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Abstract: In 2009, Gyurko introduced Π -rough path which extends p -rough path. Inspired by this work we introduce
the degree-(Π, N) signature which can be treated as the step-N signature for some Π . The degree-(Π, N) signature
holds some algebraic properties which will be proven in this paper.

Key words: Rough path, signature, Lie group, Lie algebra

1. Introduction
The theory of rough path introduced by Lyons in [16]. The author generalizes a classical theory of controlled
differential equations which is sufficiently robust. In particular Lyons developed differential equations of the
form dyt = f(yt)dxt where x be a path of finite p -variation. In the pathwise sense, Lyons [17, 18] presents the
definition of a wide class of stochastic differential equations. Since its introduction, the theory has discussed
intensively. We refer the reader to study the papers [1–13, 16–18].

In [14, 15], the authors introduced the concept of rough paths of inhomogeneous degree of smoothness
sketched by [16] which it is called geometric Π -rough paths. The authors have proved that the geometric
Π -rough paths can be handle as p -rough paths for a sufficiently large p . Furthermore they also have proved
the existence of integrals of one-forms under weaker conditions. Moreover, the authors presented differential
equations driven by geometric Π -rough paths and proved the existence and uniqueness of solution.

In this paper we introduce the degree-(Π, N) signature which extend the step-N signature on Rd (see
[10, Chapter 7]). This is inspired by Gyurko in 2009 which discussed Π -rough path. The first main result, we
present Chen identity which it is basic property for Π -rough path. The structure of the paper will be as follows.
In Section 2 we shortly introduce some definitions and notations about Π -rough paths. For more details we
refer to [14, 15]. In Section 3, we present the main result of this paper which we introduce the degree-(Π, N)

signature and the algebraic properties. Finally, in Section 4, we introduce Lie group 1 + tttΠ,s(RI) and Lie
Algebra tttΠ,s(RI) and show some properties in these spaces.

2. Preliminaries
In this section we recall some definitions and notations which have discussed in [14, 15].
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2.1. Notations
In this subsection we shortly introduce some notations. Let R+ be a set of real positive and k ∈ N . Suppose
Π = (p1, · · · , pk) be k -tuple of R+ where pi ≥ 1 for all i ∈ {1, · · · , k} . We now give an index R = (r1, · · · , rl) ,
called a k -multiindex, such that rj ∈ {1, 2, · · · , k} for all j ∈ {1, 2, · · · , l} and ‖R‖ denotes the length of R .
We will write empty multiindex with ϵ . Moreover we denote by AΠ the set of all k -multiindexes of finite
length. We now introduce some operators in AΠ . Suppose R = (r1, r2, · · · , rl) ∈ AΠ , the k -multiindexes −R

and R− given by

−R := −(r1, r2, · · · , rl−1, rl) = (r2, · · · , rl−1, rl),

R− := (r1, r2, · · · , rl−1, rl)
− = (r1, r2, · · · , rl−1).

Furthermore, the concatenation defined by

R ∗Q = (r1, · · · , rl) ∗ (q1, · · · , qm) = (r1, · · · , rl, q1, · · · , qm),

where the multiindexes R = (r1, · · · , rl), Q = (q1, · · · , qm) ∈ AΠ .

Example 2.1 i. The tuples (1), (2), (1, 2), (1, 1, 2), (2, 2, 1, 2) are 2-multiindexes.

ii. The tuples (1, 3), (5, 1) are not 2-multiindexes, because 3 and 5 are greater than 2 .

iii. ‖(1)‖ = 1, ‖(2)‖ = 1, ‖(1, 2)‖ = 2, ‖(1, 1, 2)‖ = 3 and ‖(2, 2, 1, 2)‖ = 4 .

iv. Suppose that Π = ( 32 ,
4
3 ) be 2-tuple, then

(1), (2), (1, 2), (1, 1, 2), (2, 2, 1, 2) ∈ AΠbut (1, 3) 6∈ AΠ.

iv. Suppose that Π be 2-tuple. Let x1 ∈ R, x2 ∈ R2 and xxx = x1 + x2 ∈ R⊕ R2 , we have

xxx⊗0 = 111,where 111 is unit in R⊕ R2.

xxx⊗1 = x1 + x2 =
∑

R=(r1)∈AΠ

∥R∥=1

xr1

xxx⊗2 = x1 ⊗ x1 + x1 ⊗ x2 + x2 ⊗ x1 + x2 ⊗ x2 =
∑

R=(r1,r2)∈AΠ

∥R∥=2

xr1 ⊗ xr2

xxx⊗3 =

2∑
r1=1

2∑
r2=1

2∑
r3=1

xr1 ⊗ xr2 ⊗ xr3 =
∑

R=(r1,r2,r3)∈AΠ

∥R∥=3

xr1 ⊗ xr2 ⊗ xr3

...

xxx⊗n =

2∑
r1=1

· · ·
2∑

rn=1

xxxr1 ⊗ · · · ⊗ xrn =
∑

R=(r1,··· ,rn)∈AΠ

∥R∥=n

xr1 ⊗ · · · ⊗ xrn .
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Finally, we have

∞∑
n=0

xxx⊗n =

∞∑
n=0

∑
R=(r1,··· ,rn)∈AΠ

∥R∥=n

xr1 ⊗ · · · ⊗ xrn

:=
∑

R=(r1,··· ,rl)∈AΠ

xr1 ⊗ · · · ⊗ xrl .

We now introduce the space of series of tensor. Let k ∈ N and a family {V i : i = 1, · · · , k} of Banach
spaces. Suppose Π = (p1, · · · , pk) ∈ (R+)

k be as before and V = V 1 ⊕ · · · ⊕ V k . We denote by T ((V)) the
space of formal series of tensors V defined by

T ((V)) :=
∞⊕

n=0

V⊗n =
⊕

(r1,··· ,rl)∈AΠ

V r1 ⊗ · · · ⊗ V rl ,

and the notation V⊗R defined by
V⊗R = V r1 ⊗ · · · ⊗ V rl ,

where R = (r1, r2, · · · , rl) ∈ AΠ . Moreover for i ∈ {1, · · · , k} we write the projections

πR := πV r1⊗···⊗V rl : T ((V ))→ V ⊗R,

πT ((V i)) : T ((V ))→ T ((V i)).

Furthermore the notation aaa⊗R given by

aaaR := πR(aaa) = πV r1⊗···⊗V rl (aaa),

and we can write
aaa =

∑
R∈AΠ

aaaR.

Example 2.2 Suppose that Π be 2-tuple. Let x1 ∈ R, x2 ∈ R2 and xxx = x1 + x2 ∈ R ⊕ R2 . We can observe
that aaa =

∑∞
n=0 xxx

⊗n ∈ T ((R⊕ R2)) . We obtain

πR(aaa) = aaaR = xr1 ⊗ · · · ⊗ xrl

for R = (r1, · · · , rl) ∈ AΠ .

We now introduce truncated tensor algebra of V . We first define the function nj for j ∈ {1, · · · , k} by

nj(R) := card{i|ri = j, ri ∈ R}

and the degree-Π of R given by

degΠ(R) =

k∑
j=1

nj(R)

pj
.
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Thus we have degΠ(ϵ) = 0 . Moreover, we introduce a function ΓΠ : AΠ → [0,∞) given by

ΓΠ(R) = Γ

(
n1(R)

p1
+ 1

)
× · · · × Γ

(
nk(R)

pk
+ 1

)
, for R ∈ AΠ,

where Γ(x) is gamma function. Furthermore we denote by AΠ
s and BΠ

s the sets given by

AΠ
s := {R = (r1, · · · , rl)|l ≥ 1, degΠ(R) ≤ s}

BΠ
s :=

{
aaa ∈ T ((V))|∀R ∈ AΠ

s , aaa
R = 000

}
.

where s be a real nonnegative. We can observe that BΠ
s is an ideal in T ((V)) . Finally, we give the truncated

tensor algebra of order (Π, s) which is given by

T (Π,s)(V) := T ((V))/BΠ
s .

Remark 2.3 T (Π,s)(V) is isomorphic to ⊕R∈AΠ
s
V⊗R equipped with the product

a⊗Π,s b :=

 ∑
Q∈AΠ

s

aaaQ

⊗Π,s

 ∑
R∈AΠ

s

bbbR

 :=
∑

Q∗R∈AΠ
s

aaaQ ⊗ bbbR.

for aaa,bbb ∈ T (Π,s)(V) .
We can also write

aaa⊗Π,s bbb =
∑

R∈AΠ
s

πR(aaa⊗Π,s bbb),

where

πR=(r1,··· ,rl)(aaa⊗Π,s bbb) =

l∑
j=0

π(r1,··· ,rj)(aaa)⊗ π(rj+1,··· ,rl)(bbb).

2.2. Π-rough paths

In this section we introduce Π -rough paths which have discussed in [14, 15]. We first introduce control
function which given by [18]. Let T > 0 , a control (function) ω is a nonnegative continuous function on
∆T := {(t, u) : 0 ≤ t ≤ u ≤ T} such that ω(s, t) + ω(t, u) ≤ ω(s, u), for all 0 ≤ s ≤ t ≤ u ≤ T and ω(t, t) = 0 ,
for all t ∈ [0, T ] . Let k, Π and V be as before and s be a positive real number. We define a continuous map
XXX : ∆T → T (Π,s)(V ) , called a multiplicative functional of degree s , such that πε(XXXt,u) = 1 and satisfies Chen
identity

XXXt,v =XXXt,u ⊗XXXu,v

for all 0 ≤ t < u < v ≤ T . Furthermore, XXX is of finite Π variation controlled by ω if

∥∥XXXR
t,u

∥∥ ≤ ω(t, u)degΠ(R)

βkΓΠ(R)

for all (t, u) ∈ ∆T and for all k -multiindex R ∈ AΠ
s . Next, we give the following definition which introduces

Π -rough path.
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Definition 2.4 (Π-rough paths) Let k, Π, ω and V be as before and s be a positive real number. The Π-
rough path in V , denoted by ΩΠ(V) , is the continuous multiplicative functional XXX : ∆T → T (Π,1)(V) controlled
by ω with finite Π-variation. Furthermore we denote by C0,Π

(
∆T , T

(Π,s)
)

the space of all continuous functions

from ∆T into T (Π,s)(V) which has finite Π-variation. The Π-variation metric on this linear space given by

dsΠ(XXX,YYY ) := max
R∈AΠ

s

sup
(tj)∈D([0,T ])

∑
j

∥∥∥XXXR
tj−1,tj − YYY

R
tj−1,tj

∥∥∥1/degΠ(R)

degΠ(R)

,

where D([0, T ]) is the set of all partition of some interval [0, T ] .

3. Degree-(Π, N) signatures

In [10], we see that the step-N signature on Rd . We will generalize it on Ri1 ⊕ · · · ⊕Rik where i1, · · · , ik ∈ N
and k denotes a fixed positive integer. Furthermore, we will verify whether both of the degree-(Π, N) signature
and the step-N signature have the same properties. Therefore we introduce the following definition which relate
with this domain.

Definition 3.1 Let I = (i1, · · · , ik) ∈ Nk be k -tuple natural number. We denote the space RI := Ri1⊕· · ·⊕Rik

endowed with the following metric

dI(aaa,bbb) =

√√√√ k∑
j=1

|bj − aj |2,

where aaa = a1 + · · ·+ ak , bbb = b1 + · · ·+ bk ∈ RI , and |·| is euclidean norm. We also define norm on RI by

‖aaa‖I =

√√√√ k∑
j=1

|aj |2.

We now recall from [10] that, path x : [0, T ]→ RI is said to be

i. Hölder continuous with exponent α ≥ 0 , or simply α−Hölder , if

|x|α−Höl;[0,T ] := sup
0≤s<t≤T

dI(xs, xt)

|t− s|α
<∞;

ii. of finite p -variation for some p > 0 if

|x|p−var;[0,T ] :=

 sup
(tj)∈D([0,T ])

∑
j

dI(xtj−1 , xtj )
p

1/p

<∞,

where D([0, T ]) is the set of all dissections of some interval [0, T ] .

Furthermore we denote by Cα−Höl([0, T ],RI) the set of all α−Hölder paths and Cp−var([0, T ],RI) the set of
continuous paths of finite p -variation.
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We can see that RI and Ri1+···+ik are isomorphic. Furthermore, if ψ : RI 3 xxx = xxx1 + · · · + xxxk 7→ xxx =

(xxx1, · · · ,xxxk)T ∈ Ri1+···+ik is an isomorphism then ‖xxx‖I = ‖ψ(xxx)‖ and dI(xxx) = d(ψ(xxx)) where ‖·‖ and d are
the euclidean norm and the metric, respectively. Therefore, we can recall Proposition 1.38 of [10], where Rd is
replaced by RI .

Proposition 3.2 Let I be as before and the function x ∈ C1−var([0, T ],RI) is not constant, then there exists a
continuous nondecreasing function φ : [0, T ]→ [0, 1] and a path y ∈ C1−Höl([0, 1],RI) such that x = y ◦ φ . In
particular, we have φ(t) = |x|1−var;[0,t] / |x|1−var;[0,T ] and ‖ẏ(r)‖I =(const) for a.e. r ∈ [0, 1] . Furthermore,

there exists ẏ ∈ L∞([0, 1],RI) such that y(t) =
∫ t

0
ẏ(s)ds and

‖ẏ(t)‖I = |x|1−var;[0,T ] = |y|1−Höl;[0,1]

for a.e. t ∈ [0, 1] .

Proof The proof is analogous to the proof of Proposition 1.38 of [10]. 2

In the next part we will use notations which have been introduced by [14] and the Section 2. We also replace
V = V 1 ⊕ · · · ⊕ V k with RI . Throughout this section we denote by SΠ the infinite and countable set which
can be listed in ascending order, i.e. SΠ = {s0 = 0, s1, s2, · · · } where s0 < s1 < · · · .

Lemma 3.3 Let Π = (p1, · · · , pk) be real k -tuple and suppose SΠ = {s0 = 0, s1, · · · } listed in ascending order,
then (

AΠ
sN \{ϵ}

)
⊂
(
AΠ

sN+1
\{ϵ}

)
⊂ {R ∗ (m)|m = 1, · · · , k;R ∈ AΠ

sN }.

Proof We can observe that AΠ
sN − ϵ ⊂ A

Π
sN+1

− ϵ and

{R ∗ (m)|m = 1, · · · , k;R ∈ AΠ
sN } = {R|R− ∈ A

Π
sN }.

Furthermore, let Q ∈ AΠ
sN+1

− ϵ , then we have degΠ(Q) ≤ sN+1 . Therefore, we obtain degΠ(Q−) < sN+1 .

Because SΠ = {s0 = 0, s1, · · · } listed in ascending order then degΠ(Q−) ≤ sN . Finally, we have Q ∈
{R ∗ (m)|m = 1, · · · , k;R ∈ AΠ

sN } and we can conclude

AΠ
sN − ϵ ⊂ A

Π
sN+1

− ϵ ⊂ {R ∗ (m)|m = 1, · · · , k;R ∈ AΠ
sN }.

2

We now give the definition of signatures on RI in the following definition, .

Definition 3.4 (Degree-(Π, N) signatures) Let Π and SΠ be as before and I = (i1, · · · , ik) be real k -tuple.
The degree-(Π, N) signature of x = x1 + · · ·+ xk ∈ C1−var([s, t],RI) is given by

SΠ,N (x)s,t :=
∑

R∈AΠ
sN

R=(r1,··· ,rl)

∫
s<u1<···<ul<t

dxr1u1
⊗ · · · ⊗ dxrlul

.
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We can observe that SΠ,N (x)s,· takes value in TΠ,sN (RI) . From Definition 3.4 we obtain the following theorem.

Theorem 3.5 Let Π, I and SΠ be as before. If x = x1+ · · ·+xk ∈ C1−var([s, t],RI) , then for fixed s ∈ [0, T ) ,

dSΠ,N (x)s,t =

k∑
j=1

SΠ,N (x)s,t ⊗ dxjt

SΠ,N (x)s,s = 1.

Proof Let R = (r1, · · · , rl) is k -multiindex in AΠ
sN , we can write

πR (SΠ,N (x)s,t) =

∫
s<u1<···<ul<t

dxr1u1
⊗ · · · ⊗ dxrlul

=

∫ t

s

(∫
s<u1<···<ul−1<ul

dxr1u1
⊗ · · · ⊗ dxrlul−1

)
⊗ dxrlul

=

∫ t

s

πR− (SΠ,N (x)s,ul
)⊗ dxrlul

.

From Lemma 3.3, we have AΠ
sN − ϵ ⊂ {R ∗ (m)|m = 1, · · · , k;R ∈ AΠ

sN } . Besides that, if R1 6= R2 or m 6= n

then R1 ∗ (m) 6= R2 ∗ (n) . Thus,

k∑
j=1

∫ t

s

SΠ,N (x)s,u ⊗ dxju =

k∑
j=1

∫ t

s

∑
R∈AΠ

sN

πR

(
SΠ,N (x)s,u

)
⊗ dxju

=

k∑
j=1

∑
R∈AΠ

sN

πR∗(j)

(
SΠ,N (x)s,t

)

=

( ∑
R∈AΠ

sN

πR

(
SΠ,N (x)s,t

))
− 1 = SΠ,N (x)s,t − 1

where the third line follows from truncation beyond degree-(Π, N) . Thus we have proved the theorem. 2

Corollary 3.6 Let Π, I and SΠ be as before. Let (xn) ⊂ C1−var([0, 1],RI) with supn |xn|1−var;[0,1] < ∞ ,

uniformly convergent to some x ∈ C1−var([0, 1],RI) . Then, SΠ,N (xn)0,· converges uniformly to SΠ,N (x)0,· .

Proof The proof is analogous to the proof of Proposition 7.15 of [10]. 2

Moreover the following theorem, we give Chen identity which is one of Π -rough paths property.

Theorem 3.7 (Chen identity) Let Π, I and SΠ be as before. Given x = x1 + · · ·+ xk ∈ C1−var([s, t],RI) ,
then for 0 ≤ s < t < u ≤ T ,

SΠ,N (x)s,u = SΠ,N (x)s,t ⊗ SΠ,N (x)t,u. (3.1)
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Proof We will show the theorem by induction. For N = 0 , we get SΠ,0(x)s,u = SΠ,0(x)s,t = SΠ,0(x)t,u = 1 ,
hence the statement is true. Suppose the identity (3.1) is true for N and we will prove the identity (3.1) is true
for N + 1 . We split the proof into three parts.

i. From Lemma 3.3, we have AΠ
sN+1

− ϵ ⊂ {R ∗ (m)|m = 1, · · · , k;R ∈ AΠ
sN } . Besides that, if R1 6= R2 or

m 6= n then R1 ∗ (m) 6= R2 ∗ (n) . By similar argument with Theorem 3.5, then

SΠ,N+1(x)s,u = 1 +

k∑
j=1

∫ u

s

SΠ,N (x)s,r ⊗ dxjr; (3.2)

ii. Using the fact that

∑
R∈AΠ

degΠ(R)=sN+1

πR

(
SΠ,N+1(x)s,t

)
⊗

 k∑
j=1

∫ u

t

SΠ,N (x)t,r ⊗ dxjr

 = 0,

we obtain

SΠ,N+1(x)s,t ⊗

 k∑
j=1

∫ u

t

SΠ,N (x)t,r ⊗ dxjr



=

SΠ,N (x)s,t +
∑

R∈AΠ

degΠ(R)=sN+1

πR

(
SΠ,N+1(x)s,t

)⊗
 k∑

j=1

∫ u

t

SΠ,N (x)t,r ⊗ dxjr


= SΠ,N (x)s,t ⊗

 k∑
j=1

∫ u

t

SΠ,N (x)t,r ⊗ dxjr


+

∑
R∈AΠ

degΠ(R)=sN+1

πR

(
SΠ,N+1(x)s,t

)
⊗

 k∑
j=1

∫ u

t

SΠ,N (x)t,r ⊗ dxjr



= SΠ,N (x)s,t ⊗

 k∑
j=1

∫ u

t

SΠ,N (x)t,r ⊗ dxjr

 . (3.3)

iii. We will use induction statement and (3.2), (3.3). Using (3.2), we have

SΠ,N+1(x)s,u = 1 +

k∑
j=1

∫ u

s

SΠ,N (x)s,r ⊗ dxjr

= 1 +

k∑
j=1

∫ t

s

SΠ,N (x)s,r ⊗ dxjr +
k∑

j=1

∫ u

t

SΠ,N (x)s,r ⊗ dxjr.

1352



FAHIM/Turk J Math

By (3.2) and induction statement, we get

SΠ,N+1(x)s,u = SΠ,N+1(x)s,t +

k∑
j=1

∫ u

t

SΠ,N (x)s,t ⊗ SΠ,N (x)t,r ⊗ dxjr.

From (3.3), we rewrite

SΠ,N+1(x)s,u = SΠ,N+1(x)s,t + SΠ,N (x)s,t ⊗

 k∑
j=1

∫ u

t

SΠ,N (x)t,r ⊗ dxjr


= SΠ,N+1(x)s,t + SΠ,N+1(x)s,t ⊗

 k∑
j=1

∫ u

t

SΠ,N (x)t,r ⊗ dxjr


By (3.2), we have

SΠ,N+1(x)s,u = SΠ,N+1(x)s,t ⊗

1 +

k∑
j=1

∫ u

t

SΠ,N (x)t,r ⊗ dxjr


= SΠ,N+1(x)s,t ⊗ SΠ,N+1(x)t,u,

Therefore, the proof may be completed by induction.

2

Corollary 3.8 Let Π, I and SΠ be as before. Suppose γ = γ1+· · ·+γk ∈ C1−var([0, T ],RI) , η = η1+· · ·+ηk ∈
C1−var([T,U ],RI) and

(γ t η)t :=
{
γt , t ∈ [0, T ]
ηt − ηT + γT , t ∈ [T,U ]

such that x := x1 + · · ·+ xk := γ t η ∈ C1−var([0, T ],RI) . Then

SΠ,N (x)0,U = SΠ,N (γ)0,T ⊗ SΠ,N (η)T,U .

Proof Let y = y1 + · · ·+ yk ∈ C1−var([s, t],RI) and c ∈ RI , we obtain

SΠ,N (y + c)s,t =
∑

R∈AΠ
sN

R=(r1,··· ,rl)

∫
s<u1<···<ul<t

d(y + c)r1u1
⊗ · · · ⊗ d(y + c)rlul

=
∑

R∈AΠ
sN

R=(r1,··· ,rl)

∫
s<u1<···<ul<t

dyr1u1
⊗ · · · ⊗ dyrlul

= SΠ,N (y)s,t.

Therefore, using Theorem 3.7, we have

SΠ,N (x)0,U = SΠ,N (x)0,T ⊗ SΠ,N (x)T,U

= SΠ,N (γ)0,T ⊗ SΠ,N (η· − ηT + γT )T,U

= SΠ,N (γ)0,T ⊗ SΠ,N (η)T,U .
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Thus we have proved the corollary. 2

We now construct inverse of the (degree-(Π, N)) signature. We start with reparametrization of x under
φ which can be seen the the following lemma.

Lemma 3.9 Let Π, I and SΠ be as before. Let x = x1 + · · · + xk ∈ C1−var([s, t],RI) and the function
φ : [T1, T2]→ [0, T ] be nondecreasing surjection. Then, for all s, t ∈ [T1, T2] ,

SΠ,N (x)φ(s),φ(t) = SΠ,N (x ◦ φ)s,t.

Proof We will show the lemma by induction for length of k -multiindex R in AΠ
sN . For ‖R‖ = 0 , we get

πR(SΠ,N (x)π(s),π(t)) = πR(SΠ,N (x ◦ φ)s,t) = 1 , hence the statement is true. Furthermore, we assume that it is
true for ‖R‖ = k and we will prove it is true for ‖R‖ = k + 1 . This case, we will truncate to TΠ,sN+1(RI) ,
then we get some equations below. By proof of Theorem 3.5, we have

πR

(
SΠ,N (x)φ(s),φ(t)

)
=

∫ φ(t)

φ(s)

πR−

(
SΠ,N (x)φ(s),r

)
⊗ dxjr

=

∫ t

s

πR−

(
SΠ,N (x)φ(s),φ(u)

)
⊗ dxjφ(u)

=

∫ t

s

πR−

(
SΠ,N (x ◦ φ)s,u

)
⊗ d(x ◦ φ)ju

= πR

(
SΠ,N (x ◦ φ)s,t

)
,

where we obtain the second equation using a change of variable r = φ(u) for Riemann–Stieljes integral and the
third equation can be obtained by using induction hypothesis. 2

Next, we give the following theorem which explains that inverse of the (degree-(Π, N)) signature lift of
x = x1 + · · ·+ xk ∈ C1−var([0, T ],RI) is the (degree-(Π, N)) signature lift of ←−x where ←−x = xT−t .

Theorem 3.10 (Inverse of the degree-(Π, N) signature) Let Π, I and SΠ be as before. Let x =

(x1, x2, · · · , xk) ∈ C1−var([0, T ],RI) . We denote by ←−x the path ←−x = xT−t ∈ RI , then

SΠ,N (x)0,T ⊗ SΠ,N (←−x )0,T = SΠ,N (←−x )0,T ⊗ SΠ,N (x)0,T = 1.

Proof From Theorem 3.5, we have that yt = SΠ,N (x)0,t is solution to the differential equation

dyt =

k∑
j=1

yt ⊗ dxjt , y0 = 1.

Furthermore, Theorem 3.10 follows immediately from the result on the differential equation with time-reversed
driving signal in Proposition 3.13 of [10]. 2

The following definition, we introduce dilation map on T (Π,s)(RI) .

Definition 3.11 Let Π and I be as before. For λ > 0 , we define the dilation map

δλ : T (Π,s)(RI)→ T (Π,s)(RI)
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such that

πR

(
δλ(g)

)
= λ∥R∥πR(g)

for all k -multiindex R such that degΠ(R) ≤ s and g ∈ T (Π,s)(RI) .

Remark 3.12 We can observe that SΠ,N (λx)t,u = δλSΠ,N (x)t,u where λ ∈ R and x = x1 + · · · + xk ∈
C1−var([0, T ],RI) .

4. Lie group 1 + tttΠ,s(RI) and Lie Algebra tttΠ,s(RI)

Friz and Victoir (in [10] Chapter 7) have explained that tttN (Rd) and 1+ tttN (Rd) are Lie algebra and Lie group,

respectively. Moreover Gyurko [14] have discussed about Lie algebra T (Π,s)
(
V
)

, exponential and logarithm

function on T
(
(U)
)

. Therefore, we will observe whether tttΠ,s(RI) and 1 + tttΠ,s(RI) are also Lie algebra and

Lie group, respectively. Before we give it, we recall operator which is used in this section (see Definition
4.1). Furthermore, we also recall definition of Lie bracket, exponential function and logarithm function but the
domain is tttΠ,s(RI) and 1 + tttΠ,s(RI) (see Definition 4.2).

Definition 4.1 Let k be a positive integer and both of Π = (p1, · · · , pk) and I = (i1, · · · , ik) be real k -tuple.
Let λ ∈ R and xxx,yyy ∈ T (Π,s)(RI) , we give the operations

· : R× T (Π,s)(RI)→ T (Π,s)(RI) by λ · xxx =
∑

R∈AΠ
s

λxxxR

+ : T (Π,s)(RI)× T (Π,s)(RI)→ T (Π,s)(RI) by xxx+ yyy :=
∑

R∈AΠ
s

xxxR + yyyR

⊗ : T (Π,s)(RI)× T (Π,s)(RI)→ T (Π,s)(RI) by

xxx⊗ yyy =

 ∑
Q∈AΠ

s

xxxQ

⊗
 ∑

Q∈AΠ
s

yyyR

 :=
∑

Q∗R∈AΠ
s

xxxQ ⊗ yyyR

We can also write
xxx⊗ yyy =

∑
R∈AΠ

s

πR(xxx⊗ yyy)

where

πR=(r1,··· ,rl)(xxx⊗ yyy) =
l∑

j=0

π(r1,··· ,rj)(xxx)⊗ π(rj+1,··· ,rl)(yyy).

The space
(
T (Π,s)(RI),+, ·,⊗

)
is an associative algebra, where

(
T (Π,s)(RI),+, ·

)
and

(
T (Π,s)(RI),+,⊗

)
are

vector space and ring, respectively. Furthermore, unit element of T (Π,s)(RI) is 111 where 111R = 0 for all R ∈ AΠ
s .

Analogous to [10], we denote tttΠ,s(RI) and 1 + tttΠ,s(RI) which can be seen the following definition.
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Definition 4.2 Let k be a positive integer and both of Π = (p1, · · · , pk) and I = (i1, · · · , ik) be real k -tuple.
We define tttΠ,s(RI) and 1 + tttΠ,s(RI) by

tttΠ,s(RI) := {aaa ∈ T (Π,s)(RI) : πϵ(aaa) = 0};

1 + tttΠ,s(RI) := {aaa ∈ T (Π,s)(RI) : πϵ(aaa) = 1}.

Remark 4.3 It is obvious that if xxx1,xxx2 ∈ 1 + tttΠ,s(RI) and yyy1, yyy2 ∈ tttΠ,s(RI) then xxx1 ⊗xxx2 ∈ 1 + tttΠ,s(RI) and
yyy1 ⊗ yyy2 ∈ tttΠ,s(RI) .

We first discuss about property of 1 + tttΠ,s(RI) , where we will prove that it is Lie group. Therefore, we will
discuss that elements in 1 + tttΠ,s(RI) is invertible which we will give in Theorem 4.6, but we will need the
following Lemma to prove the theorem.

Lemma 4.4 Let k be a positive integer and both of Π = (p1, · · · , pk) and I = (i1, · · · , ik) be real k -tuple.
Given xxx1, · · · ,xxxn ∈ tttΠ,s(RI) then πR(xxx1 ⊗ · · · ⊗ xxxn) = 0 for all n > ‖R‖ where R is k -multiindex in AΠ

s . In
particular, we have πR(xxx

⊗n) = 0 for all n > ‖R‖ where R is k -multiindex in AΠ
s .

Proof We can show the lemma by induction for length of k -multiindex R = (r1, · · · , rl) in AΠ
s . For

l = ‖R‖ = 0 , we get πR(xxx1 ⊗ · · · ⊗xxxn) = 0 for all n > 0 , hence the statement is true. Furthermore, we assume
that it is true for ‖R‖ = K and we will prove it is true for ‖R‖ = K + 1 . Let R = (r1, · · · , rK , rK+1) is
k -multiindex and n > K + 1 , then

πR(xxx1 ⊗ · · · ⊗ xxxn) = πR(xxx1 ⊗ · · · ⊗ xxxn−1 ⊗ xxxn)

=

K+1∑
j=0

π(r1,··· ,rj)(xxx1 ⊗ · · · ⊗ xxxn−1)⊗ π(rj+1,··· ,rK+1)(xxxn).

We can see that n − 1 > K then by induction hypothesis π(r1,··· ,rj)(xxx1 ⊗ · · · ⊗ xxxn−1) = 0 for j = 1, · · · ,K .
Therefore,

πR(xxx1 ⊗ · · · ⊗ xxxn) = π(r1,··· ,rK+1)(xxx1 ⊗ · · · ⊗ xxxn−1)⊗ πϵ(xxxn) = 0.

Therefore, the proof may be completed by induction. 2

Remark 4.5 We know that for all k -multiindex R in AΠ
s has finite length. Let M denote supR∈AΠ

s
‖R‖ then

we have
xxx1 ⊗ · · · ⊗ xxxn = xxx⊗n = 0

for all n > M and xxx1, · · · ,xxxn,xxx ∈ tttΠ,s(RI) .

Theorem 4.6 (inverse in 1 + tttΠ,s(RI)) Let k be a positive integer and both of Π = (p1, · · · , pk) and I =

(i1, · · · , ik) be real k -tuple. Given hhh = 1 + ggg ∈ 1 + tttΠ,s(RI) where ggg ∈ tttΠ,s(RI) then

hhh−1 = 1 +

M∑
k=1

(−1)kggg⊗k ∈ 1 + tttΠ,s(RI),

where M = supR∈AΠ
s
‖R‖ . It means that hhh⊗ hhh−1 = hhh−1 ⊗ hhh = 111 .
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Proof According to Lemma 4.4, we have

hhh⊗ hhh−1 = (1 + ggg)⊗

(
1 +

M∑
k=1

(−1)kggg⊗k

)
= (1 + ggg)⊗

(
M∑
k=0

(−1)kggg⊗k

)

=

(
M∑
k=0

(−1)kggg⊗k

)
+

(
M∑
k=0

(−1)kggg⊗k+1

)

=

(
M∑
k=0

(−1)kggg⊗k

)
+

(
M+1∑
k=1

(−1)k+1ggg⊗k

)

= 111 + (−1)M+2ggg⊗M+1 = 111.

For similar reasons, we have hhh−1 ⊗ hhh = 111 . Therefor, For any elements in 1 + tttΠ,s(RI) is invertible. 2

Proposition 4.7 Let k be a positive integer and both of Π = (p1, · · · , pk) and I = (i1, · · · , ik) be real k -tuple.
The space 1 + tttΠ,s(RI) is a Lie group with respect to tensor multiplication ⊗ .

Proof The proof is analogous to the proof of Proposition 7.17 of [10]. 2

Next we introduce metric on 1 + tttΠ,s(RI) . We denote basis of Ri1 , · · · ,Rik by

〈 {e(1,1), · · · , e(i1,1)} 〉 = Ri1 ,

〈 {e(1,2), · · · , e(i2,2)} 〉 = Ri2 ,

...
〈 {e(1,k), · · · , e(ik,k)} 〉 = Rik .

Let aaa ∈ T (Π,s)(RI) then πR(aaa) ∈ Rir1 ⊗ · · · ⊗ Rirl for R = (r1, · · · , rl) and

πR(aaa) =

 ir1∑
j1=1

a(j1,r1)e(j1,r1)

⊗
 ir2∑

j2=1

a(j2,r2)e(j2,r2)

⊗
· · · ⊗

 irl∑
j1=1

a(jl,rl)e(jl,rl)


=

ir1∑
j1=1

· · ·
irl∑
jl=1

a(j1,r1) · a(j2,r2) · · · a(jl,rl)e(j1,r1) ⊗ e(j2,r2) ⊗ · · · ⊗ e(jl,rl)

=

ir1∑
j1=1

· · ·
irl∑
jl=1

a(j1,r1)···(jl,rl)e(j1,r1) ⊗ e(j2,r2) ⊗ · · · ⊗ e(jl,rl).

We define norm on T (Π,s)(RI) by
‖aaa‖T (Π,s)(RI) := max

R∈AΠ
s

‖aaa‖R , (4.1)
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where

‖aaa‖R :=

√√√√√ ir1∑
j1=1

· · ·
irl∑
jl=1

∣∣a(j1,r1)···(jl,rl)∣∣2.
Clearly, this is norm makes T (Π,s)(RI) a Banach space. Furthermore, we give metric on 1 + tttΠ,s(RI) , i.e.

ρ(aaa,bbb) := ‖aaa− bbb‖T (Π,s)(RI) := max
R∈AΠ

s
R ̸=ϵ

‖aaa− bbb‖R . (4.2)

Clearly, 1 + tttΠ,s(RI) is manifold topology on the metric ρ .

Proposition 4.8 Let k be a positive integer and both of Π = (p1, · · · , pk) and I = (i1, · · · , ik) be real k -tuple.
Given hhh,hhhn ⊂ 1+ tttΠ,s(RI) . Then, lim

n→∞
‖hhhn − hhh‖T (Π,s)(RI) = 0 if and only if lim

n→∞

∥∥hhh−1
n ⊗ hhh− 1

∥∥
T (Π,s)(RI)

= 0 .

Proof The proof is analogous to the proof of Proposition 7.18 of [10]. 2

Furthermore, we will recall Lie bracket from [14] that is [·, ·] : T
(
(V )
)
× T

(
(V )
)
→ T

(
(V )
)

which is

defined by
[xxx,yyy] := xxx⊗ yyy − yyy ⊗ xxx

for xxx,yyy ∈ T
(
(V )
)

. Throughout this section, we use this Lie bracket which we replace T
(
(V )
)

be tttΠ,s(RI) .

Hence, we can see that
(
tttΠ,s(RI),+, ·, [·, ·]

)
is a Lie algebra. We also give operator (ad xxx) : tttΠ,s(RI)→ tttΠ,s(RI)

for fix xxx ∈ tttΠ,s(RI) which is defined (ad xxx)yyy = [xxx,yyy] . Hence, by Lemma 4.4 we have (ad xxx)nyyy = 0 where
n > M = supR∈AΠ

s
‖R‖ and denote (ad xxx)nyyy = (ad xxx)

(
(ad xxx)n−1yyy

)
for n = 1, 2, · · · · · · and (ad xxx)0yyy = yyy .

In the following definition, we also give definition of exponential and logarithm function which is recall
from [14] but the domain is tttΠ,s(RI), 1 + tttΠ,s(RI) ⊂ TTTΠ,s(RI) . In the definition, it is the sum of finite element
because xxx⊗n = 0 and (y − 111y − 111y − 111)⊗n = 0 for n > M = supR∈AΠ

s
‖R‖ , xxx ∈ tttΠ,s(RI) and yyy ∈ 1 + tttΠ,s(RI) .

Definition 4.9 Let k be a positive integer, M := supR∈AΠ
s
‖R‖ and both of Π = (p1, · · · , pk) and I =

(i1, · · · , ik) be real k -tuple. The exponential function is defined by

exp : tttΠ,s(RI)→ 1 + tttΠ,s(RI)

where exp(xxx) = 1 +
∑M

j=1
1
j!xxx

⊗j for xxx ∈ tttΠ,s(RI) . Then, the logarithm function is defined by

log : 1 + tttΠ,s(RI)→ tttΠ,s(RI)

where log(yyy) =
∑M

j=1
(−1)j+1

j (yyy − 111)⊗j for yyy ∈ tttΠ,s(RI) .

Next we emphasize that the same Campbell–Baker–Hausdorff formulas can be applied on tttΠ,s(RI) . You can
see it below.
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Lemma 4.10 Let k be a positive integer, M := supR∈AΠ
s
‖R‖ and both of Π = (p1, · · · , pk) and I = (i1, · · · , ik)

be real k -tuple. Given xxx,yyy ∈ tttΠ,s(RI) we have

exp(xxx)⊗ yyy ⊗ exp(−xxx) = exp(ad xxx)yyy

where

exp(ad xxx)yyy :=

M∑
j=0

1

j!
(ad xxx)jyyy

and M := supR∈AΠ
s
‖R‖ .

Proof We define map f : R→ tΠ,s(RI) by

f(t) = exp(txxx)⊗ yyy ⊗ exp(txxx).

By Taylor series, the map f(t) can be rewrite as

f(t) =

∞∑
j=0

1

j!
f (j)(0)tj

where f (n)(0) = dnf
dtn

∣∣∣
t=0

. Hence, we have

d

dt
f(t) =

d

dt
exp(txxx)⊗ yyy ⊗ exp(txxx) = xxx⊗ f(t)− f(t)⊗ xxx = [xxx, f(t)]

=

[
xxx,

∞∑
j=0

1

j!
f (j)(0)tj

]
=

∞∑
j=0

1

j!

[
xxx, f (j)(0)

]
tj .

In other words, we also have

d

dt
f(t) =

d

dt

∞∑
j=0

1

j!
f (n)(0)tn =

∞∑
j=1

1

(j − 1)!
f (j)(0)tj−1 =

∞∑
j=0

1

(j)!
f (j+1)(0)tj .

Therefore, we have

f (j+1)(0) =
[
xxx, f (j)(0)

]
where f0(0) = yyy . By recursively, we have

f (j)(0) = (ad xxx)j(yyy).

Finally, we get

exp(xxx)⊗ yyy ⊗ exp(−xxx) = f(1) =

∞∑
j=0

1

j!
f (j)(0) =

∞∑
j=0

1

j!
(ad xxx)j(yyy) =

∞∑
j=0

1

j!
(ad xxx)j(yyy).

2
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Corollary 4.11 Let k be a positive integer, M := supR∈AΠ
s
‖R‖ and both of Π = (p1, · · · , pk) and I =

(i1, · · · , ik) be real k -tuple. Let xxx,yyy,ddd ∈ tttΠ,s(RI) , then

exp(ad zzz)ddd = exp(ad xxx) ◦ exp(ad yyy)ddd

where
zzz = log(exp(xxx)⊗ exp(yyy)).

Proof By Lemma 4.10, we have

exp(ad zzz)ddd = exp(zzz)⊗ ddd⊗ exp(−zzz)

= exp(log(exp(xxx)⊗ exp(yyy)))⊗ ddd⊗ exp(− log(exp(xxx)⊗ exp(yyy)))

= exp(xxx)⊗ exp(yyy)⊗ ddd⊗ exp(−yyy)⊗ exp(−xxx)

= exp(xxx)⊗ (exp(yyy)⊗ ddd⊗ exp(−yyy))⊗ exp(−xxx)

= exp(xxx)⊗ (exp(ad yyy)ddd)⊗ exp(−xxx)

= exp(ad xxx) ◦ exp(ad yyy)ddd

2

Lemma 4.12 Let k be a positive integer, M := supR∈AΠ
s
‖R‖ and both of Π = (p1, · · · , pk) and I = (i1, · · · , ik)

be real k -tuple. Let ft be function on tttΠ,s(RI) is continuously differentiable and denote ḟt =
dft
dt and

g(xxx) =
(
exp(xxx)− 1

)
⊗ (xxx−1) =

M∑
j=1

1

j!
xxx⊗j−1

for xxx ∈ tttΠ,s(RI), then

exp(ft)⊗
d

dt
exp(−ft) = −g(ad ft)ḟt.

Proof We first observe that

d

dt
exp(ft) =

∫ 1

0

exp
(
(1− y)ft

)
⊗ ḟt ⊗ exp(yft) dy.

On the left hand side, we have

d

dt
exp(ft) =

d

dt

1 +

M∑
j=1

1

j!
ft

⊗j

 =

M∑
j=1

1

j!

d

dt
ft

⊗j

=

M−1∑
j+h=0

1

(j + h+ 1)!
f⊗j
t ⊗ ḟt ⊗ f⊗h

t .
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On the right hand side, we find∫ 1

0

exp((1− y)ft)⊗ ḟt ⊗ exp(yft) dy

=

∫ 1

0

 M∑
j=0

1

j!
(1− y)jft⊗j

⊗ ḟt ⊗( M∑
h=0

1

h!
yhft

⊗h

)
dy

=

M∑
j=0

M∑
h=0

1

j!h!

∫ 1

0

(
(1− y)jft⊗j

)
⊗ ḟt ⊗

(
yhft

⊗h
)
dy

=

M∑
j=0

M∑
h=0

1

j!h!

∫ 1

0

(1− y)jyh dy
(
ft

⊗j ⊗ ḟt ⊗ ft⊗h
)

=

M∑
j=0

M∑
h=0

1

j!h!

(
j!h!

(j + h+ 1)!

) (
ft

⊗j ⊗ ḟt ⊗ ft⊗h
)

=

M−1∑
j+h=0

1

(j + h+ 1)!

(
ft

⊗j ⊗ ḟt ⊗ ft⊗h
)
,

where we get the fifth equation by beta function and the sixth equation can be obtained by using Lemma 4.4.
Hence, we have

exp(−ft)⊗
d

dt
exp(ft) =

∫ 1

0

exp(−yft)⊗ ḟt ⊗ exp(yft) dy

=

∫ 1

0

M∑
j=0

1

j!
(ad (−yft))j ḟt dy

We then replace ft be −ft , we get

exp(ft)⊗
d

dt
exp(−ft) = −

∫ 1

0

M∑
j=0

1

j!

(
ad (yft)

)j
ḟt dy

= −
∫ 1

0

M∑
j=0

1

j!
yj(ad ft)

j ḟt dy

= −
M∑
j=0

1

(j + 1)!
(ad ft)

j ḟt dy = −g(ad ft)ḟt

2

Theorem 4.13 (Campbell–Baker–Hausdorff) Let k be a positive integer, M := supR∈AΠ
s
‖R‖ and both of

Π = (p1, · · · , pk) and I = (i1, · · · , ik) be real k -tuple. Let xxx,yyy ∈ tttΠ,s(RI) and denote

g(zzz) =
(
log(zzz)

)
⊗ (zzz − 1)−1 =

M∑
j=1

(−1)j+1

j
(zzz − 111)⊗j−1

1361



FAHIM/Turk J Math

for zzz ∈ tttΠ,s(RI) , then

log
[
exp(xxx)⊗ exp(yyy)

]
= yyy +

∫ 1

0

g
(
exp(t ad xxx) ◦ exp(ad yyy)

)
xxxdt.

In particular, log
[
exp(xxx)⊗ exp(yyy)

]
equals a sum of iterated bracket of xxx and yyy , with universal coefficient.

Proof The proof is analogous to the proof of Theorem 7.24 of [10]. The different is finite sum of g(zzz) . 2

Furthermore, we will introduce free degree-(Π, N) nilpotent Lie algebra on the following definition. The
definition is inspired by Definition 7.25 of [10] and Definition 3.3.3 of [14], but given more details definition.

Definition 4.14 Let k be a positive integer, both of Π = (p1, · · · , pk) and I = (i1, · · · , ik) be real k -tuple. Let
SΠ = {s0 = 0, s1, · · · } listed in ascending order. We denote the smallest sub-Lie algebra of tttΠ,sN (RI) which

contains π(rj)
(
tttΠ,sN (RI)

)
= Rij for all j = 1, · · · , k by gΠ,N (RI) which is called free degree-(Π, N) nilpotent

Lie algebra. We also denote the set LΠ,R(RI) by

LΠ,(r1)(R
I) := Rir1

LΠ,(r1,r2)(R
I) :=

[
Rir1 ,Rir2

]
:= Span

{
[a, b]|a ∈ Rir1 , b ∈ Rir2

}
...

LΠ,(r1,··· ,rl)(R
I) :=

[
Rir1 ,LΠ,(r1,··· ,rl−1)(R

I)
]

:= Span
{
[a, b]|a ∈ Rir1 , b ∈ LΠ,(r1,··· ,rl−1)(R

I)
}

Lemma 4.15 Let k be a positive integer, both of Π = (p1, · · · , pk) and I = (i1, · · · , ik) be real k -tuple. Let
SΠ = {s0 = 0, s1, · · · } listed in ascending order and

H =
⊕

R∈AΠ
sN

R ̸=ϵ

LΠ,R(RI),

then H = gΠ,N (RI) .

Proof It is easily seen that H is subset of all sub-Lie algebra of tttΠ,sN (RI) which contains π(rj)
(
tttΠ,sN (RI)

)
=

Rij for all j = 1, · · · , k . We also easily see that (H,+, ·) is vector space. Therefore, we sufficient show that
[·, ·] : H ×H → H . We first give xxx,yyy ∈ H which can be written as

xxx =
∑

R∈AΠ
sN

R ̸=ϵ

πR(xxx),where πR(xxx) ∈ LΠ,R(RI),

yyy =
∑

R∈AΠ
sN

R ̸=ϵ

πR(yyy),where πR(yyy) ∈ LΠ,R(RI),
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which we have

[xxx,yyy] = xxx⊗ yyy − yyy ⊗ xxx

=
∑

R=(r1,··· ,rl)∈AΠ
sN

l ̸=0

l−1∑
j=1

π(r1,··· ,rj)(xxx)⊗ π(rj+1,··· ,rl)(yyy)

−π(rj+1,··· ,rl)(yyy)⊗ π(r1,··· ,rj)(xxx).

Therefore we will prove that

π(r1,··· ,rj)(xxx)⊗ π(rj+1,··· ,rl)(yyy)− π(rj+1,··· ,rl)(yyy)⊗ π(r1,··· ,rj)(xxx) ∈ LΠ,R(RI)

for all j = 1, · · · , l − 1 by strong induction. For j = 1 , we have

π(r1)(xxx)⊗ π(r2,··· ,rl)(yyy)− π(r2,··· ,rl)(yyy)⊗ π(r1)(xxx) =
[
π(r1)(xxx), π(r2,··· ,rl)(yyy)

]
∈ LΠ,R(RI).

Furthermore, we assume that that it is true for j = 1, · · · ,K and we will prove it is true for j = K + 1 . For
abbreviation, we write π(rK+2,··· ,rl)(yyy) = c and π(r1,··· ,rK ,rK+1)(xxx) =

∑
i ai⊗bi−bi⊗ai where ai ∈ LΠ,(r1)(RI) ,

bi ∈ LΠ,(r2,··· ,rK+1)(RI) , and c ∈ LΠ,(rK+2,··· ,rl)(RI) . Therefore, we have

π(r1,··· ,rK+1)(xxx)⊗ π(rK+2,··· ,rl)(yyy)− π(rK+2,··· ,rl)(yyy)⊗ π(r1,··· ,rK+1)(xxx)

=
∑
i

(ai ⊗ bi − bi ⊗ ai)⊗ c− c⊗ (ai ⊗ bi − bi ⊗ ai)

=
∑
i

ai ⊗ bi ⊗ c− bi ⊗ ai ⊗ c− c⊗ ai ⊗ bi − c⊗ bi ⊗ ai

=
∑
i

ai ⊗ (bi ⊗ c− c⊗ bi)− bi ⊗ (ai ⊗ c− c⊗ ai)

−(c⊗ ai − ai ⊗ c)⊗ bi + (c⊗ bi − bi ⊗ c)⊗ ai

=
∑
i

ai ⊗ (bi ⊗ c− c⊗ bi)− (bi ⊗ c− c⊗ bi)⊗ ai

−bi ⊗ (ai ⊗ c− c⊗ ai) + (ai ⊗ c− c⊗ ai)⊗ bi

=
∑
i

[
ai, [bi, c]

]
−
[
bi, [ai, c]

]
.

By induction hypothesis, we have

∑
i

[
ai, [bi, c]

]
∈

[
LΠ,(r1)(R

I),
[
LΠ,(r2,··· ,rK+1)(R

I),LΠ,(rK+2,··· ,rl)(R
I)
]]

= LΠ,(r1,··· ,rl)(R
I)
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and

∑
i

[
bi, [ai, c]

]
∈

[
LΠ,(r2,··· ,rK+1)(R

I),
[
LΠ,(r1)(R

I),LΠ,(rK+2,··· ,rl)(R
I)
]]

= LΠ,(r1,··· ,rl)(R
I).

Hence,

π(r1,··· ,rK+1)(xxx)⊗ π(rK+2,··· ,rl)(yyy)− π(rK+2,··· ,rl)(yyy)⊗ π(r1,··· ,rK+1)(xxx) ∈ LΠ,R(RI).

Finally, the proof may be completed by strong induction. 2

Corollary 4.16 Let k be a positive integer, both of Π = (p1, · · · , pk) and I = (i1, · · · , ik) be real k -tuple. Let
SΠ = {s0 = 0, s1, · · · } listed in ascending order then exp

(
gΠ,N (RI)

)
is subgroup of

(
111 + tttΠ,s(RI),⊗

)
.

Proof We take arbitrary xxx,yyy ∈ exp
(
gΠ,N (RI)

)
and we can write xxx = exp(aaa) , yyy = exp(bbb) where aaa,bbb ∈

gΠ,N (RI) . According to Theorem 4.13, log[exp(aaa)⊗ exp(−bbb)] equals a sum of iterated bracket of aaa and bbb , then
log[exp(aaa)⊗ exp(−bbb)] ∈ gΠ,N (RI) . Therefore, xxx⊗ yyy−1 ∈ exp

(
gΠ,N (RI)

)
. 2

Next we also emphasize that the Chow theorem can be applied on
exp

(
gΠ,N (RI)

)
. You can see it in Theorem 4.19. But we first give Lemma 4.17 which will be used to prove

Theorem 4.19.

Lemma 4.17 Let k be a positive integer; both of Π = (p1, · · · , pk) and I = (i1, · · · , ik) be real k -tuple; and
SΠ = {s0 = 0, s1, · · · } listed in ascending order. Let x = x1 + · · ·+ xk : [T1, T2]→ RI be piecewise linear path
with xt = vvvjt + cccj = (vvv1j t + ccc1j ) + · · · + (vvvkj t + ccckj ) for tj−1 ≤ t ≤ tj where T1 = t0 < t1 < · · · < tn = T2 and
j = 1, · · · , n . Then we have

SΠ,N (x)T1,T2 =

n⊗
j=1

exp
(
(tj − tj−1)vj

)
.

Proof In order to prove the Lemma, we will do it by three steps.

Step 1. We will prove that SΠ,N (y)0,1 = exp
(
vvv
)

with y = y1 + · · ·+ yk : [0, 1] 3 t 7→ vvvt+ ccc = (vvv1t+ ccc1) + · · ·+
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(vvvkt+ ccck) ∈ RI where vvv, ccc ∈ RI .

SΠ,N (y)0,1 =
∑

R∈AΠ
sN

R=(r1,··· ,rl)

∫
0<u1<···<ul<1

dyr1u1
⊗ · · · ⊗ dyrlul

=
∑

R∈AΠ
sN

R=(r1,··· ,rl)

∫
0<u1<···<ul<1

d(vvvr1u1)⊗ · · · ⊗ d(vvvrlul)

=
∑

R∈AΠ
sN

R=(r1,··· ,rl)

vvvr1 ⊗ · · · ⊗ vvvrl
∫
0<u1<···<ul<1

du1 · · · dul

=
∑

R∈AΠ
sN

R=(r1,··· ,rl)

1

l!
vvvr1 ⊗ · · · ⊗ vvvrl =

M∑
j=0

1

j!
vvv⊗j = exp(vvv).

where M := supR∈AΠ
s
‖R‖ .

Step 2. We will prove that SΠ,N (y)p,q = exp
(
(q − p)vvv

)
with y = y1 + · · · + yk : [p, q] 3 t 7→ vvvt + ccc =

(vvv1t + ccc1) + · · · + (vvvkt + ccck) ∈ RI where vvv, ccc ∈ RI . We will use Step 1 and Lemma 3.9 where we
take φ(t) = t−p

q−p and z = y ◦ φ−1 .

SΠ,N (y)p,q = SΠ,N (z ◦ φ)p,q = SΠ,N (z)φ(p),φ(q) = SΠ,N (z)0,1

= SΠ,N

(
(q − p)vvvt+ svvv + ccc

)
0,1

= exp
(
(q − p)vvv

)
Step 3. We will prove Lemma 4.17 by Chen identity and Step 2.

SΠ,N (x)T1,T2 =

n⊗
j=1

SΠ,N (x)tj−1,tj =

n⊗
j=1

exp
(
(tj − tj−1)vj

)
.

2

Remark 4.18 According to Lemma 4.17, we can see that hhh ∈ exp
(
gΠ,N (RI)

)
which has form

hhh =

m⊗
j=1

exp
(
vvvj

)
where vvv1, · · · , vvvm ∈ RI , then there exist piecewise linear path

x = x1 + x2 + · · ·+ xk : [0, 1]→ RI

with SΠ,N (x)0,1 = hhh where

xt =
1

tj − tj−1
vvvjt+ cccj = (

1

tj − tj−1
vvv1j t+ ccc1j , · · · ,

1

tj − tj−1
vvvkj t+ ccckj ),

tj−1 ≤ t ≤ tj , 0 = t0 < t1 < · · · < tm = 1 and j = 1, · · · ,m .
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Theorem 4.19 (Chow) Let k be a positive integer; both of Π = (p1, · · · , pk) and I = (i1, · · · , ik) be real
k -tuple; and SΠ = {s0 = 0, s1, · · · } listed in ascending order. If hhh ∈ exp

(
gΠ,N (RI)

)
, then there exist

vvv1, · · · , vvvm ∈ RI such that

hhh =

m⊗
j=1

exp
(
vvvj

)
.

Proof The proof is similar to the classical case in the book of Friz and Victoir [10]. The difference is space
vector basis of nilpotent Lie algebra gΠ,N (RI) .

2

Remark 4.20 According to Lemma 4.17 and Theorem 4.19, we can see that if hhh ∈ exp
(
gΠ,N (RI)

)
, then there

exist vector vvv1, · · · , vvvm ∈ RI , piecewise linear path x = x1 + x2 + · · ·+ xk : [0, 1]→ RI such that

hhh =

m⊗
j=1

exp
(
vvvj

)
= SΠ,N (x)0,1

where

xt =
1

tj − tj−1
vvvjt+ cccj = (

1

tj − tj−1
vvv1j t+ ccc1j , · · · ,

1

tj − tj−1
vvvkj t+ ccckj ), for tj−1 ≤ t ≤ tj

with 0 = t0 < t1 < · · · < tm = 1 and j = 1, · · · ,m .

Corollary 4.21 Let k be a positive integer; both of Π = (p1, · · · , pk) and I = (i1, · · · , ik) be real k -tuple; and

SΠ = {s0 = 0, s1, · · · } listed in ascending order. Given (gggn) ⊂ exp
(
gΠ,N (RI)

)
converges to 111 . Let xn denote

the piecewise linear such that SΠ,N (xn) = gggn as constructed in the proof of Theorem 4.19. Then the length of

xn converges to 0 ,i.e.
∫ 1

0
|dxn| → 0 .

Proof The proof is analogous to the proof of Theorem 7.29 of [10]. 2
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