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Abstract: In this paper, the existence and uniqueness of the solutions to impulsive coupled system of fractional
differential equations with Caputo—Hadamard are investigated. Furthermore, Ulam’s type stability of the proposed
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1. Introduction

The fractional calculus becomes now a very attractive subject to mathematicians, as an important field of
investigation due to its extensive applications in numerous branches of physics, chemistry, aerodynamics,
electrodynamics of a complex medium, polymer, rheology, etc., one can consult [3, 25, 38, 42] and references
therein. Some authors proposed a new type of fractional derivatives possessing different kernels, because the
most used definitions proposed by Riemann—Liouville and the first Caputo version has the weakness that their
kernel had singularity [8]. Definition of Hadamard’s fractional derivative introduced in 1892 differs significantly
from both the Riemann-Liouville type and the Caputo type [24] . In particular, the integral’s kernel in the
definition of Hadamard’s fractional derivative contains a logarithmic function of so-called arbitrary exponent.
There are several articles describing the properties and applications of Hadamard derivative [10-12, 33, 37, 47].
A recent new definition of fractional derivative has been provided by modifying the Hadamard derivative with
the Caputo one, known as Caputo-Hadamard derivative, which was first studied by Jarad et al. [19], it is
obtained from the Hadamard derivative by changing the order of its differentiation and integration [1], in
addition, existence and uniqueness of solutions of fractional differential equations involving Caputo-Hadamard
were considered, see for examples [2, 16].

The classical Banach contraction principle is a very useful tool in nonlinear analysis with many appli-
cations to operational equations, fractal theory, optimization theory and other topics. The classical Banach
contraction principle was extended for contractive maps on spaces endowed with vector-valued metrics by Perov
in 1964 [40] and Perov and Kibenko [41]. In 1966 Perov formulated a fixed point theorem which extends the
well-known contraction mapping principle for the case when the metric d takes values in R™, that is, in the

case when we have a generalized metric space.
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Another important aspect of the research was that which attracted researcher’s attention is Ulam stability
and their various types. The abovementioned stability was first introduced by Ulam [27] in 1940 and then
was confirmed by Hyers in 1941 [28]. Rassias generalized the Ulam—Hyers stability by considering variables.
Thereafter, mathematicians extended the work mentioned above to functional, differential, integrals and FDEs.
Wang [48] was the first mathematician who investigated the Ulam—Hyers stability for the impulsive ordinary
differential equations in 2012. In the same line, he also obtained the aforesaid stability for the evolution equations
[49]. For more details on the recent advances on the Ulam—Hyers stability and the Ulam—Hyers—Rassias stability
of differential equations, one can see the monographs [14, 20] and the research papers [21, 26, 31, 35, 44, 50, 51].
We also note that Ulam stability has excellent applications in numerical analysis, optimization, economic,
physics, biochemistry, and biological phenomena, and it does provide an effective way to seek the exact solution
for the original equation.

Ali et al. [6] studied the Ulam—Hyers stability of the following

“DPy(t) — f(t2(8) = 0; t e [0,1],
eDIx(1) — glt.y(1) = 0; ¢ € [0,1] ]

y(t)limo = 0, y(t)|i 1—0 I2hy) = oty t—c'y-lh(y(c))da
dOlico = 0, 2(B)limr = 0, I8j(2) = 1 7 (¢ — <) Lji(=(c)) d,

where p,q,v,9 € (1,2], h,j € L[0,1] are boundary functions and f, g :[0,1] x R — R are continuous functions.
Ali et al. [5] studied the Ulam—Hyers stability of the following

“DPy(t) — f(¢, 2(t),° DPy(t)) = 0; pe (2,3 e,
0;

“DI1) ~ a(0) D) =05 4 € (2351 T,
,( Ni=o = =Y (t)\tzo =0, y,(t)|t 1=y(n), Ane(0,1),
2 (im0 =2 (t)li=0 =0, 2 (t)|i=1 = Az(n), A,n€(0,1),

where J =[0,1] and f,g:J x R xR — R are continuous functions.
Zada et al. [52] studied the Ulam—Hyers stability of the following

eDx(t) + h(t,c Dz(t), CD” (t)=0; t#t,, m=1
cDPy(t) +w(t, D (t),° DPy(t)) = 0; t#ty, m=1,2,...
Azli=,, = Mim(x(tm)), Ax li=t,, = Nim(2(tm)), Az |i=t,, = O1m(2(tm)),
Ayli=t,, = Mam(z(tn)), Ay lt=t,, = Nom(2(tm)), Ay lt=t,, = O2m(x(tm)),
x(0) = 2'(0) =0, °Dx(Q) = 2" (1),
y(0) =y'(0) =0, “DPy(®) = y"(1),

where t € J =[0,1], 2 < a,8 <3, 0 < a,b,6,2,p,® < 1, and h,w : J x R® — R are continuous functions.
M1m7M2m7N1m7N2m701m702m € C(RvR) .

In this paper, we study the existence, uniqueness and Ulam’s type stability of a impulsive coupled system

of fractional differential equations of the form :

D¢x)(t) = filt,z,y) te€(a,T], t#ty k=1,..,m,
Dly)(t) = folt,z,y) telaT), t#t, k=1,.,m,
Ax<tk> :£k(x(tlz),y(tl;))’ k=1,..m, (1'1)
Ay(tk) :Ik(z(t;%y(t;)% k=1,..,m
z(a) = x4,
y(a) = ya,
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where D2, D? | are the Caputo-Hadamard fractional derivative of order o and 3, 0 < o, 3 < 1, a > 0. Here
a=tyg<t1 < <ty <ty =T, Az(ty) =a(tf) —a(ty,), z(t]) = %intx(tk +h) and z(t; ) = Airr%)x(tk —h)
— —

represent the right and left limits of x(t) at t = ¢ respectively. x4,y € R, fi,fo: J X R XR — R are

continuous functions and I, , I € C(R x R,R) are a given functions.

The plan of the paper is as follows. In Section 2, some definitions, theorems, lemmas and results are given which
will be required for the later sections. In Section 3, we built up some appropriate conditions for the existence
and uniqueness of solutions to the considered problem (1.1) using the Perov fixed point theorem. In Section 4,
we study the Ulam—Hyers stability. In the last section, an example is given to demonstrate our main theoretical
result.

2. Preliminaries

Definition 2.1 [9, 25] The Hadamard fractional integral of order « for a function h : [a;b] — R where a,b > 0

is defined by
t a—1 h
Ioh(t) = F(la)_/ <1n z) %ds, Re(a) > 0, (2.1)

provided the integral exists.

Definition 2.2 [9, 19] Let AC}[a,b] = {g:[a,b] » C |6""1g € AC[a,b]} where § =t%, 0<a<b< oo
and let o € C, such that Re(a) > 0. For a function g € AC§[a,b] the Caputo type Hadamard derivative of

fractional order « is defined as follows:

(i) if a« <N, then for n —1 < [Re(a)] < n, where [Re(a)] denotes the integer part of Re(a),

Dgg(t) = ﬁ /at <1n Z)nal 5”@&3, (2.2)

(i) if o € N, then (DSg)(t) = d"g(t).
Lemma 2.3 [/] Suppose that [ is continuous. Then the initial value problem (IVP)

Dex(t) = f(t,x,y), t>a,a>0,0<a<]l
z(a) = xq,

is equivalent to the following Volterra integral equation

x(t) = x4 + ﬁ /at (111 i)al wd&

Lemma 2.4 Let 0 < a <1 and let f € AC[J xR X R], a function x is a solution of the fractional integral
equation

a S

k
1 ti ti\ @1 f(s,2(s),y(s))
x(t) = ZTa + T'(a) 1;1 fti,l (hl ?) s ds (23)

k
a—1 s,x(s s — — .
+—F(1a) fttk (Int) L(s.2(s)y(s) (S)’y( Vds + ‘:Elfi(:c(ti ) y(t)) ifte (te,tprr], kE=1,...,m.

o + r(la) ft (ln E)oz_l 7f(s’x(z)’y(s))ds ift € [a, t1]

S
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if and only if x is a solution of the impulsive fractional IVP

(Dg‘x) (t) = f(t,x,y) for eacht € J, (2.4)
Ax(ty) = I(z(ty ), y(ty)), k=1,...,m, (2.5)
z(a) = xq, (2.6)

Proof Assume z satisfies (2.4)—(2.6). Using conditions (2.5), (2.6) and Lemma 2.3, we obtain:
If ¢ € [a,t1], then

z(t) = x4 + ﬁ /at <1n i)al wd&

Ifte (tl,tg}, then

S S

= Ax(t) +(t7) + o /tt (1 t>a_1 UCLOAICIFE

2(t) = 2(tF) + F(la) /tt (m t)a_l fls,2(5),9(5) o

IN(e s s

S S

s / (lni)al Flor(y(0) 4,

:Il(-r(tl_)vy(tl_))-i-l‘a—kﬁ/l <1nt1> B wds

Ifte (tg,t:ﬂ, then

x(t) =x(t]) + ﬁ /t: <ln t)a_l wds

— Auty) +2ty) + ﬁ /tt (m z)a_l Mds
= D)) + (o)) + i [ () Lk,
R NA R CECET PN A R CECEC

Repeating the same process for t € [t,tr4+1] and k = 3,...,m, then we get

= nr g [ () T et L, Y ot

S S S

Conversely, assume that x satisfies the impulsive fractional integral equation (2.3). If ¢ € [a,t;] then x(a) = 2,

and using the fact that D¢ is the left inverse of I$ and using the fact that DYC = 0, where C is a constant,
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we obtain
DSx(t) = f(t,x,y) for all ¢t € [a,t1] U [tr, tr1], k=1,...,m.

Also, we can easily show that Ax|—;, = Ii(x(t, ,y(t;)) for k=1,...,m. O

In the following, we define generalized metric space (or vector metric spaces) and prove some properties.
If, 2,y € R", 2 = (x1,...,20), ¥y = (Y1,---,Yn), by € < y we mean x; < y; for all « = 1,...,n. Also
2] = (|z1], .., |zn]) and max(z,y) = max(max(z1,y1), ..., max(x,,yn)). If ¢ € R, then z < ¢ means x; < ¢

for each i =1,...,n. For z € R", (x); =4, i=1,...,n.

Definition 2.5 [32] Let X be a nonempty set. By a generalized metric on X (or vector-valued metric) we

mean a map d: X x X — R™ with the following properties:
(i) d(u,v) >0 for all u,v € X; if d(u,v) =0 then u=v.
(ii) d(u,v) =d(v,u) for all u,v € X.
(tii) d(u,v) < d(u,w) + d(w,v) for all u,v,w € X.
Note that for any i € {1,...,n} (d(u,v)); = di(u,v) is a metric space in X .
We call the pair (X,d) a generalized metric space. For r = (r1,79,...,7,) € R | we will denote by
B(zg,7) ={x € X : d(zg,x) <71}
the open ball centered at xg with radius r and
B(xg,r) ={x € X : d(xg,x) <r}
the closed ball centered at xg with radius r = (ry,...,7,) >0, 7, >0, i=1,...,n.

Remark 2.6 In generalized metric space in the sense of Perov, the notions of convergence sequence, Cauchy

sequence, completeness, open subset and closed subset are similar to those for usual metric spaces.

Definition 2.7 [32] A square matriz A of real numbers is said to be convergent to zero if and only if A™ — 0
as n — 0.

Lemma 2.8 (see [17]) Let A € My, m(Ry). Then the following statements are equivalent:

e A is a matrix convergent to zero;

The eigenvalues of A are in the open unit disc, i.e. |\ <1, for every A € C with det(A—\I) = 0; where
I denote the unit matriz of My, m(Ry),

The matriz I — A is nonsingular and (I — A)™ ' =T+ A+ + A" + .-

J

The matriz I — A is nonsingular and (I — A)~! has nonnegative elements;

A"q — 0 and gA™ - 0 as n — oo, for any q € R™ .
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Definition 2.9 Let (X,d) be a generalized metric space. An operator N : X — X s said to be contractive if

there exists a matriz A convergent to zero such that

d(N(z),N(y)) < Ad(z,y), VYr,yeX

Theorem 2.10 /39, 40](Perov’s fized point theorem) . Let (X,d) be a complete generalized metric space and
N : X — X be a contractive operator with Lipschitz matriz A. Then N has a unique fixed point x* and for
each g € X we have

d(N* (o), z*) < A¥(I — A)~Yd(zo, N(z0)) Vk € N.

3. Existence and uniqueness solution

For a given T > a > 0, let Jy = (g, tgr1], K = 1,2,--- ,m. In order to define a solution for problem (1.1),

consider the following space of picewise continuous functions

={y: [a,T] = R, yp € C(Ji, )fork:O,...m+1,
and there exist y(t;) and y(tf) with y(tx) =y(t;), k=1,--- ,m}.

This set is a Banach space with the norm |[|y||pc = supye(e 17 [y(2)]-
Set J' = J\{t1,...,tm}.

Definition 3.1 A function (z,y) € PC(J,R) x PC(J,R) is said to be a solution of (1.1) if and only if

k

=1 fi(s,x(s),y(s

#(0) = wat iy X f, ()" espalas
k

ey J ()t LV g S T (a(t), y(t) € (tro i), K =1,.m.
i=1 (3.1)

t; B—1 s,x(s s

y(t) = ya+%ﬁ)zfti_l( S) fa( ( ))ds

k
t B-1 s,x(s),y(s
+rgy Jiy (n2)7T 22D gg 2 (@), ()t € (teytria), k=1,..,m.

The following assumptions are needed in the sequel.
(Hp) There exist constants k; >0, i =1,---,4, such that

|f1(ta$7y)_f1(t7§7§)|§k1|$—f‘+k2|y—y|7 for all x7§7y7yeR7

and
|f2(t,x,y) — fo(t,Z,9)| < kslz — T| + kaly — 9|, forall x,Z,y,7€R.
(H2) There exist constants aq;, ag;, b1, be; >0, ¢ =1,--- m, such that
|Ii(z,y) — Li(Z,9)| < aiilx —Z| +axly — 7|, foralle,T,y,7 € R,
and

ILi(z,y) — I;(Z,9)| < bz —Z| + baily — 7|, for alle, T, y,7 € R.
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We will use the Perov fixed point theorem to prove the existence of a solution of the problem (1.1).

Theorem 3.2 Assume that (Hy )—(Hy ) are satisfied and the matriz

k k
Agkr + Y a1 Agka+ Y ag;
i=1 i=1

A= % % Jk=1,....m
Agks+ > b1 Agka+ ) by
i=1 i=1
converges to zero. Then the problem (1.1) has a unique solution.
Proof First, we put A, = ﬁ (ln %)a, Ag = % (ln %)ﬂ
Consider operator T : PC' x PC' — PC x PC' defined by
T(Z‘,y) = (Tl(I,y),TQ(J?,y)),
where
Ty (z,y)(t) =x4 + - Xk:/t m o —fl(s’x(s)’y(s))ds
1 Y —4a F(Cl{) s _ s s
L /t wt)" Al u), +zk31( (t:), y(t:)),t € (trstusa] b =1
N\ n- - as i\T\Li), i) ) ) yv=1,...,m
F(a) " s s £ i Y\t ks Uk+1
and
k t: ﬁ_l
1 ‘ tz fQ(S,I(S),y(S))
e = 23 [ () ol
o)) =t 3 [ (1 :
1t ! h
tr (m) 205V g S T, y(t), € (b tigal B =1,
F(/B) tr S s i=1
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Now, we first show that T is well defined. Given (z,y) € PC x PC, t € [a,T], we have

a—1
k + k
Tyl e <ol + s §j / (m)  (elelrethlvlel,,

S

Wb ) 7 a(5.0,0) o,

S

" (k1| pe + kallyllpo)

)1
O
Fb
N
/_\/;\
:
\/\_//\

ds
S
L[ (wt 7 15,0, o 0.0l 4,

F(a
+ |Iz(x(ti)7y(tz)|

i=1

2 T b

< |za| + m(ln g)a((h”%HPC + kallyllpc) + Mi) + Z[aliHﬂ?HPc + az|yll pcl,

i=1

where M; = [/ f1(s,0,0)|| and k =1,....m

and, we can also proof as below that:
T

k
2 «@
1T2(z,y)llpc < |yal + m(ln g) ((k3llzl|pc + kallyllpc) + M2) + Z[bu‘HUEHPC + bail|yll pcl
=1

where Ms = || f2(5,0,0)|| and k =1,....m
Thus

( 1T (2, 9)]l Po > _ ( |Za| + Ao M) )
I (2, 9)ll Po [Yal + Ag M2
k k
Aakl + Z ai; AakZ + Z a2; ||J)||
- s e ( e ) k=1,..,m.
Iyl pc

Agks + > by Agky + > bai
i=1 i=1

This implies that T is well defined.

Clearly, fixed points of T are solutions of problem (1.1). We show that T is a contraction. Let
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(x,y), (z,y) € PC x PC . Then (H; ) and (H> ) imply

i/ ( ) [s.2(2).(5) — fuls T Dlre

1Ty (2, y) — Th(Z,7) || pc <

r* 3 -

%/ (ln ) " A(s.x(s),y(s)) Sfl( ﬁﬁﬂpcd
+ Z |Li((ts), y(t:) — Li(a(t), y(8) | po

1 bt Y ds

< =~ (kllz = Z| po + kally — 7l -

(@) PC 201y — yPc; tll( ) 3

L[t ot
k - k -y In -
+Gelle o + Ry ~Tllre) s [ (w2)" %

k

k
+ > (aillz = Z| pe + azlly = ¥l po)
i=1
k k
< (Aakl + Zau) |z —Z|pc + (Aakz + Zam) ly —9llpc,
i=1 =1

where t € (tg,trt1],and k= 1,...,m.
Similarly, we have

k k
1T2(z,y) — T2(Z,y)| pc < <A6k3 +> bu) |z —Z|pc + (ANM +> b2z’> ly = 7llpc-

=1 =1

where t € (tg, trt1],and k=1,...,m
It follows that

|T(x,y) —T(Z,9)|lpc < A ( H; :;H'ﬁg > , forall (z,y),(z,y) e PC x PC.

Hence, by Theorem (2.10), the problem (1.1) has a unique solution.

O
4. Ulam—Hyers stability
In this section, we introduce Ulam’s type stability concepts for Eq. (1.1). Let € = (eq,€3) > 0, ap =
(Ya,¥g) > 0 and pa 3 = (¢a,ps) € PC(J,RT) is nondecreasing. We consider the following inequalities
(Dru)®) = fittuv) < e tES
|[Au(ty) — Iy (u(ty), v(te))| < €, k=1,...,m, (4.1)

| (Dfu) (1) = foltuv)| <es  te
|A'U(tk) —Tk(u(tk),v(tk))\ < €s k= 1, ey M,
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|(Dru) @) = fi(tu,0)] < palt)  te S’

[Au(ty) — I (u(te), v(t)| < Yo, kE=1,....m (4.2)
(D) () = Rt uv) < gs(t) te T
|A’U(tk) —Tk(u(tk),v(tk))\ § ’(/Jg k= 1, e,
and
| D,?‘u) t) = filt, 0, 0)] < €apa tET
|Au(ty) — Ik (ulte), v(tr))| < €ata, k=1,...m, (4.3)
(D) () = faltyuv) S epop te S
|Av(ty) = Ti(u(ty),v(te)| < espp k=1,..,m,

We adopt the following definitions from [45]

Definition 4.1 Eq. (1.1) is Ulam—Hyers stable if there exists a real number Ao g = (Ao, Ag) > 0 such that
for each € = (ea,€5) > 0 and for each solution (u,v) € PC'(J,R) of inequality (4.1) there exists a solution
(z,y) € PCY(J,R) of Eq. (1.1) with

[(u,v) = (2, 9)] < €Aap

Definition 4.2 Eq. (1.1) is generalized Ulam—Hyers stable if there exists pa,p = (a,pp) € C(RT,RT), ©q,5(0) =

0 such that for each solution (u,v) € PCY(J,R) of inequality (4.1) there exists a solution (z,y) € PC*(J,R)
of Eq. (1.1) with

(1, v) = (2,9)] < ¢a,se)

Definition 4.3 Eq. (1.1) is Ulam-Hyers-Rassias stable with respect to (@a,p,%a,p) if there exists Ay > 0,
such that for each ¢ > 0 and for each solution (u,v) € PCY(J,R) of inequality (4.3) there exists a solution
(z,y) € PCY(J,R) of Eq. (1.1) with

|(u7v) - (l‘,y)| < 6')‘%1#(()004,5@) + waﬁ)

Definition 4.4 Eq. (1.1) is generalized Ulam-Hyers—Rassias stable with respect to (pa.g,Va.p) if there
exists Ny > 0, such that f for each solution (u,v) € PC'(J,R) of inequality (4.2) there exists a solution
(z,y) € PCY(J,R) of Eq. (1.1) with

|(u7 U) - (x,y)| < )‘%w((paﬁ(t) + wa,ﬂ) tedJ

Lemma 4.5 A function (u,v) € PCY(J,R) is a solution of inequality (4.1) if and only if there is (g1,92) €
PC(J,R) and a sequence g1k, g2r, k =1,2,...,m (which depend on (u,v)) such that

(1) |1 (D] < €eas lg2()] < €p, 918D < €as |g2n()] < €5, k=1,2,...,m

(it)
(Dgu(t) = f1(t,u,v) + g1(t) telJ
va) = fa(t,u,v)| + g2(t) teJ
Au(ty) = Ix(ute), v(tk)) + g1k, k=1,....m,
Av(ty) = I (u(te),v(tg)) + g k=1,...,m,
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Proof According to (ii), we have

|(Dgu(t) — fi(t,u,v)[ = |g1(¢)] telJ'
| (DFv) (t) = fat,u,0)| = |g2(8)]  teJ’
|Au(tk) 7£k( (tk) (tk))| - |glk|a k= 1,...,m,
|Av(te) — Ir(u(te), v(te))| = |gax] K =1,....,m,

By using (i), we have

|(Dgu(t) filt,u,v)| < €q telJ
| (D5) (t) = fa(t,u,v)| < es teJ
|Au(ty) = Ty (ulty), v(t))] < €0, k=1,..,m,
|Av(tr) = Tx(u(tr),v(te))| < e k=1,..,m,
Then , (u,v) is a solution of inequality (4.1). O

One can have similar lemma for inequalities (4.2) and (4.3).

Lemma 4.6 Suppose (u,v) is the solution of the inequality (4.1), then we have the system of inequalities given
as

\u(t)fuafﬁiz S, ('t

i S,u v(s -1 ,u(s),v(s 7
o)~ v — iy 35 i, (1) LaLemD2 D gt (277 L2 g T (a6 < Ape

a—1 s.ul(s).v(s a— s,u(s),v(s
) Al gy (L fl (1o )T Aol ol gy lei(u(ti)’v(ti))

< Aa€as

En‘s

where t € (tg,tg+1]andk =1,...,m

Proof By using Lemma 4.5, we have

Dyu)(t) = filt,uv) + () e

va) t) = fa(t,u,v) + g2(t) teJ (4.4)
Au(ty) = I (u(ty), v(tr)) + g1k, k=1,...,m,
Av(tk) ZIk(u(tk),’U(tk))—l—ggK k=1,..,m,

S

k
t; D\~ L fi(s,u(s),v(8)+g1(s t a—1 s,u(s),v(s))+g1(s
wt) = vty X (k) AlealoCDtn(e) go | L [t (1 £)*! Al e g,

k
=+ Z Iz(u(tl), ’U(tl)) + glivt € (tk,tk+1] and k = ].7 -

. (4.5)
t; p—1 s,u(s s s a—1 s,u(s s s
o) =l 3, () B0 gy L[ (1 £)771 Ll e gy
- =
Z I; ( ( ) ’U(ti)) + g24,t € (tk>tk+1] andk=1,...,.m
=1

From first equation of the system (4.5), we have

k : a— S,u v(s a— s,u(s),v(s
) = o = iy 35 S () ALl gy s 1 (1 )" L g 9% (). oft)
i=

e 1St () el gy 1t (g )0 el g |
—F(a);fti,l(ns) s S+F(a)ftk(ns) s S+z:1|gh‘

- N =
r(%fin ()" + kea

(s D) + k) ca = Aaga, k= 1,.om

IN

IN
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Repeating the same procedure for second equation of the system (4.5), we have

S S S

1 &a [t t:\ P! fa(s,u(s), v(s)) 1t/ P71 fa(s,uls), v(s)) ko
|v(t) — va — m ;/;Fl (ln 7) =l = rds— @ /;k (ln 7> fds - ;Ii(u(ti),v(ti)ﬂ < Ageg.

B
2 T _ _
where FBFD) (ln ;) +k=Xg, k=1,...m

Let us set

k k
Api= Aok + 3 ar, Agi= Agka + ) as;,
i=1 =1

k k
AT = Agk‘g + Z b4, A§ = A5k4 + E bo;.

=1 i=1

Theorem 4.7 If the assumptions (H1)-(H2) hold, and suppose that

M
(1—=A)(1 = A3)

A <1, A <landA:=1 # 0.

Then (1.1) is Ulam—Hyers and generalized Ulam—Hyers stable.

Proof Let (u,v) € PC'(J,R) be any solution of the inequality (4.1) and let (x,y) € PC'(J,R) be the unique

solution of the following:

D,?‘:E) t) = filt,z,y) tE€la,T], t#£ty, k=1,..,m,

Dly)(t) = folt.zy) teaT) t# b k=1,.,m
Axz(ty) =a(tf) —=(ty) = L(z(tr), y(ts), k=1,..m,
A(y()tk) =y(t) —y(ty) = Ie(x(tr), y(te), k=1,...m,
(@) = v,

Then, in view of Lemma 2.4, the solution of (4.6) is provided by

k
P(t) =t ey 2 Ji, () Rl

i=1

a—1 s,z(s s
+ﬁ5ﬁ0ﬁ) ﬁL@Aﬁ®+§Iu>ym»

k
y(t) = ”a+fﬁﬁziﬁi¢@n%yxlégﬁguﬁﬂds
- k
t a—1 s,x(s s
+1"(1a) ftk (Ing) Mds ; i(z(ti), y(ti))

Hence for each t € (tg,tr41], it follows

(4.6)
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a—1
f1(s,u(s),v(s a—1 f1(s,u(s),v(s
Hu_xHPC = ‘u(t) T ta F(a) Z ft1 1 (ln ) Mds - F(a) ftk (In'$) Mds
3 i N\ [ F1(s,uls),0(s) = Fi(s,a(s),y(s))
- h(u(ti),v(ti))\ + &5 ;1 fi (m)™ Tt b SCHORTC) PN
a1 [f1(s,u(s),0() = f1(s,2(5),u(5)) k
brd JL () | - v !ds—i—i;l“i(u(ti),v(ti))—Ii(x(ti),y(ti))|
k

S Aa€a + Aa (k’l”u — $||PC =+ k2||’l] — yHPC) + Z (ali”u — xIIPC + aZ’L”v _ y”PC)

k k
< Aata + [Acki + > ari| lu—z|lpc + |Aak2 + > a2i:| llv — yllpe

i=1 i=1
< Xafa +Millu—zllpe + Azl —yllpc

Thus, we get

A A
Ju— 2| pe < 1 an + 1—2/\1 v —yllrc.

In addition, for each t € (t,tx41], it follows

k i i p-1 B—1 , s
o=yl pe < ‘v(t) ~ve — 5 > Ji ( ?) Bleaeho) gy 1 gt (1 £)P71 Lol g,
k _
- ST + oy 3, () e,
1

ft,c (1 7)/3 1 |f2(s u(s) v(s)) fz(s z(s) ,y(s))|d + z:l |I ), v(t:)) —Ti(m(ti),y(ti)”
K2

T

< Ageg + Ag (k3llu — zllpc + kallv — yllpc) + Zl (brillu — zllpe + baillv — yllpc)
=

k
< Ageg + [Agks + X bii| |lu — zllpc +
i=1

k
Agksa + > b2i:| lv —yllpc
i=1
< Apeg + Afllu —zl|po + Asllv -yl pc-
Thus, we get

Age A3
lo=sllpe < 755 + Tz 0 —llee:

The equivalent matrix of Egs. (4.7) and (4.8) is given as:

1 _ Ao Aaa

1-Ay ”u - :L'HPC 1-A
<
AT A
_1_/1\3 1 ||U _yHPC 152%
Solving the above inequality, we get
1 A7 Aata
lu — [l p A AI-AD | | T-A
<
A

lv=yllpc ﬁ % 1522
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Further simplification of above system gives

from which we have

u=sllpe + v = vlpo < 755

Let ¢ = max{e,, e}, then from (4.9) we have

where

Hence, problem (1.1) is Ulam—Hyers stable.

Over and above, if we write

then problem (1.1) is generalized Ulam—Hyers stable.

5. Example

Example 5.1 Consider the following differential equation system

Here, we have

and we simply check that

)\a&?a AT)\QEQ
— <
)\56[3 Az)\aea
— <
HU y”PC = A(l 7A;) A(l 7A%)7
)\a&‘a ATABE,B )\g&‘ﬁ Ag)\a&‘a
ATI—A3)?  AQ—A3) AL AD)
[(u,v) = (@, 9)lPc < Aa,ge,
A o )\af':a AT)\gSg )\565 AQ)\QFJQ
PTIAI=A) T AQ—A3)2 T AT—AY) AL - A2
[(u,v) = (z,9)llpc < Aa,ptb(e), where ¢(0) =0
D% (t)zm tE[l ] t#ﬁ
t T 20(Int41)° ) €5 35
D/%y) (1) = st te e, t#3,
Am(g) =exp 5 (Sinx(%) + y(g)) ,
(3 5
Ay(%) _ | (3)1457!(3)\,
o(1) = 4,
y(]') = 2
sin(x + y) arctant
t = —— t = —
fl(wray) 20(1nt+1)’ f2(7xay) 3+|x+y|
__ _ 1 _ 1 _
Vl’ay,%xGR; fl(t7mvy)_f1(tvxay)‘S%’x_‘x’_'_%’y_ya vtE[l,BL

(4.9)
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Vx,y,f,EER; ‘fQ(taxvy)_fé(ufay)‘S%x_fl"’_%‘y_yv Vte[lae]»
1(2Gru) ~ 1 (v0)93)) | < eFfo—a] + 7|y 1],
1(oa) -7 (71| < 5l 7] + 55l -]

Therefore the matriz

0.23. 0.23
A= ( 0.3 03 )

converges to zero since its eigenvalues are ’)\’ = 0.5 =< 1. From Theorem (3.2), the problem (5.1) has a

unique solution.

On the other hand, we have Ao = Ay =0.24, A7 = A5 = 0.31. Therefore

0.24 % 0.31
A = ]_ —_ = U.
(1-0.24)(1 — 0.31) 086 #0

Therefore, the coupled system (5.1) is Ulam—Hyers stable, generalized Ulam~—Hyers stable.
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