Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/
тївітак

Turk J Math
(2021) 45: 1310 - 1318
© TÜBİTAK
doi:10.3906/mat-2102-97

Multipliers and \mathcal{I}-core for sequences

Mustafa GÜLFIRAT ${ }^{1, *}$ (D) , Nilay ŞAHİN BAYRAM ${ }^{2}$ (D)
${ }^{1}$ Department of Mathematics, Faculty of Science, Ankara University, Ankara, Turkey
${ }^{2}$ Department of Electrical and Electronics Engineering, Faculty of Engineering, Başkent University, Ankara, Turkey

| Received: 20.02 .2021 | Accepted/Published Online: 02.04.2021 | • Final Version: 20.05 .2021 |
| :--- | :--- | :--- | :--- | :--- | :--- |

Abstract

In this paper we mainly deal with $\mathcal{I}_{c}^{(q)}$ - convergence. In particular we study bounded multipliers of bounded $\mathcal{I}_{c}^{(q)}$ - convergent sequences. We also give some \mathcal{I} - core results and characterize the inclusion K-core $\{A x\} \subseteq \mathcal{I}$-core $\{x\}$ for bounded sequences $x=\left(x_{n}\right)$.

Key words: Statistical convergence, ideal, ideal convergence, multipliers, Knopp's core theorem

1. Introduction

Kostyrko et al. [19] introduced and studied the concept of \mathcal{I}-convergence of sequences in metric spaces, where \mathcal{I} is an ideal of subsets of the set \mathbb{N} of positive integers and extended this concept to \mathcal{I}-convergence of a sequence of real functions defined on a metric space and proved some basic properties of these concepts.

In 1951 Fast [8] and Steinhaus [25] introduced the concept of statistical convergence independently and established a relationship with summability (see also [9, 21, 22]). Some applications of statistical convergence in number theory and mathematical analysis can be found in [3, 4, 8, 10, 11, 25]. In 2011 Gogolo et al. studied the properties of ideals $\mathcal{I}_{c}^{(q)}$ related to the notion of \mathcal{I}-convergence and they showed that $\mathcal{I}_{c}^{(q)}$ and $\mathcal{I}_{c}^{(q) *}$-convergences are equivalent [15].

In the present work we mainly deal with $\mathcal{I}_{c}^{(q)}$ - convergence. In Section 2 we study results motivated by those of [7]. In particular we study bounded multipliers of bounded $\mathcal{I}_{c}^{(q)}$ - convergent sequences. Section 3 is devoted to \mathcal{I} - core results. We characterize the inclusion

$$
K-\operatorname{core}\{A x\} \subseteq \mathcal{I}-\operatorname{core}\{x\}
$$

for bounded sequences $x=\left(x_{n}\right)$. In the last section we give an ideal version of Choudhary's theorem on Knopp's core.

Now we recall some notation and terminology of an ideal.
Ideal \mathcal{I} on $X(X \neq \varnothing)$ is a family of subsets, satisfying the following conditions: if $A, B \in \mathcal{I}$ then $A \cup B \in \mathcal{I}$ and if $A \in \mathcal{I}, B \subset A$ then $B \in \mathcal{I}$. Filter \mathcal{F} on $X(X \neq \varnothing)$ is a nonempty family of subsets, satisfying the following conditions: $\varnothing \notin \mathcal{F}$; if $A, B \in \mathcal{F}$ then $A \cap B \in \mathcal{F}$ and if $A \in \mathcal{F}, A \subset B$ then

[^0]
GÜLFIRAT and ŞAHİN BAYRAM/Turk J Math

$B \in \mathcal{F}$. An ideal \mathcal{I} is called nontrivial if $\mathcal{I} \neq \varnothing$ and $X \notin \mathcal{I}$. Ideal \mathcal{I} on X is a nontrivial ideal if and only if $\mathcal{F}(\mathcal{I})=\{X \backslash A: A \in \mathcal{I}\}$ is a filter on X. A nontrivial ideal \mathcal{I} on X containing all singletons is called admissible.

An admissible ideal \mathcal{I} on \mathbb{N} is said to satisfy property $(A P)$ if for every countable family of mutually disjoint sets $\left\{A_{1}, A_{2} \ldots\right\}$ belonging to \mathcal{I} there exists a countable family of sets $\left\{B_{1}, B_{2} \ldots\right\}$ such that $A_{j} \Delta B_{j}$ is a finite set for $j \in \mathbb{N}$ and $B=\bigcup_{j=1}^{\infty} B_{j} \in \mathcal{I}$ [19].

Let \mathcal{I} be a nontrivial ideal on \mathbb{N}. Then a sequence $x=\left(x_{n}\right)$ of real numbers is said to be \mathcal{I}-convergent to $L \in \mathbb{R}$ and we write $\mathcal{I}-\lim x=L$, if and only if for each $\varepsilon>0$ the set $A(\varepsilon)=\left\{n \in \mathbb{N}:\left|x_{n}-L\right| \geq \varepsilon\right\}$ belongs to the ideal \mathcal{I}. Another type of convergence closely related to the ideal \mathcal{I} is \mathcal{I}^{*}-convergence. A sequence $x=\left(x_{n}\right)$ of real numbers is said to be \mathcal{I}^{*}-convergent to $L \in \mathbb{R}$ and we write $\mathcal{I}^{*}-\lim x=L$, if and only if there exists a set $M \in \mathcal{F}(\mathcal{I}), M=\left\{m_{1}<m_{2}<\ldots<m_{k}<\ldots\right\}$ such that $\lim _{k \rightarrow \infty} x_{m_{k}}=L$ (see e.g., [19]).

For every admissible ideal \mathcal{I}, Kostyrko et al. [19] proved that

$$
\mathcal{I}^{*}-\lim x=L \Rightarrow \mathcal{I}-\lim x=L
$$

Let an admissible ideal \mathcal{I} on \mathbb{N}. For an arbitrary sequence $x=\left(x_{n}\right)$ of real numbers and each $L \in \mathbb{R}$, $\mathcal{I}-\lim x=L$ implies $\mathcal{I}^{*}-\lim x=L$, then \mathcal{I} has property $(A P)$ [19].

For any $q \in(0,1]$ the set

$$
\mathcal{I}_{c}^{(q)}=\left\{E \subseteq \mathbb{N}: \sum_{i \in E} \frac{1}{i^{q}}<\infty\right\}
$$

is an admissible ideal. Gogolo et al. [15] proved that $\mathcal{I}_{c}^{(q)}$ and $\mathcal{I}_{c}^{(q) *}$-convergences are equivalent. Recall that $\mathcal{I}_{c}^{(q)} \subset \mathcal{I}_{d}$ (see e.g., [15]), where the ideal \mathcal{I}_{d} is the class of all subsets of positive integers that has asymptotic density zero.

Let \mathcal{I} be an admissible ideal on \mathbb{N}. Motivated by that of [13] the \mathcal{I}-limit superior of a real number sequence x is defined by

$$
\mathcal{I}-\lim \sup x= \begin{cases}\sup B_{x} & , \quad \text { if } B_{x} \neq \varnothing \\ -\infty & , \quad \text { if } B_{x}=\varnothing\end{cases}
$$

where $B_{x}:=\left\{b \in \mathbb{R}:\left\{n: x_{n}>b\right\} \notin \mathcal{I}\right\}$ (see e.g., [6]). The real number sequence $x=\left(x_{n}\right)$ is said to be \mathcal{I} -bounded if there is a number B such that $\left\{n:\left|x_{n}\right|>B\right\} \in \mathcal{I}$.

By $c^{\mathcal{I}(q)}, c^{\mathcal{I}(q)}(b)$ we denote the set of all $\mathcal{I}_{c}^{(q)}-$ convergent sequences, the set of all bounded $\mathcal{I}_{c}^{(q)}$ convergent sequences, respectively.

2. Bounded multipliers

Gogolo et al. [15] introduced the class \mathcal{T}_{q} of lower triangular nonnegative matrices as follows:
A matrix $T=\left(t_{n k}\right)$ belongs to the class \mathcal{T}_{q} if and only if it satisfies the following conditions:
(I) $\lim _{n \rightarrow \infty} \sum_{k=1}^{n} t_{n k}=1$
(q) $E \subset \mathbb{N}$ and $E \in \mathcal{I}_{c}^{(q)}$, then $\lim _{n \rightarrow \infty} \sum_{k \in E} t_{n k}=0, q \in(0,1]$.

Note that every matrix of the class \mathcal{T}_{q} is regular.

GÜLFIRAT and ŞAHİN BAYRAM/Turk J Math

Let l_{∞} be the space of all real bounded sequences and let $T=\left(t_{n k}\right)$ be an infinite matrix with real entries. $T x$ is the sequence whose nth term is given by $(T x)_{n}=\sum_{k=1}^{\infty} t_{n k} x_{k}$ whenever the series converges for each n. From now on the bounded summability field of the matrix $T \in \mathcal{T}_{q}$ will be denoted by $c_{T}(b)$, i.e.

$$
c_{T}(b)=\left\{x \in l_{\infty}: \lim _{n}(T x)_{n} \text { exists }\right\}
$$

(see [7]).

Theorem 2.1 ([15]) Let $q \in(0,1]$. Then the bounded sequence $x=\left(x_{n}\right)$ of real numbers $\mathcal{I}_{c}^{(q)}-$ converges to $L \in \mathbb{R}$ if and only if it is T-summable to $L \in \mathbb{R}$ for each matrix $T \in \mathcal{T}_{q}$ (i.e. $\left.c^{\mathcal{I}(q)}(b)=\bigcap_{T \in \mathcal{T}_{q}} c_{T}(b)\right)$.

We say that x is strongly T-summable to a real number a if

$$
\lim _{n} \sum_{k=1}^{\infty} t_{n k}\left|x_{k}-a\right|=0
$$

In this case, the bounded strong summability field of the matrix $T \in \mathcal{T}_{q}$ is given by

$$
W_{b}(T)=\left\{x \in l_{\infty}: \lim _{n} \sum_{k=1}^{\infty} t_{n k}\left|x_{k}-a\right|=0 \text { for some } a\right\}
$$

Assume that two sequence spaces, E and F, are given. We say that a sequence u is a bounded multiplier of E into F, and we write $M(E, F)$, if $u . x \in F$ whenever $x \in E$, i.e.

$$
M(E, F)=\left\{u \in l_{\infty}: u . x \in F \text { for all } x \in E\right\}
$$

where the multiplication is coordinatewise. If $F=E$, then we write $M(E)$ instead of $M(E, E)$.
It is known that

$$
\begin{equation*}
M\left(c_{T}(b)\right)=W_{b}(T) \tag{2.1}
\end{equation*}
$$

provided that $t_{n k} \geq 0$ for all n and k (see [17]).

We also mention the following result of [17] that we need in the sequel.

Theorem 2.2 If T is a regular matrix, then the bounded sequence x is strongly T-summable to a if and only if there exists a subset Z of \mathbb{N} such that $\chi_{\mathbb{N} \backslash Z}$ is strongly T-summable to zero and $\lim _{n \in Z} x_{n}=a$.

This section addresses the bounded multiplier space of $c^{\mathcal{I}(q)}(b)$ and then give an analogue of Theorem 2.1 for bounded multipliers.

Theorem $2.3 x \in M\left(c^{\mathcal{I}(q)}(b)\right)$ if and only if $x \in c^{\mathcal{I}(q)}(b)$.

GÜLFIRAT and ŞAHİN BAYRAM/Turk J Math

Proof Let $x \in M\left(c^{\mathcal{I}(q)}(b)\right)$. Since $\chi_{\mathbb{N}} \in c^{\mathcal{I}(q)}(b)$ and $x \in M\left(c^{\mathcal{I}(q)}(b)\right)$ we get $\chi_{\mathbb{N}} \cdot x \in c^{\mathcal{I}(q)}(b)$; hence $x \in c^{\mathcal{I}(q)}(b)$.

Conversely, assume that $x \in c^{\mathcal{I}(q)}(b)$. We claim that $x . y \in c^{\mathcal{I}(q)}(b)$ for an arbitrary $y \in c^{\mathcal{I}(q)}(b)$. As in Proposition 4.3 of [23] since $x, y \in c^{\mathcal{I}(q)}(b)$ for each $\varepsilon>0$ the sets $\left\{n \in \mathbb{N}:\left|x_{n}-L_{x}\right| \leq \varepsilon\right\}$ and $\left\{n \in \mathbb{N}:\left|y_{n}-L_{y}\right| \leq \varepsilon\right\}$ belong to the filter $\mathcal{F}\left(\mathcal{I}_{c}^{(q)}\right)$.

On the other hand we get

$$
\begin{aligned}
\left|x_{n} y_{n}-L_{x} L_{y}\right| & =\left|x_{n} y_{n}-x_{n} L_{y}+x_{n} L_{y}-L_{x} L_{y}\right| \\
& \leq\left|x_{n}\right|\left|y_{n}-L_{y}\right|+\left|x_{n}-L_{x}\right|\left|L_{y}\right| \\
& \leq 2\|x\| \varepsilon
\end{aligned}
$$

where $\|x\|=\sup _{n}\left|x_{n}\right|$.

Then for each $\varepsilon>0$ we have

$$
\left\{n \in \mathbb{N}:\left|x_{n} y_{n}-L_{x} L_{y}\right| \leq \varepsilon\right\} \in \mathcal{F}\left(\mathcal{I}_{c}^{(q)}\right)
$$

Thus $x . y \in c^{\mathcal{I}(q)}(b)$.
Now using the same technique as in Theorem 6 of Demirci and Orhan [7], we give an analogue of Theorem 2.1 for bounded multiplier space, but first we need some properties of $\beta \mathbb{N}$, the Stone-Čech compactification of positive integers \mathbb{N}. For each $B \subseteq \mathbb{N}$, let $c l_{\beta \mathbb{N}} B$ be the closure of B in $\beta \mathbb{N}$ and let $B^{*}=\left(c l_{\beta \mathbb{N}} B\right) \backslash B$. It is well-known [14] that the sets $\left\{B^{*}: B \subseteq \mathbb{N}\right\}$ form a basis for the topology of $\beta \mathbb{N} \backslash B$.

Recall that, for a regular matrix A, the support set K_{A} is defined by

$$
K_{A}=\bigcap\left\{B^{*}: B \subseteq \mathbb{N} \text { and } \chi_{B} \text { is } A-\text { summable to } 1\right\}
$$

which is nonempty compact subset of $\beta \mathbb{N} \backslash B[1]$. Observe that if $B^{*} \supseteq K_{A}$, then χ_{B} is $A-$ summable to 1 . Furthermore, the intersection of any sequence of neighborhoods of K_{A} is again a neighborhood of K_{A}. Also, if B and D are infinite subsets of \mathbb{N}, then D^{*} is contained in B^{*} if and only if $D \backslash B$ is finite [26].

Now we give the main result of this section.

Theorem $2.4 M\left(c^{\mathcal{I}(q)}(b)\right)=\bigcap_{T \in \mathcal{T}_{q}} M\left(c_{T}(b)\right)$.

Proof Let $x \in \bigcap_{T \in \mathcal{T}_{q}} M\left(c_{T}(b)\right)$. We claim that $x . y \in c^{\mathcal{I}(q)}(b)$ for an arbitrary $y \in c^{\mathcal{I}(q)}(b)$. By Theorem 2.1, $c^{\mathcal{I}(q)}(b) \subseteq c_{T}(b)$ for every $T \in \mathcal{T}_{q}$. This implies that $x . y \in c_{T}(b)$. Hence $x . y \in \bigcap_{T \in \mathcal{T}_{q}} c_{T}(b)$. By Theorem 2.1 we get that $x . y \in c^{\mathcal{I}(q)}(b)$. Thus $\bigcap_{T \in \mathcal{T}_{q}} M\left(c_{T}(b)\right) \subseteq M\left(c^{\mathcal{I}(q)}(b)\right)$.

GÜLFIRAT and ŞAHİN BAYRAM/Turk J Math

In order to prove the converse inclusion, assume that $x \in M\left(c^{\mathcal{I}(q)}(b)\right)$ and $T \in \mathcal{T}_{q}$. Then by previous theorem we have $x \in c^{\mathcal{I}(q)}(b)$. Let $K(k):=\left\{n \in \mathbb{N}:\left|x_{n}-a\right|<\frac{1}{k}\right\}$. Then $K^{c}(k) \in \mathcal{I}_{c}^{(q)}$. Hence $\chi_{K(k)} \in$ $c^{\mathcal{I}(q)}(b)$ and $\chi_{K(k)}$ is $\mathcal{I}_{c}^{(q)}$ - convergent to 1 . Therefore Theorem 2.1 implies that, for each $k, \chi_{K(k)} \in$ $\bigcap_{T \in \mathcal{T}_{q}} c_{T}(b)$. Thus $\chi_{K(k)}$ is T-summable to 1 (for each k). This means that $K^{*}(k) \supseteq K_{T}$ for each k and $\bigcap_{k=1}^{\infty} K^{*}(k) \supseteq K_{T}$. As K_{T} is compact and the sets $\left\{B^{*}: B \subseteq \mathbb{N}\right\}$ form a basis for the topology of $\beta \mathbb{N} \backslash \mathbb{N}$, there exists a set $K \subseteq \mathbb{N}$ such that $\bigcap_{k=1}^{\infty} K^{*}(k) \supseteq K^{*} \supseteq K_{T}$. Moreover $\lim _{n}\left(T \chi_{K}\right)_{n}=1$. Since $K^{*}(k) \supseteq K^{*}$ for each k, there are at most a finite number of members of K not in $K(k)$. Hence $\left|x_{n}-a\right|<\frac{1}{k}$ for all but a finite number of $n \in K$. As k is arbitrary, one can conclude that

$$
\begin{equation*}
\lim _{n \in K} x_{n}=a \tag{2.2}
\end{equation*}
$$

Now we have

$$
\lim _{n} \sum_{j=1}^{\infty} t_{n j}=\lim _{n} \sum_{j \in K} t_{n j}+\lim _{n} \sum_{j \in \mathbb{N} \backslash K} t_{n j} .
$$

Since T is regular and $\lim _{n}\left(T \chi_{K}\right)_{n}=1$, we get $\lim _{n} \sum_{j \in \mathbb{N} \backslash K} t_{n j}=0$. So $\chi_{\mathbb{N} \backslash K}$ is strongly T-summable to zero. Combining this with (2.2), we conclude by Theorem 2.2 that x is strongly T-summable to a. Now (2.1) implies $x \in M\left(c_{T}(b)\right)$. This implies $x \in \bigcap_{T \in \mathcal{T}_{q}} M\left(c_{T}(b)\right)$ for every T in \mathcal{T}_{q} from which the result follows.

3. I-core

Fridy and Orhan [13] introduced the concept of statistical core for a sequence and proved the statistical core theorem. Later on Demirci [6] extended this concept to \mathcal{I} - core. In this section using a result of Kolk [18] we prove Demirci's result in the necessary and sufficient form.

Throughout Sections 3 and 4 the spaces of all bounded and convergent complex sequences will be denoted by l_{∞} and c, respectively. In the sequel $A=\left(a_{n k}\right)$ be an infinite matrix with complex entries.

In [16] the Knopp core of the sequence x is defined by

$$
K-\operatorname{core}\{x\}:=\cap_{n \in \mathbb{N}} C_{n}(x),
$$

where $C_{n}(x)$ is the closed convex hull of $\left\{x_{k}\right\}_{k \geq n}$.

If x and y are sequences such that $\left\{n \in \mathbb{N}: x_{n}=y_{n}\right\} \notin \mathcal{I}$, then we write " $x_{n}=y_{n}$, for \mathcal{I} - a.a.k". Also in this and next sections x, y and z will denote complex number sequences. By $c^{\mathcal{I}}$, we denote the set of all \mathcal{I}-convergent sequences, where \mathcal{I} be an admissible ideal on \mathbb{N}.

Definition 3.1 ([6]) Let \mathcal{I} be an admissible ideal on \mathbb{N}. For any complex sequence x let $H_{\mathcal{I}}(x)$ be the collection of all closed half-planes that contain x_{n} for \mathcal{I}-a.a.k; i.e.

$$
H_{\mathcal{I}}(x):=\left\{H: H \text { is a closed half-plane, }\left\{n \in \mathbb{N}: x_{n} \notin H\right\} \in \mathcal{I}\right\}
$$

GÜLFIRAT and ŞAHİN BAYRAM/Turk J Math

then the \mathcal{I}-core of x is given by

$$
\mathcal{I}-\operatorname{core}\{x\}:=\cap_{H \in H_{\mathcal{I}}(x)} H
$$

It is easy to see that $\mathcal{I}-$ core $\{x\} \subseteq K-$ core $\{x\}$ for all x.
The next result is due to Demirci [6] that gives some sufficient conditions under which we have the core inclusion $K-$ core $\{A x\} \subseteq \mathcal{I}-$ core $\{x\}$ for $x \in l_{\infty}$.

Theorem 3.2 ([6]) Let \mathcal{I} be an admissible ideal on \mathbb{N}. If the matrix A satisfies $\sup _{n} \sum_{k}\left|a_{n k}\right|<\infty$ and the following conditions
(i) A is regular and $\lim _{n} \sum_{k \in E}\left|a_{n k}\right|=0$ whenever $E \in \mathcal{I}$
(ii) $\lim _{n} \sum_{k=1}^{\infty}\left|a_{n k}\right|=1$,
then $K-$ core $\{A x\} \subseteq \mathcal{I}-$ core $\{x\}$ for every $x \in l_{\infty}$.
In this section we show that these conditions are also necessary. But we first recall a version of a result of Kolk [18].

Proposition 3.3 ([18]) Let \mathcal{I} be an admissible ideal on \mathbb{N}. If A maps $c^{\mathcal{I}} \cap l_{\infty}$ into c and leaves the \mathcal{I}-limit invariant then
(i) A is regular,
(ii) $\lim _{n} \sum_{k \in E}\left|a_{n k}\right|=0$ for every $E \in \mathcal{I}$.

If \mathcal{I} has property $(A P)$, then the conditions are also sufficient for A in order to map $c^{\mathcal{I}} \cap l_{\infty}$ into c leaving the \mathcal{I}-limit invariant.

Now we have the next result which is the converse of Theorem 3.2.
Theorem 3.4 (\mathcal{I}-core theorem) Let \mathcal{I} be an admissible ideal on \mathbb{N}. If the matrix A satisfies $\sup _{n} \sum_{k}\left|a_{n k}\right|<$ ∞, then

$$
\begin{equation*}
K-\operatorname{core}\{A x\} \subseteq \mathcal{I}-\text { core }\{x\} \text { for every } x \in l_{\infty} \tag{3.1}
\end{equation*}
$$

if and only if the following conditions hold:
(i) A is regular and $\lim _{n} \sum_{k \in E}\left|a_{n k}\right|=0$ whenever $E \in \mathcal{I}$;
(ii) $\lim _{n} \sum_{k=1}^{\infty}\left|a_{n k}\right|=1$.

Proof (Necessity) Assume that (3.1) hold and let $x \in c$ with $\lim _{n} x=L$, this yields $x \in c^{\mathcal{I}}$. We know that

$$
\begin{equation*}
\mathcal{I}-\operatorname{core}\{x\} \subseteq K-\operatorname{core}\{x\} \tag{3.2}
\end{equation*}
$$

for all x. Since (3.1) hold and $K-\operatorname{core}\{A x\} \neq \varnothing$, it follows that $K-$ core $\{A x\}=\{L\}$. Hence A is regular and $A \in\left(c^{\mathcal{I}} \cap l_{\infty}, c ; p\right)$ so by Proposition 3.3 we get $\lim _{n} \sum_{k \in E}\left|a_{n k}\right|=0$ for every $E \in \mathcal{I}$.

From (3.1) and (3.2), observe that $K-\operatorname{core}\{A x\} \subseteq K-\operatorname{core}\{x\}$ for every $x \in l_{\infty}$. Hence Knopp's core theorem (see e.g., [20]) yields that $\lim _{n} \sum_{k=1}^{\infty}\left|a_{n k}\right|=1$.

GÜLFIRAT and ŞAHİN BAYRAM/Turk J Math

Sufficiency follows from Theorem 3.2.
The next result is an analog of Theorem 6.3.II of Cooke ([5, p. 144]).
Proposition 3.5 Let I be an admissible ideal on \mathbb{N}. If $x=\left(x_{k}\right)$ and $y=\left(y_{k}\right)$ are \mathcal{I}-bounded sequences and

$$
\mathcal{I}-\lim \sup _{k}\left|x_{k}-y_{k}\right|=0
$$

then $\mathcal{I}-$ core $\{x\}=\mathcal{I}-$ core $\{y\}$.
Proof For each $z \in \mathbb{C}$, let

$$
B_{x}(z)=\left\{w \in \mathbb{C}:|w-z| \leq \mathcal{I}-\lim \sup _{k}\left|x_{k}-z\right|\right\}
$$

Then $\mathcal{I}-\operatorname{core}\{x\}:=\cap_{z \in \mathbb{C}} B_{x}(z)($ see $[6,12,24])$.
Let $w \in B_{x}(z)$. Then for any $z \in \mathbb{C}$ one can get that

$$
\begin{aligned}
|w-z| & \leq \mathcal{I}-\lim \sup _{k}\left|x_{k}-z\right| \\
& \leq \mathcal{I}-\lim \sup _{k}\left|x_{k}-y_{k}\right|+\mathcal{I}-\lim \sup _{k}\left|y_{k}-z\right| \\
& =\mathcal{I}-\lim \sup _{k}\left|y_{k}-z\right|
\end{aligned}
$$

hence $w \in B_{y}(z)$ which implies that $B_{x}(z) \subseteq B_{y}(z)$. Interchanging the roles of x and y one can also observe that $B_{y}(z) \subseteq B_{x}(z)$. This yields that $\mathcal{I}-\operatorname{core}\{x\}=\mathcal{I}-$ core $\{y\}$.

4. Core comparisons of two matrix transformations

Choudhary [2] extended Knopp's core theorem to the case in which the cores of two transformations are compared, i.e. the conclusion is so that replacing B by the identity matrix yields Knopp's theorem. In [12] Fridy and Orhan proved a statistical analogue of Choudhary's theorem. In this Section we get an ideal version of Choudhary's theorem.

Lemma 4.1 ([2]) Consider a fixed n. In order that, whenever $B x$ is bounded, $(A x)_{n}$ should be defined for that particular n, it is necessary and sufficient that
(v) $c_{n k}=\sum_{j=k}^{\infty} a_{n j} b_{j k}^{-1}$ exist for all k;
(vi) $\sum_{k=0}^{\infty}\left|c_{n k}\right|<\infty$;
(iv) for any fixed $n, \lim _{v} \sum_{k=0}^{v}\left|\sum_{j=v+1}^{\infty} a_{n j} b_{j k}^{-1}\right|=0$.

If these conditions are satisfied then, for bounded $y=B x$,

$$
(A x)_{n}=\sum_{k=0}^{\infty} c_{n k} y_{k}
$$

Theorem 4.2 Let \mathcal{I} be an admissible ideal on \mathbb{N}, let B be a normal matrix (i.e. triangular with nonzero diagonal entries), and denote its triangular inverse by $B^{-1}=\left[b_{n k}^{-1}\right]$. For an arbitrary matrix A, in order that,

GÜLFIRAT and ŞAHİN BAYRAM/Turk J Math

whenever $B x \in l_{\infty}, A x$ should exist and be bounded and satisfy

$$
\begin{equation*}
K-\operatorname{core}\{A x\} \subseteq \mathcal{I}-\operatorname{core}\{B x\} \tag{4.1}
\end{equation*}
$$

it is necessary and sufficient that the following conditions hold:
(i) $C:=A B^{-1}$ exists;
(ii) C is regular and $\lim _{n} \sum_{k \in E}\left|c_{n k}\right|=0$ whenever $E \in \mathcal{I}$;
(iii) $\lim _{n} \sum_{k=1}^{\infty}\left|c_{n k}\right|=1$;
(iv) for any fixed $n, \lim _{v} \sum_{k=0}^{v}\left|\sum_{j=v+1}^{\infty} a_{n j} b_{j k}^{-1}\right|=0$.

Proof (Necessity) If $(A x)_{n}$ exist for every n whenever $B x \in l_{\infty}$, then by Lemma 4.1 it follows immediately that (i) and (iv) hold. By that same Lemma we also have $A x=C y$, where $y=B x$. Since $A x \in l_{\infty}$ we have $C y \in l_{\infty}$. Therefore (4.1) implies that $K-\operatorname{core}\{C y\} \subseteq \mathcal{I}-\operatorname{core}\{y\}$. Now \mathcal{I}-core theorem (Theorem 3.4) implies that (ii) and (iii) hold.
(Sufficiency) Properties (i)-(iv) obviously imply the four conditions of Lemma 4.1, so it follows by the Lemma that $C y \in l_{\infty}$, hence $A x \in l_{\infty}$. Now \mathcal{I} - Core Theorem implies that $K-\operatorname{core}\{C y\} \subseteq \mathcal{I}-\operatorname{core}\{y\}$, and since $y=B x$ and $C y=A x$ we have $K-$ core $\{A x\} \subseteq \mathcal{I}-$ core $\{B x\}$.

Note that the sequences and matrices in Choudhary's paper [2] have real entries. But a careful checking shows that Choudhary's results remain true when the sequences and matrices have the complex entries.

By Theorem 4.2, the fact that $\mathcal{I}-\operatorname{core}\{A x\} \subseteq K-\operatorname{core}\{A x\}$ gives us following corollary.

Corollary 4.3 If A and B satisfy conditions (i)-(iv) of Theorem 4.2, then

$$
\mathcal{I}-\operatorname{core}\{A x\} \subseteq \mathcal{I}-\operatorname{core}\{B x\}
$$

for every x such that $B x \in l_{\infty}$.

Acknowledgment

The authors wish to thank anonymous referees for their helpful suggestions that improved the presentation of the paper.

References

[1] Atalla RF. On the multiplicative behavior of regular matrices. Proceedings of the American Mathematical Society 1970; 26: 437-446.
[2] Choudhary B. An extension of Knopp's core theorem. Journal of Mathematical Analysis and Applications 1988; 132: 226-233.
[3] Connor JS. The statistical and strong p-Cesaro convergence of sequences. Analysis 1988; 8: 47-63.
[4] Connor JS. Two valued measures and summability. Analysis 1990; 10: 373-385.
[5] Cooke RG. Infinite Matrices and Sequence Spaces. London, England: Macmillan, 1950.
[6] Demirci K. I-limit superior and limit inferior. Mathematical Communications 2001; 6: 165-172.
[7] Demirci K, Orhan C. Bounded multipliers of bounded A-statistically convergent sequences. Journal of Mathematical Analysis and Applications 1999; 235: 122-129.

GÜLFIRAT and ŞAHİN BAYRAM/Turk J Math

[8] Fast H. Sur la convergence statistique. Colloquium Mathematicum 1951; 2: 241-244.
[9] Fridy JA. On statistical convergence. Analysis 1985; 5: 301-313.
[10] Fridy JA. Statistical limit points. Proceedings of the American Mathematical Society 1993; 118: 1187-1192.
[11] Fridy JA, Miller HI. A matrix characterization of statistical convergence. Analysis 1991; 11: 55-66.
[12] Fridy JA, Orhan C. Statistical core theorems. Journal of Mathematical Analysis and Applications 1997; 208: 520527.
[13] Fridy JA, Orhan C. Statistical limit superior and limit inferior. Proceedings of the American Mathematical Society 1997; 125: 3625-3631.
[14] Gillman L, Jerison M. Rings of Continuous Functions. New York, NY, USA: Springer-Verlag, 1976.
[15] Gogola J, Mačaj M, Visnyai T. On $\mathcal{I}_{c}^{(q)}$-convergence. Annales Mathematicae et Informaticae 2011; 38: 27-36.
[16] Hardy H. Divergent Series. London, England: Oxford University Press, 1949.
[17] Hill JD, Sledd WT. Approximation in bounded summability fields. Canadian Journal of Mathematics 1968; 20: 410-415.
[18] Kolk E. Matrix transformations related to \mathcal{I}-convergent sequences. Acta Et Commentationes Universitatis Tartuensis De Mathematica 2018; 22: 191-201.
[19] Kostyrko P, Šalát T, Wilczyński W. I-convergence. Real Analysis Exchange 2000; 26(2): 669-686.
[20] Maddox IJ. Some analogues of Knopp's core theorem. International Journal of Mathematics and Mathematical Sciences 1979; 2: 605-614.
[21] Miller HI. A measure theoretical subsequence characterization of statistical convergence. Transactions of the American Mathematical Society 1995; 347: 1811-1819.
[22] Šalát T. On statistically convergent sequences of real numbers. Mathematica Slovaca 1980; 30: 139-150.
[23] Šalát T, Tripathy BC, Ziman M. On some properties of \mathcal{I}-convergence. Tatra Mountains Mathematical Publications 2004; 28 part II: 279-286.
[24] Shcherbakov AA. Kernels of sequences of complex numbers and their regular transformations. Mathematical Notes 1977; 22: 948-953.
[25] Steinhaus H. Sur la convergence ordinarie et la convergence asymptotique. Colloquium Mathematicum 1951; 2: 73-74. (in French).
[26] Walker RC. The Stone-Čech Compactification. New York, NY, USA: Springer-Verlag, 1974.

[^0]: *Correspondence: mgulfirat@ankara.edu.tr
 2010 AMS Mathematics Subject Classification: 40A35; Secondary 40G15

