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1. Introduction
The category objects (or internal categories) are a generalisation of the notion of small category, and are defined
with respect to a fixed arbitrary category. If the arbitrary category is taken to be the category of sets then one
recovers the theory of small categories.

The idea is that given a category C, we obtain the definition of a ’category in C ’ by expressing the
definition of a usual (small) category completely in terms of commutative diagrams and then interpreting those
diagrams in C.

Category objects were introduced by Ehresmann [9] in the 1960s, and by now they are an important part
of category theory [5]. Some other works about internal categories can be found in [4, 12].

Crossed module was defined as a model of homotopy 2-types by Whitehead [13]. In [6, 7], crossed
modules were considered as 2-dimensional groups. The commutative algebra version of this construction has
been adapted by Arvasi and Porter [1, 11].

Crossed modules have been applied in many areas such that group presentations, algebraic K-theory and
also homological algebra. In [8] and the study of Porter ∗, crossed module theory has been analysed with detail.
For the (commutative) algebraic version of crossed modules can be seen in [1, 10, 11]. Also, Arvasi and Odabaş
have given computing crossed modules in [2, 3].

In this paper, we give a notion called categorical R -algebra and show that a categorical R -algebra is
a category object in C =A lgR and also a monoid object in C =Cat. After thinking a cetegorical R -algebra
as a category object and a monoid object, we give some equivalencies about crossed R -modules and simplicial
R -algebras.
∗Correspondence: zarvasi@ogu.edu.tr
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2. Preliminaries
We recall some standart definitions will be used in this work. See [1, 4, 10, 11] and the study of Porter.∗

The category of category objects (Cat(C).):
Let C be any category. A category object in C consists of:

• An object of object O

• An object of morphism M

together with

• source and target morphisms s, t : M −→ O

• an identity morphism e : O −→ M

• a composition morphism c : M ×O M −→ M

such that the following diagrams commute, expressing the usual category laws:
(i) laws specifying the source and target of composite morphisms

M

t

��

M ×O M

c

��

Pr1 //Pr2oo M

s

��
O M

s
//

t
oo O

(ii) laws specifying the source and target of identity morphism

O O

e

��

idO //idOoo O

M

s

>>~~~~~~~~~~~~~~~~

t

``@@@@@@@@@@@@@@@@

(iii) the associative law for composition of morphisms

M ×O M ×O M

idM×c

��

c×idM // M ×O M

c

��
M ×O M

c
// M
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(iv) the left and right unit laws for composition of morphisms

O ×O M
e×idM //

Pr2
&&NN

NNN
NNN

NNN
M ×O M

c

��

M ×O O
idM×eoo

Pr1
xxppp

ppp
ppp

pp

M

The pullback M ×O M is defined via the square:

M ×O M
ρ2 //

ρ1

��

M

s

��
M

t
// O

We denote this category object with C = (O,M, s, t, e, c).

A functor from C to D consists of

• a morphism F0 : O −→ O′

• a morphism F1 : M −→ M ′

such that

sCo = msD, tCo = mtD, eCm = oeD and cCm = (m um)cD.

where C, D are category objectd in any category C .
Thus we have a category of category objects in C and this category is denoted by Cat(C).

Monoidal category:
A monoidal category is a category C equipped with

• a functor ⊗ : C × C −→ C out of the product category of C with itself, called tensor product,

• an object I called the unit object

• a natural isomorphism

α : ((−)⊗ (−))⊗ (−)
∼=−→ (−)⊗ ((−)⊗ (−))

with components of the form

αx,y,z : (x⊗ y)⊗ z
∼=−→ x⊗ (y ⊗ z)

called the associator,

• a natural isomorphism

λ : (1⊗ (−))
∼=−→ (−)

with components of the form

λx : (1⊗ x)
∼=−→ x

called the left unitor, and
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• a natural isomorphism

ρ : ((−)⊗ 1)
∼=−→ (−)

with componets of the form

ρx : (x⊗ 1)
∼=−→ x

called the right unitor

such that the axioms known as triangle and pentagon axioms are satisfied.
Examples:

(i) C =Set is a cartesian monoidal category with the cartesian product and one-element sets serving as
the unit.

(ii) C = Cat is a cartesian monoidal category with the product category and the category with one
object and only its identity morphism serving as the unit.

(iii) C = ModR (R is a commutative ring) is a monoidal category with the tensor product of modules
⊗R serving as the monoidal product and the ring R serving as the unit.

(iv) C =AlgR (R is a commutative ring) is a monoidal category with the tensor product of algebras as
the monoidal product and R as the unit.

The category of monoid objects (Mon(C)):
A monoid object in a monoidal category (C,⊗, I) is an object E in C together with two morphisms

µ : E ⊗ E −→ E called multiplication,
η : I −→ E called unit,

such that the following diagrams commutative:
(i)

(E ⊗ E)⊗ E

µ⊗1

��

α // E ⊗ (E ⊗ E)
1⊗µ // E ⊗ E

µ

��
E ⊗ E

µ
// E

(ii)

I ⊗ E
η⊗1 //

λ
%%JJ

JJ
JJ

JJ
JJ

E ⊗ E

µ

��

E ⊗ I
1⊗ηoo

ρ
zzttt

tt
tt
tt
t

E

In the above notions, I is the unit element and α, λ and ρ are respectively the associativity, the left
identity and right identity of the monoidal category C .

Examples:

(a) A monoid object in the category of sets C = Sets is a monoid.
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(b) A monoid object in the category of R -modules C = ModR is an R -algebra.
(c) A monoid object in the category of simplicial R -modules C =sModR is a simplicial R -algebra.
(d) A monoid object in the category of categories C =Cat is a small category C with two functors

µ : C × C −→ C and η : C⊗0 −→ C where C⊗0 is a category with one object and only its identity morphism.

Let C and D be monoid objects in C. A monoid morphism from C to D in C is a morphism C
φ−→ D

that is compatible with the multiplication and unit, that is the diagrams

C ⊗ C
µC

//

φ⊗φ

��

C

φ

��
D ⊗D

µD

// D

and

I
ηC

//

ηD ��?
??

??
??

C

φ

��
D

are commutative. (µCφ = (φ⊗ φ)µD and ηCφ = ηD )
Thus, we have a category of monoid objects which is denoted by Mon(C).

Crossed modules:
In this paper, all algebras will be commutative. Also, we accept that k is a commutative ring, R is a

k -algebra with identity.
A crossed module, (C,R, ∂) , (or shortly crossed R -module) consists of an R -algebra C and a morphism

∂ : C −→ R with actions R on C, written (r, c) 7−→ r · c for r ∈ R, c ∈ C, satisfying the following conditions:
(CM1)

∂(r · c) = r∂(c)

for all r ∈ R and c ∈ C.

(CM2)

∂(c) · c′ = cc′

for all c, c′ ∈ C.

A morphism, (α, β) : V −→ V ′ of crossed modules consists of morphisms α : C −→ C ′ and β : R −→ R′

such that
(i) ∂β = α∂′

(ii) α(r · c) = α(c) · β(r)

for all c ∈ C, r ∈ R where V = (C,R, ∂) and V ′ = (C ′, R′, ∂′) are crossed modules .
Thus, we have a category of crossed modules from the above definitions and it is denoted by XMod.

Examples:

(a) Let A be an R -algebra and I be an ideal of A . Then (I, A, i) is a crossed module with the
multiplication action of A on I . Conversely, we induce an ideal from a given crossed module. Indeed, for a
given crossed module (C,R, ∂), ∂(C) is an ideal of R.
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(b) Let M be an R -module. Then (M,R, 0) is a crossed module. Conversely, for a crossed module
(C,R, ∂), one can get that ker ∂ is an R/∂(C) -module.

(c) Let ∂ : C −→ R be a surjective R -algebra homomorphism. Define the action of R on C by r · c = r̃c

where r̃ ∈ ∂−1(r). Then, (C,R, ∂) is a crossed module with the defined action.
(d) Let C be an R -algebra such that Ann(C) = 0 or C2 = C then (C, µ(C), ∂) is a crossed module,

where µ(C) is the algebra of multipliers of C and ∂ is the canonical homomorphism.

Simplicial algebras:
Let R be a commutative ring with identity. We will use the term commutative algebra to mean a

commutative algebra over R.

A simplicial (commutative) algebra E consists of a family of algebras {En} together with face and
degeneracy maps di = dni : En → En−1, 0 ≤ i ≤ n , (n 6= 0) and si = sni : En → En+1 , 0 ≤ i ≤ n , satisfying
the usual simplicial identities. It can be completely described as a functor ∆op →AlgR where ∆ is the category
of finite ordinals [n] = {0 < 1 < · · · < n} and increasing maps. We have a category of simplicial algebras the
above definitions and it is denoted by sAlgR . We have for each k ≥ 0 a subcategory ∆≤k determined by the
objects [j] of ∆ with j ≤ k . A k -truncated simplicial commutative algebra is a functor from (∆op

≤k) to AlgR .

Consider the product ∆ × ∆ whose objects are pairs ([p], [q]) and whose maps are pairs of weakly
increasing maps. A functor (∆ × ∆)op →AlgR is called a bisimplicial algebra with value in AlgR . This
functor consists of algebras Ep,q and homomorphisms

dhi : Ep,q → Ep−1,q

shi : Ep,q → Ep+1,q i : 0, . . . , p
dvj : Ep,q → Ep,q−1

svj : Ep,q → Ep,q+1 j : 0, . . . , q

such that the maps dhi , s
h
i commute with dvj , s

v
j and dhi , s

h
i (resp. dvj , s

v
j ) satisfy the usual simplicial identities.

Here let dhi , s
h
i denote the horizontal operators and let dvj , s

v
j denote the vertical operators. We have a category

of bisimplicial algebras from the above definitions and it is denoted by s2 AlgR.

3. Categorical R-algebras as category objects
In this section, we give a notion called categorical R -algebra and show that a categorical R -algebra is a category
object in C =A lgR .

Definition 3.1 A categorical R -algebra is a (small) category C equipped with

• R -algebras O = ObC and M = MorC ;

• a functor
µC : C ⊗ C −→ C

produced by the multiplication morphisms

µO : O ×O −→ O

and
µM : M ×M −→ M.

1324



ARVASİ and ILGAZ ÇAĞLAYAN/Turk J Math

If C and D are categorical R -algebras, a morphism C φ−→D is a functor. Then one has a category, of
course. It will usually be denoted by cAlgR .

Lemma 3.2 Let C be a categorical R -algebra.
(a) The source, target and identity morphisms

M
s //
t

// O

e

gg

and the composition morphism
c : M ×O M−→M

are R -algebra morphisms.
(b) If C⊗0 is a small category with one object and only its identity morphism, then

ηC : C⊗0 −→ C

is a functor.

Proof (a) From C ⊗ C µC

−→C is a functor, we have the following commutative diagrams:

M ⊗M
s //
t

//

α

��

O ⊗O

e

ii

β

��
M

s //
t

// O

e

hh

where α = MorµC and β = ObµC , that is
αs = sβ
αt = tβ
βe = eα

and
M×O M c //

α×α

��

M

α

��
M ×O M

c
// M

that is,
cα = (α× α)c.

where M =Mor(C⊗C).
So, we can write

γs = αs

= sβ

= (s⊗ s)δ
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and

γt = αt

= tβ

= (t⊗ t)δ

as well as

δe = βe

= eα

= (e⊗ e)γ.

where γ = µM and δ = µO.

By considering the canonical isomorphism

ξ : (M ×O M)⊗ (M ×O M) −→ (M⊗M)×O (M⊗M)

we also have

εc = ξ(γ × γ)c

= ξ(α× α)c

= ξcα

= (c⊗ c)α,

where ε = µM×OM . Thus, s, t, e and c are R -algebra homomorphisms.
(b) According to (a), the structure morphisms s, t, e and c are R -algebra homomorphisms. Therefore,

we have

ηMs = ηO = s⊗0ηO = sηO,

ηM t = ηO = t⊗0ηO = tηO,

ηOe = ηM = e⊗0ηM = eηM

and

(ηM ×O ηM )c = ηMt⊓sMc

= c⊗0ηM

= cηM ,

that is, ηC with Ob(ηC) := ηO and Mor(ηC) := ηM is a functor. 2

Thus, a categorical R -algebra is a category with R -algebras O and M such that the source and target
maps s, t : M −→ O, the identity map e : O −→ M, and the composition map c : M ×O M −→ M are
R -algebra morphisms.

Proposition 3.3 If C is a categorical R -algebra, then
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(i) the composition can be given as

c : M×OM −→ M
(m,n) 7−→ m− (et)(m) + n

with an inverse of m up to composition is (et)(m)−m+ (es)(m).

(ii) KertKers = {0}.

Proof (i) t(m) = s(n) where m,n ∈ M are composable morphisms. As c and e are R -algebra homomor-
phisms, we can write

c(m,n) = c(m+ 0, 0 + n)

= c(m+ 0, (et)(m)− (et)(m) + n)

= c(m, (et)(m)) + c(0,−(et)(m) + n)

= m− (et)(m) + n.

On the other hand, as

t((et)(m)−m+ (es)(m)) = t(et)(m)− t(m) + t(es)(m) = s(m)

s((et)(m)−m+ (es)(m)) = s(et)(m)− s(m) + s(es)(m) = t(m)

also
c(m, (et)(m)−m+ (es)(m)) = m− (et)(m) + (et)(m)−m+ (es)(m) = (es)(m)

while
c((et)(m)−m+ (es)(m),m) = (et)(m)−m+ (es)(m)− (es)(m) +m = (et)(m),

we can get that (et)(m)−m+ (es)(m) is the inverse of m.

(ii) Let m ∈ Kert, n ∈ Kers. Then we have t(m) = 0 = s(n) and according to (a) we can write

mn = m− (et)(m) + n

= m− (es)(n) + n

= n− (et)(m) +m

= n− (es)(n) +m

= nm.

Thus, we have KertKers = {0}. 2

Lemma 3.4 If M
s //
t

// O

e

gg is retraction (i.e, se = te = id) and KersKert = {0}, then there exists

a categorical R -algebra C with ObC := O, MorC := M, and categorical structure morphisms s, t, e.
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Proof We have composite c(m,n) := m − (et)(m) + n , for elements m,n ∈ M with t(m) = s(n). On the
other hand, for m,n,m′, n′ ∈ M with t(m) = s(n) and t(m′) = s(n′)

c(m,n)c(m′, n′) = (m− (et)(m) + n)(m′ − (et)(m′) + n′)

= (m− (et)(m))m′ + nm′ + (m− (et)(m))(n′ − (es)(n′)) + n(n′ − (es)(n′))

= mm′ − (et)(m)m′ + nm′ +mn′ − (et)(m)n′ −m(es)(n′) + (et)(mm′) + nn′

−n(es)(n′)

= c(mm′, nn′) +A+B

where

A = mn′ − (et)(m)n′ −m(es)(n′) + (et)(m)(es)(n′)

= (m− (et)(m))(n′ − (es)(n′)) ∈ KertKers

and

B = nm′ − (es)(n)m′ − n(et)(m′) + (es)(n)(et)(m′)

= (n− (es)(n))(m′ − (et)(m′)) ∈ KersKert.

Since KersKert = {0}, A = B = 0. So,

c(m,n)c(m′, n′) = c(mm′, nn′) = c((m,n)(m′, n′)).

That is, the morphism (R -module homomorphism) c is an R -algebra homomorphism. Now, we check the
category axioms given in definition of category object in C.

(i) We have

(sc)(m,n) = s(m− (et)(m) + n)

= s(m)− s(et)(m) + s(n)

= s(m)− s(n) + s(n)

= s(m)

and

(tc)(m,n) = t(m− (et)(m) + n)

= t(m)− t(et)(m) + t(n)

= t(m)− t(m) + t(n)

= t(n)

for all m,n ∈ M with t(m) = s(n).

(ii) The identities se = te = id are given by assumption.
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(iii) We have

c(k, c(m,n)) = c(k,m− (et)(m) + n)

= k − (et)(k) +m− (et)(m) + n

= k − (es)(m) +m− (es)(n) + n

= c(k − (es)(m) +m,n)

= c((k,m), n)

for all k,m, n ∈ M with t(k) = s(m) and t(m) = s(n) , therefore the composition is associative .
(iv) We have

c((es)(m),m) = (es)(m)− (et)(es)(m) +m

= (es)(m)− (es)(m) +m

= m

and

c(m, (et)(m)) = m− (et)(m) + (et)(m)

= m

for m ∈ M.

Thus, C with ObC := O, MorC := M and sC = s, tC = t, eC = e, cC = c is a category object in AlgR.
2

Corollary 3.5 A categorical R -algebra is a category object in C =AlgR.

Proof Let C be categorical R -algebra. Then C is a (small) category such that O and M are R -algebras.
According to Lemma 3.2 (a), the categorical structure morphisms s, t, e and c are R -algebra morphisms. On
the other hand, from the Proposition 3.3, the composition morphism is defined as

c : M×OM −→ M
(m,n) 7−→ m− (et)(m) + n.

We will show that this composition map satisfy the diagrams of the definition of category object. The proofs
of (i)-(iii)-(iv) are similar to the proofs given in Lemma 3.4. Hence we only show (ii).

(ii) For m : x → y , we have

c(e(x),m) = e(x)− es(m) +m

= e(x)− e(x) +m

= m

and

c(m, e(y)) = m− es(e(y)) + e(y)

= m− e(y) + e(y)

= m.

2
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4. Equivalence between categorical R-algebras and crossed R-modules
In this section, we show that the categories XMod and cAlgR are equivalent. By using Corollary 3.5, we can
show this equivalency. Of course, this is the similar way of Porter works [11, 12].

Now, we remember that for the given crossed module (C,R, ∂), the semidirect product C ⋊R is formed
using the action of R on C the crossed module provides. Hence, we have

(c, r)(c′, r′) = (cc′ + cr′ + rc′, rr′)

for (c, r), (c′, r′) ∈ C ⋊R .

Proposition 4.1 Given a crossed module (C,R, ∂), we have a categorical R -algebra C, in which the objects
and morphisms are given by

ObC := R and MorC := C ⋊R,

source, target and identity morphisms (R -module homomorphisms) are given by

s(c, r) = ∂(c) + r

t(c, r) = r

e(r) = (0, r)

for (c, r) ∈ C ⋊R and r ∈ ObC , the R -algebra of composable morphisms is

{(c2, ∂(c1) + r1), (c1, r1)) ∈ MorC×MorC | c1, c2 ∈ C, r1 ∈ R}

and the composition in C is given by

c((c2, ∂(c1) + r1), (c1, r1)) := (c2 + c1, r1)

for c1, c2 ∈ C, r1 ∈ R .

Proof Since ObC = R and MorC =C ⋊ R are R -algebras, firstly we show that s, t and e are R -algebra
homomorphisms. We get

s((c, r)(c′, r′)) = s(cc′ + cr′ + rc′, rr′)

= ∂(cc′ + cr′ + rc′) + rr′

= ∂(cc′) + ∂(cr′) + ∂(rc′) + rr′

s(c, r)s(c′, r′) = (∂(c) + r)(∂(c′) + r′)

= ∂(c)∂(c′) + ∂(c)r′ + r∂(c′) + rr′

= ∂(cc′) + ∂(cr′) + ∂(rc′) + rr′

that is s((c, r)(c′, r′)) = s(c, r)s(c′, r′) and

t((c, r)(c′, r′)) = t(cc′ + cr′ + rc′, rr′)

= rr′

= t(c, r)t(c′, r′)
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for (c, r), (c′, r′) ∈ MorC as well as

e(rr′) = (0, rr′) = (0, r)(0, r′) = e(r)e(r′)

for r, r′ ∈ ObC.
The R -algebra of composable morphisms can be computed as follows:

MorC ×O MorC = {((c2, r2), (c1, r1)) ∈MorC ×MorC | t(c2, r2) = s(c1, r1)}

= {((c2, r2), (c1, r1)) ∈MorC ×MorC | r2 = ∂(c1) + r1}

= {((c2, ∂(c1) + r1), (c1, r1)) ∈MorC ×MorC | c1, c2 ∈ C, r1 ∈ R}.

Thus c is an R -algebra homomorphism since

c(((c2, ∂(c1) + r1), (c1, r1))((c
′
2, ∂(c

′
1) + r′1), (c

′
1, r

′
1)))

= c((c2, ∂(c1) + r1)(c
′
2, ∂(c

′
1) + r′1), (c1, r1)(c

′
1, r

′
1))

= c((c2c
′
2 + c2(∂(c

′
1) + r′1) + (∂(c1) + r1)c

′
2, (∂(c1) + r1)(∂(c

′
1) + r′1)),

(c1c
′
1 + c1r

′
1 + r1c

′
1, r1r

′
1))

= c((c2c
′
2 + c2c

′
1 + c2r

′
1 + c1c

′
2 + r1c

′
2, ∂(c1c

′
1) + ∂(c1r

′
1) + ∂(r1c

′
1) + r1r

′
1),

(c1c
′
1 + c1r

′
1 + r1c

′
1, r1r

′
1))

= (c2c
′
2 + c2c

′
1 + c2r

′
1 + c1c

′
2 + r1c

′
2 + c1c

′
1 + c1r

′
1 + r1c

′
1, r1r

′
1)

and on the other hand

c((c2, ∂(c1) + r1), (c1, r1))c((c
′
2, ∂(c

′
1) + r′1), (c

′
1, r

′
1)))

= (c1 + c2, r1)(c
′
1 + c′2, r

′
1)

= (c1c
′
1 + c1c

′
2 + c2c

′
1 + c2c

′
2 + r1c

′
1 + r1c

′
2 + c1r

′
1 + c2r

′
1, r1r

′
1).

Now, we have to check that C satisfies the axioms for a category object in C =AlgR given in its definition.
(i) We have

(se)(r) = s(e(r)) = s(0, r) = ∂(0) + r = r

and
(te)(r) = t(e(r)) = t(0, r) = r

for r ∈ ObC.
(ii) Given a pair of composable morphisms ((c2, ∂(c1) + r1), (c1, r1)) in C , we have

(sc)((c2, ∂(c1) + r1), (c1, r1)) = s(c2 + c1, r1)

= ∂(c2 + c1) + r1

= ∂(c2) + ∂(c1) + r1

= s(c2, ∂(c1) + r1)

and

(tc)((c2, ∂(c1) + r1), (c1, r1)) = t(c2 + c1, r1)

= r1

= t(c1, r1)
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(iii) We have

c((c3, ∂(c2) + ∂(c1) + r1), c((c2, ∂(c1) + r1), (c1, r1))))

= c((c3, ∂(c2) + ∂(c1) + r1), (c2 + c1, r1))

= (c3 + c2 + c1, r1)

= c((c3 + c2, ∂(c1) + r1), (c1, r1))

= c(c(c3, ∂(c2) + ∂(c1) + r1), (c2, ∂(c1) + r1), (c1, r1))

for c1,c2, c3 ∈ C, r1 ∈ R.

(iv) We get

c((es)(c, r), (c, r)) = c(e(∂(c) + r), (c, r))

= c((0, ∂(c) + r), (c, r))

= (0 + c, r) = (c, r)

andφ

c((c, r), (et)(c, r)) = c((c, r), (0, r))

= (c+ 0, r) = (c, r)

for (c, r) ∈ MorC.
Thus, C is a category object in AlgR. 2

Corollary 4.2 We have a functor
F : XMod −→ cAlgR.

Proposition 4.3 For every categorical R -algebra C , we have a crossed module (C,R, ∂) with given by

C := Kert, R := ObC

structure morphism ∂ := s|Kert, where the action of the R on C is given by r · c := e(r)c for r ∈ R, c ∈ C.

Proof Since MorC is an R -algebra and s is an R -algebra homomorphism, Kert is an R -algebra and s|Kert

is an R -algebra homomorphism. There is a well defined ObC -action on Kert because of e is an R -algebra
homomorphism. Now, we will show that (CM1) and (CM2).

(CM1) We have

s(r · c) = s(e(r)c)

= s(e(r))s(c)

= rs(c)

for r ∈ R = ObC and all c ∈ MorC , and hence in particular

(s|Kert)(r · c) = r(s|Kert(c))
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for r ∈ ObC , c ∈ Kert.

(CM2) We have

s|Kert(n) ·m = s(n) ·m

= e(s(n))m

= nm

for all n,m ∈ Kert. 2

Corollary 4.4 We have a functor
G : cAlgR −→ XMod.

Theorem 4.5 The categories XMod and cAlgR are equivalent.

Proof For the functors XMod
F−→cAlgR and cAlgR

G−→ XMod , we show that GF ∼= idcAlgR and
FG ∼= idXMod . Let (C,R, ∂) be a crossed module. We have

FG(C,R, ∂) = F (R,C ⋊R, s, t, e, c)

= (Kert,R, s|Kert)

and

Kert = {(c, r) | t(c, r) = 0}

= {(c, r) | r = 0}

= {(c, 0) | c ∈ C}

= C ⋊ {0}.

Also
R×Kert −→ R
(r, (c, 0)) 7−→ r · (c, 0) = e(r)(c, 0) = (0, r)(c, 0) = (r · c, 0)

and
s|Kert(c, 0) = s(c, 0) = ∂(c) + 0 = ∂(c).

That is we obtain FG(C,R, ∂) = (C ⋊ {0}, R, s|Kert) ∼= (C,R, ∂) = idXMod(C,R, ∂) .
On the other hand, let C = (ObC,MorC, s, t, e, c) be a categorical R -algebra. We have

GF (C) = G(Kert,ObC, s|Kert)

= (ObC,Kert⋊ObC, s, t, e, c)

and for (m, o) ∈ Kert⋊ObC we can write

s(m, o) = s|Kert(m) + o = s(m) + o

t(m, o) = o

e(o) = (0, o).
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Now, we must show Kert⋊ObC ∼= MorC . Firstly, we define a function such that

φ : MorC −→ Kert⋊ObC
m 7−→ (m− (et)(m), t(m)).

Since

t(m− (et)(m)) = t(m)− t(et)(m)

= t(m)− t(m) = 0

m− (et)(m) ∈ Kert , φ is well defined. Also since for m,n ∈ MorC

φ(mn) = (mn− (et)(mn), t(mn))

= (mn− (et)(m)(et)(n), t(mn))

and

φ(m)φ(n) = (m− (et)(m), t(m))(n− (et)(n), t(n))
= ((m− (et)(m))(n− (et)(n)) + (m− (et)(m))t(n) + t(m)(n− (et)(n)), t(m)t(n))
= (mn−m(et)(n)− (et)(m)n+ (et)(m)(et)(n) + (m− (et)(m))e(t(n)) + e(t(m))(n− (et(n))), t(mn))
(∵action of ObC on Kert )
= (mn− (et)(m)(et)(n), t(mn),

φ is a homomorphism. Also, we have an antihomomorphism

φ−1 : Kert⋊ObC −→ MorC
(m, o) 7−→ e(o) +m

and since

φφ−1(m, o) = φ(φ−1(m, o))

= φ(e(o) +m)

= (e(o) +m− (et)(e(o) +m), t(e(o) +m))

= (e(o) +m− e(te)(o)− (et)(m), (te)(o) + t(m))

= (m, o) (∵ te = id and m ∈ Kert)

and

φ−1φ(m) = φ−1(φ(m))

= φ−1(m− (et)(m), t(m))

= e(t(m)) +m− (et)(m)

= m,

φ is an isomorphism. Thus GF ∼= idcAlgR . 2

1334



ARVASİ and ILGAZ ÇAĞLAYAN/Turk J Math

5. Categorical R-algebras as monoid objects

Proposition 5.1 A categorical R -algebra is a monoid object in C = Cat.

Proof Let C be a categorical R -algebra. Then O and M are R -algebras, that is, we have

(1⊗ µA)µA = (µA ⊗ 1)µA,

(ηA ⊗ 1)µA = Pr2 and (1⊗ ηA)µA = Pr1,

for A ∈ {O,M}, cf. definition of monoid object in C. Furthermore, by the definition of a categorical R -algebra,
we have a functor µC given by Ob(µC) := µO and Mor(µC) := µM . Additionally, Lemma 3.2 (b) tells us that
there is a functor ηC where Ob(ηC) := ηO, Mor(ηC) := ηM . This implies

(1⊗ µC)µC = (µC ⊗ 1)µC ,

(ηC ⊗ 1)µC = Pr2 and (1⊗ ηC)µC = Pr1,

that is, C together with the functors µC and ηC is an monoid object in Cat. 2

Corollary 5.2 The followings are equivalent:

(1) a crossed R-module (C,R, ∂)

(2) a categorical R-algebra

(3) a monoid object in Cat

(4) a simplicial R-algebra whose Moore complex is of lenght 1.

Proof (1) ⇐⇒ (2) ⇐⇒ (3) are clear from the Theorem 4.5 and Proposition 5.1. Now we will show that
(3) ⇐⇒ (4). We obtain a simplicial R -module by taking the nerve. This simplicial R -module is a simplicial
R -algebra because the category is monoid object in Cat. Its Moore complex is

. . . 1 −→ 1 −→ C −→ R,

which is of lenght 1.
Suppose that there is a simplicial algebra E whose Moore complex is of lenght 1, that is

. . . 1 −→ 1 −→ ker d1 −→ E0,

By choosing C = E1 and R = image of E0 in E1 by the degeneracy map and the structural morphisms s = d1

and t = d0, we get a categorical R -algabra. From the relations between face and degeneracy maps, we have
se = id = te. On the other hand, to prove KersKert = {0} it is sufficient to see that for x ∈ Kerd1 and
y ∈ Kerd0 the element [so(x), s0(y) − s1(y)] of E2 is in fact in Kerd1 ∩Kerd2 and its image by d0 is [x, y].

As Kerd1 ∩Kerd2 = 0, we have [Kerd0,Kerd1] = 0.

Therefore, from the Lemma 3.4 , we have a categorical R -algebra and use of the previous equivalence
gives the monoid object in Cat with O = E0 and M = E1. 2
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