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Abstract: In this paper we mainly deal with I(q)
c −convergence. In particular we study bounded multipliers of bounded

I(q)
c −convergent sequences. We also give some I−core results and characterize the inclusion K−core {Ax} ⊆ I−core {x}

for bounded sequences x = (xn) .
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1. Introduction
Kostyrko et al. [19] introduced and studied the concept of I -convergence of sequences in metric spaces, where
I is an ideal of subsets of the set N of positive integers and extended this concept to I -convergence of a
sequence of real functions defined on a metric space and proved some basic properties of these concepts.

In 1951 Fast [8] and Steinhaus [25] introduced the concept of statistical convergence independently and
established a relationship with summability (see also [9, 21, 22]). Some applications of statistical convergence
in number theory and mathematical analysis can be found in [3, 4, 8, 10, 11, 25]. In 2011 Gogolo et al.

studied the properties of ideals I(q)
c related to the notion of I -convergence and they showed that I(q)

c and

I(q)∗
c -convergences are equivalent [15].

In the present work we mainly deal with I(q)
c −convergence. In Section 2 we study results motivated by

those of [7]. In particular we study bounded multipliers of bounded I(q)
c −convergent sequences. Section 3 is

devoted to I−core results. We characterize the inclusion

K − core {Ax} ⊆ I − core {x}

for bounded sequences x = (xn) . In the last section we give an ideal version of Choudhary’s theorem on Knopp’s
core.

Now we recall some notation and terminology of an ideal.
Ideal I on X (X ̸= ∅) is a family of subsets, satisfying the following conditions: if A,B ∈ I then

A ∪ B ∈ I and if A ∈ I , B ⊂ A then B ∈ I. Filter F on X (X ̸= ∅) is a nonempty family of subsets,
satisfying the following conditions: ∅ /∈ F ; if A,B ∈ F then A ∩ B ∈ F and if A ∈ F , A ⊂ B then
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B ∈ F . An ideal I is called nontrivial if I ̸= ∅ and X /∈ I. Ideal I on X is a nontrivial ideal if and only if
F (I) = {X\A : A ∈ I} is a filter on X . A nontrivial ideal I on X containing all singletons is called admissible.

An admissible ideal I on N is said to satisfy property (AP ) if for every countable family of mutually
disjoint sets {A1, A2...} belonging to I there exists a countable family of sets {B1, B2...} such that Aj △ Bj

is a finite set for j ∈ N and B =
⋃∞

j=1 Bj ∈ I [19].

Let I be a nontrivial ideal on N. Then a sequence x = (xn) of real numbers is said to be I -convergent
to L ∈ R and we write I − limx = L , if and only if for each ε > 0 the set A (ε) = {n ∈ N : |xn − L| ≥ ε}
belongs to the ideal I. Another type of convergence closely related to the ideal I is I∗ -convergence. A sequence
x = (xn) of real numbers is said to be I∗ -convergent to L ∈ R and we write I∗ − limx = L , if and only if
there exists a set M ∈ F (I) , M = {m1 < m2 < ... < mk < ...} such that limk→∞ xmk

= L (see e.g., [19]).
For every admissible ideal I , Kostyrko et al. [19] proved that

I∗ − limx = L ⇒ I − limx = L.

Let an admissible ideal I on N . For an arbitrary sequence x = (xn) of real numbers and each L ∈ R ,
I − limx = L implies I∗ − limx = L , then I has property (AP ) [19].

For any q ∈ (0, 1] the set

I(q)
c =

{
E ⊆ N :

∑
i∈E

1

iq
< ∞

}

is an admissible ideal. Gogolo et al. [15] proved that I(q)
c and I(q)∗

c -convergences are equivalent. Recall that

I(q)
c ⊂ Id (see e.g., [15]), where the ideal Id is the class of all subsets of positive integers that has asymptotic

density zero.
Let I be an admissible ideal on N . Motivated by that of [13] the I -limit superior of a real number

sequence x is defined by

I− lim supx =

{
supBx , if Bx ̸= ∅
−∞ , if Bx = ∅

where Bx := {b ∈ R : {n : xn > b} /∈ I} (see e.g., [6]). The real number sequence x = (xn) is said to be I
-bounded if there is a number B such that {n : |xn| > B} ∈ I .

By cI(q), cI(q) (b) we denote the set of all I(q)
c − convergent sequences , the set of all bounded I(q)

c -
convergent sequences, respectively.

2. Bounded multipliers

Gogolo et al. [15] introduced the class Tq of lower triangular nonnegative matrices as follows:
A matrix T = (tnk) belongs to the class Tq if and only if it satisfies the following conditions:

(I) lim
n→∞

n∑
k=1

tnk = 1

(q) E ⊂ N and E ∈ I(q)
c , then lim

n→∞

∑
k∈E

tnk = 0 , q ∈ (0, 1] .

Note that every matrix of the class Tq is regular.
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Let l∞ be the space of all real bounded sequences and let T = (tnk) be an infinite matrix with real

entries. Tx is the sequence whose nth term is given by (Tx)n =
∞∑
k=1

tnkxk whenever the series converges for

each n . From now on the bounded summability field of the matrix T ∈ Tq will be denoted by cT (b) , i.e.

cT (b) =
{
x ∈ l∞ : lim

n
(Tx)n exists

}
(see [7]).

Theorem 2.1 ([15]) Let q ∈ (0, 1] .Then the bounded sequence x = (xn) of real numbers I(q)
c −converges to

L ∈ R if and only if it is T−summable to L ∈ R for each matrix T ∈ Tq (i.e. cI(q) (b) =
⋂

T∈Tq

cT (b)).

We say that x is strongly T−summable to a real number a if

lim
n

∞∑
k=1

tnk|xk − a| = 0.

In this case, the bounded strong summability field of the matrix T ∈ Tq is given by

Wb (T ) =

{
x ∈ l∞ : lim

n

∞∑
k=1

tnk |xk − a| = 0 for some a

}
.

Assume that two sequence spaces, E and F , are given. We say that a sequence u is a bounded multiplier
of E into F , and we write M (E,F ) , if u.x ∈ F whenever x ∈ E , i.e.

M (E,F ) = {u ∈ l∞ : u.x ∈ F for all x ∈ E }

where the multiplication is coordinatewise. If F = E , then we write M (E) instead of M (E,E) .

It is known that
M (cT (b)) = Wb (T ) (2.1)

provided that tnk ≥ 0 for all n and k (see [17]).

We also mention the following result of [17] that we need in the sequel.

Theorem 2.2 If T is a regular matrix, then the bounded sequence x is strongly T−summable to a if and only
if there exists a subset Z of N such that χN\Z is strongly T−summable to zero and limn∈Z xn = a.

This section addresses the bounded multiplier space of cI(q) (b) and then give an analogue of Theorem
2.1 for bounded multipliers.

Theorem 2.3 x ∈ M(cI(q) (b)) if and only if x ∈ cI(q) (b) .
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Proof Let x ∈ M(cI(q) (b)) . Since χN ∈ cI(q) (b) and x ∈ M(cI(q) (b)) we get χN.x ∈ cI(q) (b) ; hence
x ∈ cI(q) (b) .

Conversely, assume that x ∈ cI(q) (b) . We claim that x.y ∈ cI(q) (b) for an arbitrary y ∈ cI(q) (b) .

As in Proposition 4.3 of [23] since x, y ∈ cI(q) (b) for each ε > 0 the sets {n ∈ N : |xn − Lx| ≤ ε} and

{n ∈ N : |yn − Ly| ≤ ε} belong to the filter F
(
I(q)
c

)
.

On the other hand we get

|xnyn − LxLy| = |xnyn − xnLy + xnLy − LxLy|

≤ |xn| |yn − Ly|+ |xn − Lx| |Ly|

≤ 2 ∥x∥ ε

where ∥x∥ = supn |xn| .

Then for each ε > 0 we have

{n ∈ N : |xnyn − LxLy| ≤ ε} ∈ F
(
I(q)
c

)
.

Thus x.y ∈ cI(q) (b) . 2

Now using the same technique as in Theorem 6 of Demirci and Orhan [7], we give an analogue of Theorem
2.1 for bounded multiplier space, but first we need some properties of βN, the Stone-Čech compactification of
positive integers N.For each B ⊆ N , let clβNB be the closure of B in βN and let B∗ = (clβNB) \ B . It is
well-known [14] that the sets {B∗ : B ⊆ N} form a basis for the topology of βN \B .

Recall that, for a regular matrix A, the support set KA is defined by

KA =
⋂

{B∗ : B ⊆ N and χB is A− summable to 1}

which is nonempty compact subset of βN \ B [1]. Observe that if B∗ ⊇ KA, then χB is A−summable to 1.

Furthermore, the intersection of any sequence of neighborhoods of KA is again a neighborhood of KA. Also, if
B and D are infinite subsets of N, then D∗ is contained in B∗ if and only if D \B is finite [26].

Now we give the main result of this section.

Theorem 2.4 M(cI(q) (b)) =
⋂

T∈T q

M (cT (b)) .

Proof Let x ∈
⋂

T∈Tq

M (cT (b)) . We claim that x.y ∈ cI(q) (b) for an arbitrary y ∈ cI(q) (b) . By Theorem 2.1,

cI(q) (b) ⊆ cT (b) for every T ∈ Tq . This implies that x.y ∈ cT (b) . Hence x.y ∈
⋂

T∈Tq

cT (b) . By Theorem 2.1

we get that x.y ∈ cI(q) (b) . Thus
⋂

T∈Tq

M (cT (b)) ⊆ M(cI(q) (b)).
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In order to prove the converse inclusion, assume that x ∈ M(cI(q) (b)) and T ∈ Tq. Then by previous

theorem we have x ∈ cI(q) (b) . Let K (k) :=
{
n ∈ N : |xn − a| < 1

k

}
. Then Kc (k) ∈ I(q)

c . Hence χK(k) ∈

cI(q) (b) and χK(k) is I(q)
c −convergent to 1. Therefore Theorem 2.1 implies that, for each k , χK(k) ∈⋂

T∈Tq

cT (b) . Thus χK(k) is T−summable to 1 (for each k ). This means that K∗ (k) ⊇ KT for each k

and
∞⋂
k=1

K∗ (k) ⊇ KT . As KT is compact and the sets {B∗ : B ⊆ N} form a basis for the topology of βN \ N,

there exists a set K ⊆ N such that
∞⋂
k=1

K∗ (k) ⊇ K∗ ⊇ KT . Moreover limn (TχK)n = 1 . Since K∗ (k) ⊇ K∗

for each k, there are at most a finite number of members of K not in K (k) . Hence |xn − a| < 1
k for all but a

finite number of n ∈ K . As k is arbitrary, one can conclude that

lim
n∈K

xn = a. (2.2)

Now we have

lim
n

∞∑
j=1

tnj = lim
n

∑
j∈K

tnj + lim
n

∑
j∈N\K

tnj .

Since T is regular and limn (TχK)n = 1, we get limn

∑
j∈N\K tnj = 0. So χN\K is strongly T−summable to

zero. Combining this with (2.2) , we conclude by Theorem 2.2 that x is strongly T−summable to a. Now (2.1)
implies x ∈ M (cT (b)) . This implies x ∈

⋂
T∈Tq

M (cT (b)) for every T in Tq from which the result follows. 2

3. I -core
Fridy and Orhan [13] introduced the concept of statistical core for a sequence and proved the statistical core
theorem. Later on Demirci [6] extended this concept to I−core. In this section using a result of Kolk [18] we
prove Demirci’s result in the necessary and sufficient form.

Throughout Sections 3 and 4 the spaces of all bounded and convergent complex sequences will be denoted
by l∞ and c , respectively. In the sequel A = (ank) be an infinite matrix with complex entries.

In [16] the Knopp core of the sequence x is defined by

K − core {x} := ∩n∈NCn (x) ,

where Cn (x) is the closed convex hull of {xk}k≥n .

If x and y are sequences such that {n ∈ N : xn = yn} /∈ I , then we write “xn = yn , for I − a.a.k”. Also
in this and next sections x, y and z will denote complex number sequences. By cI , we denote the set of all
I -convergent sequences, where I be an admissible ideal on N .

Definition 3.1 ([6]) Let I be an admissible ideal on N . For any complex sequence x let HI (x) be the
collection of all closed half-planes that contain xn for I − a.a.k ; i.e.

HI (x) := {H : H is a closed half-plane, {n ∈ N : xn /∈ H} ∈ I } ,
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then the I -core of x is given by
I − core {x} := ∩H∈HI(x)H.

It is easy to see that I − core {x} ⊆ K − core {x} for all x .

The next result is due to Demirci [6] that gives some sufficient conditions under which we have the core inclusion
K − core {Ax} ⊆ I − core {x} for x ∈ l∞ .

Theorem 3.2 ([6]) Let I be an admissible ideal on N. If the matrix A satisfies supn
∑

k |ank| < ∞ and the
following conditions

(i) A is regular and limn

∑
k∈E |ank| = 0 whenever E ∈ I

(ii) limn

∑∞
k=1 |ank| = 1 ,

then K − core {Ax} ⊆ I − core {x} for every x ∈ l∞ .

In this section we show that these conditions are also necessary. But we first recall a version of a result
of Kolk [18].

Proposition 3.3 ([18]) Let I be an admissible ideal on N. If A maps cI ∩ l∞ into c and leaves the I -limit
invariant then

(i) A is regular,
(ii) limn

∑
k∈E |ank| = 0 for every E ∈ I .

If I has property (AP ) , then the conditions are also sufficient for A in order to map cI ∩ l∞ into c

leaving the I -limit invariant.

Now we have the next result which is the converse of Theorem 3.2.

Theorem 3.4 (I -core theorem) Let I be an admissible ideal on N. If the matrix A satisfies supn
∑

k |ank| <
∞ , then

K − core {Ax} ⊆ I − core {x} for every x ∈ l∞ (3.1)

if and only if the following conditions hold:

(i) A is regular and limn

∑
k∈E |ank| = 0 whenever E ∈ I ;

(ii) limn

∑∞
k=1 |ank| = 1 .

Proof (Necessity) Assume that (3.1) hold and let x ∈ c with limn x = L , this yields x ∈ cI . We know that

I − core {x} ⊆ K − core {x} (3.2)

for all x . Since (3.1) hold and K − core {Ax} ̸= ∅ , it follows that K − core {Ax} = {L} . Hence A is regular
and A ∈ (cI ∩ l∞, c; p) so by Proposition 3.3 we get limn

∑
k∈E |ank| = 0 for every E ∈ I .

From (3.1) and (3.2), observe that K− core {Ax} ⊆ K− core {x} for every x ∈ l∞ . Hence Knopp’s core
theorem (see e.g., [20]) yields that limn

∑∞
k=1 |ank| = 1 .
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Sufficiency follows from Theorem 3.2. 2

The next result is an analog of Theorem 6.3.II of Cooke ([5, p. 144]).

Proposition 3.5 Let I be an admissible ideal on N . If x = (xk) and y = (yk) are I -bounded sequences and

I − lim supk |xk − yk| = 0

then I − core {x} = I − core {y} .

Proof For each z ∈ C , let

Bx (z) = {w ∈ C : |w − z| ≤ I − lim supk |xk − z|} .

Then I − core {x} := ∩z∈CBx (z) (see [6, 12, 24]).
Let w ∈ Bx (z) . Then for any z ∈ C one can get that

|w − z| ≤ I − lim supk |xk − z|

≤ I − lim supk |xk − yk|+ I − lim supk |yk − z|

= I − lim supk |yk − z|,

hence w ∈ By (z) which implies that Bx (z) ⊆ By (z) . Interchanging the roles of x and y one can also observe
that By (z) ⊆ Bx (z) . This yields that I − core {x} = I − core {y} . 2

4. Core comparisons of two matrix transformations

Choudhary [2] extended Knopp’s core theorem to the case in which the cores of two transformations are
compared, i.e. the conclusion is so that replacing B by the identity matrix yields Knopp’s theorem. In
[12] Fridy and Orhan proved a statistical analogue of Choudhary’s theorem. In this Section we get an ideal
version of Choudhary’s theorem.

Lemma 4.1 ([2]) Consider a fixed n . In order that, whenever Bx is bounded, (Ax)n should be defined for
that particular n , it is necessary and sufficient that

(v) cnk =
∑∞

j=k anjb
−1
jk exist for all k;

(vi)
∑∞

k=0 |cnk| < ∞ ;

(iv) for any fixed n , limv

∑v
k=0

∣∣∣∑∞
j=v+1 anjb

−1
jk

∣∣∣ = 0 .

If these conditions are satisfied then, for bounded y = Bx ,

(Ax)n =

∞∑
k=0

cnkyk.

Theorem 4.2 Let I be an admissible ideal on N , let B be a normal matrix (i.e. triangular with nonzero
diagonal entries), and denote its triangular inverse by B−1 =

[
b−1
nk

]
. For an arbitrary matrix A , in order that,
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whenever Bx ∈ l∞ , Ax should exist and be bounded and satisfy

K − core {Ax} ⊆ I − core {Bx} (4.1)

it is necessary and sufficient that the following conditions hold:
(i) C := AB−1 exists;
(ii) C is regular and limn

∑
k∈E |cnk| = 0 whenever E ∈ I ;

(iii) limn

∑∞
k=1 |cnk| = 1 ;

(iv) for any fixed n , limv

∑v
k=0

∣∣∣∑∞
j=v+1 anjb

−1
jk

∣∣∣ = 0 .

Proof (Necessity) If (Ax)n exist for every n whenever Bx ∈ l∞ , then by Lemma 4.1 it follows immediately
that (i) and (iv) hold. By that same Lemma we also have Ax = Cy , where y = Bx . Since Ax ∈ l∞ we have
Cy ∈ l∞ . Therefore (4.1) implies that K − core {Cy} ⊆ I − core {y} . Now I−core theorem (Theorem 3.4)
implies that (ii) and (iii) hold.

(Sufficiency) Properties (i)–(iv) obviously imply the four conditions of Lemma 4.1, so it follows by the
Lemma that Cy ∈ l∞ , hence Ax ∈ l∞ . Now I−Core Theorem implies that K − core {Cy} ⊆ I − core {y} ,
and since y = Bx and Cy = Ax we have K − core {Ax} ⊆ I − core {Bx} . 2

Note that the sequences and matrices in Choudhary’s paper [2] have real entries. But a careful checking
shows that Choudhary’s results remain true when the sequences and matrices have the complex entries.

By Theorem 4.2, the fact that I − core {Ax} ⊆ K − core {Ax} gives us following corollary.

Corollary 4.3 If A and B satisfy conditions (i)-(iv) of Theorem 4.2, then

I − core {Ax} ⊆ I − core {Bx}

for every x such that Bx ∈ l∞ .
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