (2.2), we conclude by Theorem 2.2 that x is strongly T-summable to a. Now (2.1) implies $x \in M(c_T(b))$. This implies $x \in \bigcap_{T \in \mathcal{T}_q} M(c_T(b))$ for every T in \mathcal{T}_q from which the result follows. \Box

3. \mathcal{I} -core

Fridy and Orhan [13] introduced the concept of statistical core for a sequence and proved the statistical core theorem. Later on Demirci [6] extended this concept to \mathcal{I} -core. In this section using a result of Kolk [18] we prove Demirci's result in the necessary and sufficient form.

Throughout Sections 3 and 4 the spaces of all bounded and convergent complex sequences will be denoted by l_{∞} and c, respectively. In the sequel $A = (a_{nk})$ be an infinite matrix with complex entries.

In [16] the Knopp core of the sequence x is defined by

$$K - core \{x\} := \bigcap_{n \in \mathbb{N}} C_n (x)$$

where $C_n(x)$ is the closed convex hull of $\{x_k\}_{k>n}$.

If x and y are sequences such that $\{n \in \mathbb{N} : x_n = y_n\} \notin \mathcal{I}$, then we write " $x_n = y_n$, for $\mathcal{I} - a.a.k$ ". Also in this and next sections x, y and z will denote complex number sequences. By $c^{\mathcal{I}}$, we denote the set of all \mathcal{I} -convergent sequences, where \mathcal{I} be an admissible ideal on \mathbb{N} .

Definition 3.1 ([6]) Let \mathcal{I} be an admissible ideal on \mathbb{N} . For any complex sequence x let $H_{\mathcal{I}}(x)$ be the collection of all closed half-planes that contain x_n for $\mathcal{I} - a.a.k$; *i.e.*

$$H_{\mathcal{I}}(x) := \{H : H \text{ is a closed half-plane, } \{n \in \mathbb{N} : x_n \notin H\} \in \mathcal{I} \},\$$

then the \mathcal{I} -core of x is given by

$$\mathcal{I} - core \{x\} := \cap_{H \in H_{\mathcal{I}}(x)} H.$$

It is easy to see that $\mathcal{I} - core\{x\} \subseteq K - core\{x\}$ for all x.

The next result is due to Demirci [6] that gives some sufficient conditions under which we have the core inclusion $K - core \{Ax\} \subseteq \mathcal{I} - core \{x\}$ for $x \in l_{\infty}$.

Theorem 3.2 ([6]) Let \mathcal{I} be an admissible ideal on \mathbb{N} . If the matrix A satisfies $\sup_n \sum_k |a_{nk}| < \infty$ and the following conditions

- (i) A is regular and $\lim_{n} \sum_{k \in E} |a_{nk}| = 0$ whenever $E \in \mathcal{I}$
- (*ii*) $\lim_{n \to \infty} \sum_{k=1}^{\infty} |a_{nk}| = 1$,

then $K - core \{Ax\} \subseteq \mathcal{I} - core \{x\}$ for every $x \in l_{\infty}$.

In this section we show that these conditions are also necessary. But we first recall a version of a result of Kolk [18].

Proposition 3.3 ([18]) Let \mathcal{I} be an admissible ideal on \mathbb{N} . If A maps $c^{\mathcal{I}} \cap l_{\infty}$ into c and leaves the \mathcal{I} -limit invariant then

- (i) A is regular,
- (ii) $\lim_{n \to E} |a_{nk}| = 0$ for every $E \in \mathcal{I}$.

If \mathcal{I} has property (AP), then the conditions are also sufficient for A in order to map $c^{\mathcal{I}} \cap l_{\infty}$ into c leaving the \mathcal{I} -limit invariant.

Now we have the next result which is the converse of Theorem 3.2.

Theorem 3.4 (I-core theorem) Let \mathcal{I} be an admissible ideal on \mathbb{N} . If the matrix A satisfies $\sup_n \sum_k |a_{nk}| < \infty$, then

$$K - core \{Ax\} \subseteq \mathcal{I} - core \{x\} \text{ for every } x \in l_{\infty}$$

$$(3.1)$$

if and only if the following conditions hold:

(i) A is regular and $\lim_{n \sum_{k \in E}} |a_{nk}| = 0$ whenever $E \in \mathcal{I}$;

(*ii*) $\lim_{n \to \infty} \sum_{k=1}^{\infty} |a_{nk}| = 1$.

Proof (Necessity) Assume that (3.1) hold and let $x \in c$ with $\lim_n x = L$, this yields $x \in c^{\mathcal{I}}$. We know that

$$\mathcal{I} - core \{x\} \subseteq K - core \{x\} \tag{3.2}$$

for all x. Since (3.1) hold and $K - core \{Ax\} \neq \emptyset$, it follows that $K - core \{Ax\} = \{L\}$. Hence A is regular and $A \in (c^{\mathcal{I}} \cap l_{\infty}, c; p)$ so by Proposition 3.3 we get $\lim_{n \to \infty} \sum_{k \in E} |a_{nk}| = 0$ for every $E \in \mathcal{I}$.

From (3.1) and (3.2), observe that $K - core \{Ax\} \subseteq K - core \{x\}$ for every $x \in l_{\infty}$. Hence Knopp's core theorem (see e.g., [20]) yields that $\lim_{n} \sum_{k=1}^{\infty} |a_{nk}| = 1$.

Sufficiency follows from Theorem 3.2.

The next result is an analog of Theorem 6.3.II of Cooke ([5, p. 144]).

Proposition 3.5 Let I be an admissible ideal on \mathbb{N} . If $x = (x_k)$ and $y = (y_k)$ are \mathcal{I} -bounded sequences and

$$\mathcal{I} - \limsup_k |x_k - y_k| = 0$$

then $\mathcal{I} - core \{x\} = \mathcal{I} - core \{y\}.$

Proof For each $z \in \mathbb{C}$, let

$$B_x(z) = \{ w \in \mathbb{C} : |w - z| \le \mathcal{I} - \limsup_k |x_k - z| \}.$$

Then $\mathcal{I} - core \{x\} := \bigcap_{z \in \mathbb{C}} B_x(z)$ (see [6, 12, 24]).

Let $w \in B_x(z)$. Then for any $z \in \mathbb{C}$ one can get that

$$\begin{aligned} |w-z| &\leq \mathcal{I} - \limsup_k |x_k - z| \\ &\leq \mathcal{I} - \limsup_k |x_k - y_k| + \mathcal{I} - \limsup_k |y_k - z| \\ &= \mathcal{I} - \limsup_k |y_k - z|, \end{aligned}$$

hence $w \in B_y(z)$ which implies that $B_x(z) \subseteq B_y(z)$. Interchanging the roles of x and y one can also observe that $B_y(z) \subseteq B_x(z)$. This yields that $\mathcal{I} - core\{x\} = \mathcal{I} - core\{y\}$. \Box

4. Core comparisons of two matrix transformations

Choudhary [2] extended Knopp's core theorem to the case in which the cores of two transformations are compared, i.e. the conclusion is so that replacing B by the identity matrix yields Knopp's theorem. In [12] Fridy and Orhan proved a statistical analogue of Choudhary's theorem. In this Section we get an ideal version of Choudhary's theorem.

Lemma 4.1 ([2]) Consider a fixed n. In order that, whenever Bx is bounded, $(Ax)_n$ should be defined for that particular n, it is necessary and sufficient that

(v) $c_{nk} = \sum_{j=k}^{\infty} a_{nj} b_{jk}^{-1}$ exist for all k; (vi) $\sum_{k=0}^{\infty} |c_{nk}| < \infty$; (iv) for any fixed n, $\lim_{v} \sum_{k=0}^{v} \left| \sum_{j=v+1}^{\infty} a_{nj} b_{jk}^{-1} \right| = 0$. If these conditions are satisfied then, for bounded y = Bx,

$$(Ax)_n = \sum_{k=0}^{\infty} c_{nk} y_k.$$

Theorem 4.2 Let \mathcal{I} be an admissible ideal on \mathbb{N} , let B be a normal matrix (i.e. triangular with nonzero diagonal entries), and denote its triangular inverse by $B^{-1} = [b_{nk}^{-1}]$. For an arbitrary matrix A, in order that,

whenever $Bx \in l_{\infty}$, Ax should exist and be bounded and satisfy

$$K - core \{Ax\} \subseteq \mathcal{I} - core \{Bx\}$$

$$\tag{4.1}$$

it is necessary and sufficient that the following conditions hold:

- (i) $C := AB^{-1}$ exists;
- (ii) C is regular and $\lim_{n} \sum_{k \in E} |c_{nk}| = 0$ whenever $E \in \mathcal{I}$;
- (*iii*) $\lim_{n \to \infty} \sum_{k=1}^{\infty} |c_{nk}| = 1;$
- (iv) for any fixed n, $\lim_{v} \sum_{k=0}^{v} \left| \sum_{j=v+1}^{\infty} a_{nj} b_{jk}^{-1} \right| = 0$.

Proof (Necessity) If $(Ax)_n$ exist for every n whenever $Bx \in l_\infty$, then by Lemma 4.1 it follows immediately that (i) and (iv) hold. By that same Lemma we also have Ax = Cy, where y = Bx. Since $Ax \in l_\infty$ we have $Cy \in l_\infty$. Therefore (4.1) implies that $K - core \{Cy\} \subseteq \mathcal{I} - core \{y\}$. Now $\mathcal{I} - core$ theorem (Theorem 3.4) implies that (ii) and (iii) hold.

(Sufficiency) Properties (i)–(iv) obviously imply the four conditions of Lemma 4.1, so it follows by the Lemma that $Cy \in l_{\infty}$, hence $Ax \in l_{\infty}$. Now \mathcal{I} -Core Theorem implies that $K - core \{Cy\} \subseteq \mathcal{I} - core \{y\}$, and since y = Bx and Cy = Ax we have $K - core \{Ax\} \subseteq \mathcal{I} - core \{Bx\}$.

Note that the sequences and matrices in Choudhary's paper [2] have real entries. But a careful checking shows that Choudhary's results remain true when the sequences and matrices have the complex entries.

By Theorem 4.2, the fact that $\mathcal{I} - core \{Ax\} \subseteq K - core \{Ax\}$ gives us following corollary.

Corollary 4.3 If A and B satisfy conditions (i)-(iv) of Theorem 4.2, then

$$\mathcal{I} - core \{Ax\} \subseteq \mathcal{I} - core \{Bx\}$$

for every x such that $Bx \in l_{\infty}$.

Acknowledgment

The authors wish to thank anonymous referees for their helpful suggestions that improved the presentation of the paper.

References

- Atalla RF. On the multiplicative behavior of regular matrices. Proceedings of the American Mathematical Society 1970; 26: 437-446.
- [2] Choudhary B. An extension of Knopp's core theorem. Journal of Mathematical Analysis and Applications 1988; 132: 226-233.
- [3] Connor JS. The statistical and strong *p*-Cesaro convergence of sequences. Analysis 1988; 8: 47-63.
- [4] Connor JS. Two valued measures and summability. Analysis 1990; 10: 373-385.
- [5] Cooke RG. Infinite Matrices and Sequence Spaces. London, England: Macmillan, 1950.
- [6] Demirci K. *I*-limit superior and limit inferior. Mathematical Communications 2001; 6: 165-172.
- [7] Demirci K, Orhan C. Bounded multipliers of bounded A-statistically convergent sequences. Journal of Mathematical Analysis and Applications 1999; 235: 122-129.

GÜLFIRAT and ŞAHİN BAYRAM/Turk J Math

- [8] Fast H. Sur la convergence statistique. Colloquium Mathematicum 1951; 2: 241-244.
- [9] Fridy JA. On statistical convergence. Analysis 1985; 5: 301-313.
- [10] Fridy JA. Statistical limit points. Proceedings of the American Mathematical Society 1993; 118: 1187-1192.
- [11] Fridy JA, Miller HI. A matrix characterization of statistical convergence. Analysis 1991; 11: 55-66.
- [12] Fridy JA, Orhan C. Statistical core theorems. Journal of Mathematical Analysis and Applications 1997; 208: 520-527.
- [13] Fridy JA, Orhan C. Statistical limit superior and limit inferior. Proceedings of the American Mathematical Society 1997; 125: 3625-3631.
- [14] Gillman L, Jerison M. Rings of Continuous Functions. New York, NY, USA: Springer-Verlag, 1976.
- [15] Gogola J, Mačaj M, Visnyai T. On $\mathcal{I}_c^{(q)}$ -convergence. Annales Mathematicae et Informaticae 2011; 38: 27-36.
- [16] Hardy H. Divergent Series. London, England: Oxford University Press, 1949.
- [17] Hill JD, Sledd WT. Approximation in bounded summability fields. Canadian Journal of Mathematics 1968; 20: 410-415.
- [18] Kolk E. Matrix transformations related to \mathcal{I} -convergent sequences. Acta Et Commentationes Universitatis Tartuensis De Mathematica 2018; 22: 191-201.
- [19] Kostyrko P, Šalát T, Wilczyński W. *I*-convergence. Real Analysis Exchange 2000; 26(2): 669-686.
- [20] Maddox IJ. Some analogues of Knopp's core theorem. International Journal of Mathematics and Mathematical Sciences 1979; 2: 605-614.
- [21] Miller HI. A measure theoretical subsequence characterization of statistical convergence. Transactions of the American Mathematical Society 1995; 347: 1811-1819.
- [22] Šalát T. On statistically convergent sequences of real numbers. Mathematica Slovaca 1980; 30: 139-150.
- [23] Šalát T, Tripathy BC, Ziman M. On some properties of *I*-convergence. Tatra Mountains Mathematical Publications 2004; 28 part II: 279-286.
- [24] Shcherbakov AA. Kernels of sequences of complex numbers and their regular transformations. Mathematical Notes 1977; 22: 948-953.
- [25] Steinhaus H. Sur la convergence ordinarie et la convergence asymptotique. Colloquium Mathematicum 1951; 2: 73-74. (in French).
- [26] Walker RC. The Stone-Čech Compactification. New York, NY, USA: Springer-Verlag, 1974.