tübitak

Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/

Turk J Math
(2021) 45: $1407-1417$
© TÜBİTAK
doi:10.3906/mat-2102-56

Liftings and covering morphisms of crossed modules in group-groupoids

Serap DEMİR KARAKAŞ* ${ }^{\text {© }}$, Osman MUCUK©
Department of Mathematics, Faculty of Arts and Sciences, Erciyes University, Kayseri, Turkey

Received: 11.02.2021 • Accepted/Published Online: 16.04.2021 • Final Version: 20.05 .2021

Abstract

In this work we introduce lifting and covering of a crossed module in the category of group-groupoids; and then we prove the categorical equivalence of horizontal actions of a double group-groupoid and lifting crossed modules of corresponding crossed module in group-groupoids. These allow us to produce more examples of double group-groupoids.

Key words: Crossed module, group-groupoid, double group-groupoid, action, covering morphism

1. Introduction

The concept of covering groupoid has a significant role in the utilizations of groupoids (see [4, 16]). It is well known that the groupoid actions on sets and the covering morphisms of a certain groupoid G are categorically equivalent (see [6] for topological version). An analogous equivalence was given in [9, Proposition 3.1] for a group-groupoid G which is used under the name 2-group in [2] and G-groupoids or group object in the category of groupoids in [11]. In [1], this result was generalized by assuming G is an internal groupoid in the category of groups with operations appeared in [27, 28]. That result is adapted to Leibniz algebras setting in [29], to categorical groups in [25] and to categorical ring in [22].

Double groupoids which are useful for Seifert-van Kampen Theorem to determine the fundamental groupoids of topological spaces [7] were defined by Ehresmann in $[13,14]$ to be internal groupoids in the category of groupoids. It was proved in [10] that double groupoids are categorically equivalent to crossed modules in the sense of Whitehead [31, 32]. Due to this equivalence some algebraic structures such as normality and quotient of double groupoids were characterized in [21] (see [23] for similar structures in group-groupoids).

By Loday [18] cat ${ }^{1}$-groups and crossed modules in groups; cat ${ }^{2}$-groups and crossed squares are categorically equivalent. More generally by Ellis and Steiner [15] cat ${ }^{n}$-groups are equivalent to crossed n-cubes. The readers are also referred to [3] for algebraic structures on groupoids and algebraic descriptions of homotopy n types. Due to [30] crossed modules in group-groupoids are equivalent to double group-groupoids and to crossed squares; and therefore to cat ${ }^{2}$-groups.

It was proved in [8, Theorem1.7] that the categories of horizontal actions and horizontal action morphisms for a double Lie groupoid are equivalent. Recently this result is extended to double group-groupoids in [12]; and action and covering notions of double group-groupoids are characterized.

In this paper, by means of the latter equivalence, we aim to introduce the notions of lifting and covering

[^0]of a crossed module in group-groupoids and prove the categorical equivalence of them. For the convenience of the reader in the second section we give preliminaries on groupoids, actions, coverings and group-groupoids. Section 3 contains a brief summary of double groupoids, double group-groupoids together with actions, coverings and crossed module in the category of group-groupoids. In Section 4, we characterize a crossed module in the category of group-groupoids corresponding to a double group-groupoid horizontally acting on a group-groupoid, define the lifting notion of crossed modules in group-groupoids and we give some examples. We prove that the category of horizontal actions of a double group-groupoid on group-groupoids and the category of lifting crossed modules in the category of group-groupoids are equivalent; and obtain a categorical equivalence between liftings and coverings of a crossed module in group-groupoids. These results extend [24, Theorem 4.6] and [24, Theorem 5.1] respectively. The results of the paper enable us to produce more examples of double group-groupoids.

2. Groupoids and group-groupoids

A groupoid is a small category whose morphisms are isomorphisms (see [4, 19] for more details). Indeed a groupoid G includes a set G of morphisms or arrows and G_{0} of objects with source and target point maps $d_{0}, d_{1}: G \rightarrow G_{0}$ and object inclusion map $\epsilon: G_{0} \rightarrow G$ with the property that $d_{0} \epsilon=d_{1} \epsilon=1_{G_{0}}$. An associative partial composition $G_{d_{1}} \times{ }_{d_{0}} G \rightarrow G,(g, h) \mapsto g \circ h$, where $G_{d_{1}} \times{ }_{d_{0}} G$ is the pullback of d_{0} and d_{1} is defined. Here if $g, h \in G$ and $d_{1}(g)=d_{0}(h)$, then the composite $g \circ h$ is well defined such that $d_{0}(g \circ h)=d_{0}(g)$ and $d_{1}(g \circ h)=d_{1}(h)$. Moreover, for $x \in G_{0}$ the morphism $\epsilon(x)$ acts as the identity and it is denoted by 1_{x}. There is a map $G \rightarrow G$ called inversion which assigns to every element g its inverse g^{-1} such that $d_{0}\left(g^{-1}\right)=d_{1}(g)$, $d_{1}\left(g^{-1}\right)=d_{0}(g), g \circ g^{-1}=\epsilon\left(d_{0}(g)\right), g^{-1} \circ g=\epsilon\left(d_{1}((g))\right.$. In a groupoid G, all maps defined above are called structural maps. If $x \in G_{0}$, the star $S t_{G} x$ of x is defined by the set $\left\{g \in G ; d_{0}(g)=x\right\}$. The fundamental groupoid πX of a topological space X is an example of groupoid whose objects are the points of X and morphisms are the homotopy classes of the paths relative to the end points.

A morphism $f: G \rightarrow H$ of groupoids includes the maps $f_{1}: G \rightarrow H$ and $f_{0}: G_{0} \rightarrow H_{0}$ satisfying $d_{0} f_{1}=f_{0} d_{0}, d_{1} f_{1}=f_{0} d_{1}, f_{1} \varepsilon=\varepsilon f_{0}$ and preserving the composite $f(g \circ h)=f(g) \circ f(h)$, for $g, h \in G$.

A groupoid G whose sets of objects and morphisms are equipped with group structures is called a group-groupoid whenever the group operation written additively $G \times G \rightarrow G,(g, h) \mapsto g+h$, the inverse $G \rightarrow G, g \mapsto-g$ and the unit map $\{0\} \rightarrow G$, where $\{0\}$ is singleton, are groupoid morphisms. Here note that the additive map is a morphism of groupoids if and only if the interchange rule

$$
(g+h) \circ(k+l)=(g \circ k)+(h \circ l)
$$

is satisfied for $g, h, k, l \in G$ whenever the composites are well defined. A group-groupoid morphism is a group structure preserving morphism of underlying groupoids. We thus obtain a category GpGd of group-groupoids.

A groupoid G whose morphism and object sets have topologies and the structural maps are continuous is called topological groupoid (see [5, 19]). A topological group-groupoid is defined in [17] to be a topological groupoid which has topological group structures on the sets of objects and morphisms.

A covering morphism of groupoids, $p: \widetilde{G} \rightarrow G$, is a groupoid morphism with the property that for every $\tilde{x} \in \widetilde{G_{0}}$ the restriction $\mathrm{St}_{\widetilde{G}} \tilde{x} \rightarrow \mathrm{St}_{G} p(\tilde{x})$ is bijective. A covering morphism of topological groupoid is a covering morphism of groupoids in which each restriction to the star is a homeomorphism. A covering morphism of topological group-groupoids is defined in [20, Definition 4.1] as a covering morphism of topological groupoid.

The following construction on action appears in [4, p.373].

An action of a groupoid G on a set X includes a function $\omega: X \rightarrow G_{0}$ and a partial function $\varphi: X_{\omega} \times_{d_{0}}$ $G \rightarrow X,(x, g) \mapsto x \bullet g$ where $X_{\omega} \times_{d_{0}} G$ is pullback of ω and d_{0} with the following properties.
(i) $\omega(x \bullet g)=d_{1}(g)$ for $(x, g) \in X_{\omega} \times_{d_{0}} G$;
(ii) $x \bullet(g \circ h)=(x \bullet g) \bullet h$ for $(g, h) \in G_{d_{1}} \times_{d_{0}} G$ and $(x, g) \in X_{\omega} \times_{d_{0}} G$;
(iii) $x \bullet \epsilon(\omega(x))=x$ for $x \in X$.

Such an action is denoted by (X, ω). A morphism of these actions from (X, ω) to $\left(X^{\prime}, \omega^{\prime}\right)$ is a function $f: X \rightarrow X^{\prime}$ with the properties $\omega^{\prime} f=\omega$ and $f(x \bullet g)=f(x) \bullet g$. So for a given groupoid G, we have a category denoted by $\operatorname{GpdAct}(\mathrm{G})$.

Following [4], for such an action there is a groupoid $G \ltimes X$, called semidirect product groupoid. Here the object set is X. The elements of $(G \ltimes X)(x, y)$ are the pairs (g, x) in which $g \in G(\omega(x), \omega(y))$ and $x \bullet g=y$. The groupoid composition is as follows.

$$
(g, x) \circ(h, y)=(g \circ h, x)
$$

The projection map $p: G \ltimes X \rightarrow G$ is a covering morphism of groupoids. This assignment determines a categorical equivalence between actions and coverings of G [6].

An action of a group-groupoid G on a group X by a group morphism $\omega: X \rightarrow G_{0}$ (See [9, Section 3] for more details) is a groupoid action of G on the underlying set of X by ω, satisfying the interchange rule

$$
(x \bullet g)+(y \bullet h)=(x+y) \bullet(g+h)
$$

for $g, h \in G$ and $x, y \in X$.
A morphism from a group-groupoid action (X, ω) to $\left(X, \omega^{\prime}\right)$ include $f: X \rightarrow X^{\prime}$ as a morphism of group and of underlying operations of G. Therefore there is a category $\operatorname{GpGpdAct}(\mathrm{G})$ of group-groupoid actions and morphisms of them.

Besides, the categories of group-groupoid coverings and actions are equivalent for a fixed group-groupoid [9, Proposition 3.1].

3. Double group-groupoids and crossed modules

A double groupoid is a groupoid object in the category of groupoids. In other words it consists of a quadruple of sets $(S ; H, V ; P)$ such that there are two groupoid structures on H and V with object set P and two groupoid structures on S which are vertical one based on H denoted by S_{V} and horizontal one based on V denoted as S_{H}. Therefore a double groupoid has four related groupoid structures and compatible structural maps.

In a double groupoid we write multiplication for groupoid compositions in H and V; and $1_{b}^{H} \in H$ and $1_{b}^{V} \in V$ for the identity elements for $b \in P$. The source, target, object inclusion, composition for H are $d_{0}^{H}, d_{1}^{H}: H \rightarrow P, \varepsilon^{H}: P \rightarrow H$ and $m^{H}: H * H \rightarrow H$ respectively and similar notations are used for V.

The horizontal groupoid S_{H} has source and target $d_{0}^{h}, d_{1}^{h}: S \rightarrow V$, object inclusion $\varepsilon^{h}: V \rightarrow S$ and partial composition $\circ_{h}: S * S \rightarrow S,\left(s_{1}, s_{2}\right) \rightarrow s_{1} \circ_{h} s_{2}$. The vertical groupoid S_{V} has source and target $d_{0}^{v}, d_{1}^{v}: S \rightarrow H$, object inclusion $\varepsilon^{v}: H \rightarrow S$ and partial composition $\circ_{v}: S * S \rightarrow S,\left(s_{1}, s_{2}\right) \rightarrow s_{1} \circ_{v} s_{2}$. For a square s write s^{-h} and s^{-v} for the inverses of s in S_{H} and S_{V}, respectively.

Elements of S are squares with boundaries as follows:

A double groupoid has the following interchange rule for $s_{1}, s_{2}, s_{3}, s_{4} \in S$

$$
\left(s_{1} \circ_{h} s_{2}\right) \circ_{v}\left(s_{3} \circ_{h} s_{4}\right)=\left(s_{1} \circ_{v} s_{3}\right) \circ_{h}\left(s_{2} \circ_{v} s_{4}\right)
$$

A morphism $\varphi=\left(\varphi_{s}, \varphi_{h}, \varphi_{v}, \varphi_{p}\right):\left(S^{\prime} ; H^{\prime}, V^{\prime} ; P^{\prime}\right) \rightarrow(S ; H, V ; P)$ of double groupoids consists of four maps that commute with structural maps. These form a category DGpd of double groupoids.

A double group-groupoid is defined in [30] to be an internal groupoid in the category GpGd. Hence it consists of four related group-groupoids S_{H}, S_{V}, H and V provided with the following interchange rules

$$
\begin{aligned}
& \left(s_{1} \circ_{h} s_{2}\right)+\left(s_{3} \circ_{h} s_{4}\right)=\left(s_{1}+s_{3}\right) \circ_{h}\left(s_{2}+s_{4}\right) \\
& \left(s_{1} \circ_{v} s_{2}\right)+\left(s_{3} \circ_{v} s_{4}\right)=\left(s_{1}+s_{3}\right) \circ_{v}\left(s_{2}+s_{4}\right)
\end{aligned}
$$

By the interchange rule in double group-groupoid, horizontal and vertical groupoid compositions can be written in terms of group operation for $d_{1}^{h}\left(s_{1}\right)=d_{0}^{h}(s)$ and $d_{1}^{v}\left(\alpha_{1}\right)=d_{0}^{v}(\alpha)$ as follows:

$$
\begin{gather*}
s_{1} \circ_{h} s=s_{1}-\varepsilon^{h}\left(d_{1}\right)^{h}\left(s_{1}\right)+s=s-\varepsilon^{h}\left(d_{1}\right)^{h}(s)+s_{1} \tag{3.1}\\
\alpha_{1} \circ_{v} \alpha=\alpha_{1}-\varepsilon^{v}\left(d_{1}\right)^{v}\left(\alpha_{1}\right)+\alpha=\alpha-\varepsilon^{v}\left(d_{1}\right)^{v}(\alpha)+\alpha_{1} \tag{3.2}
\end{gather*}
$$

whenever the necessary operations are defined; and for the squares $s, s_{1} \in \operatorname{Ker} d_{0}^{h}$ and $\alpha, \alpha_{1} \in \operatorname{Ker} d_{0}^{v}$, we have

$$
s+s_{1}-s=\varepsilon^{h} d_{1}^{h}(s)+s_{1}-\varepsilon^{h} d_{1}^{h}(s)
$$

and

$$
\alpha+\alpha_{1}-\alpha=\varepsilon^{v} d_{1}^{v}(\alpha)+\alpha_{1}-\varepsilon^{v} d_{1}^{v}(\alpha)
$$

There is a category of double group-groupoids denoted by DGpGpd.
Action of a double group-groupoid on a group-groupoid below comes from [12].
A horizontal action of double group-groupoid $\mathcal{S}=(S ; H, V ; P)$ on a group-groupoid G via a morphism $\omega: G \rightarrow V$ of group-groupoids includes an action of horizontal group-groupoid S_{H} on V via $\omega: G \rightarrow V$ and an action of H on P via $\omega_{0}: G_{0} \rightarrow P$ with the following properties.
(i) $d_{1}^{G}(g \bullet s)=d_{1}^{G}(g) \bullet d_{1}^{v}(s)$ and $d_{0}^{G}(g \bullet s)=d_{0}^{G}(g) \bullet d_{0}^{v}(s)$ for each $s \in S, g \in G$ with $d_{0}^{h}(s)=\omega(g)$.
(ii) For $s_{1}, s_{2} \in S$ and $g_{1}, g_{2} \in G$ we have

$$
\begin{equation*}
\left(g_{1} g_{2}\right) \bullet\left(s_{1} \circ_{v} s_{2}\right)=\left(g_{1} \bullet s_{1}\right) \circ_{v}\left(g_{2} \bullet s_{2}\right) \tag{3.3}
\end{equation*}
$$

(iii) For all $a \in H$ and $x \in G_{0}$ with $d_{0}^{H}(a)=\omega_{0}(x)$ we have $1_{x}^{G} \bullet \varepsilon^{v}(a)=1_{a x}^{G}$ and for $x, x_{1} \in G_{0}$ and $a, a_{1} \in H$ we have

$$
\left(x_{1}+x\right) \bullet\left(a_{1}+a\right)=\left(x_{1} \bullet a_{1}\right)+(x \bullet a)
$$

We write (G, ω) for such an action. Due to structure of group-groupoid we have an interchange rule

$$
\begin{equation*}
\left(g_{1}+g_{2}\right) \bullet\left(s_{1}+s_{2}\right)=\left(g_{1} \bullet s_{1}\right)+\left(g_{2} \bullet s_{2}\right) \tag{3.4}
\end{equation*}
$$

Similarly vertical action of double group-groupoids can be restated. See [8] for the study about horizontal action of Lie double groupoid and related examples.

A morphism $f:(G, \omega) \rightarrow\left(G^{\prime}, \omega^{\prime}\right)$ of such actions consists of group homomorphisms $f: G \rightarrow G^{\prime}$ and $f_{0}: G_{0} \rightarrow G_{0}^{\prime}$ provided that $f(g \bullet s)=f(g) \bullet s$ and $f_{0}(x \bullet h)=f_{0}(x) \bullet h$ such that $\omega^{\prime} f=\omega$ and $\omega_{0}^{\prime} f_{0}=\omega_{0}$. Thus for a fixed double group-groupoid S we have a category $\operatorname{DGpGpdAct}_{\mathrm{H}}(\mathrm{S})$ of horizontal actions of double group-groupoids.

A morphism $\varphi=\left(\varphi_{s}, \varphi_{h}, \varphi_{v}, \varphi_{p}\right):\left(S^{\prime} ; H^{\prime}, V^{\prime} ; P^{\prime}\right) \rightarrow(S ; H, V ; P)$ of double group-groupoids is called covering morphism associated with the horizontal action if $\left(\varphi_{s}, \varphi_{v}\right)$ and (φ_{h}, φ_{p}) are covering morphisms of ordinary group-groupoids [12, Definition 2.2]. Then we have a category $\operatorname{Cov}_{H} \operatorname{DGpGpd} / \mathrm{S}$ of coverings of S.

A crossed module which is due to Whitehead in $[31,32]$ is defined to be group homomorphism $\partial: A \rightarrow B$ with a right action $(a, b) \mapsto a . b$ of B on A with the following rules.
[CM1] $\partial(a . b)=-b+\partial(a)+b$, and
[CM2] $a_{1} \cdot \partial(a)=-a+a_{1}+a$.
We know by [30, Proposition 3.9] that (G, H, ∂) is a crossed module in group-groupoids if $\left(G, H, \partial_{1}\right)$ is a crossed module in groups. A morphism (f, g) from $\left(G^{\prime}, H^{\prime}, \partial\right)$ to (G, H, ∂) is defined to be two group-groupoid morphisms $f: G^{\prime} \rightarrow G$ and $g: H^{\prime} \rightarrow H$ with the property that $(f, g):\left(G^{\prime}, H^{\prime}, \partial\right) \rightarrow(G, H, \partial)$ is a morphism of crossed module in groups. Therefore there is a category XModGpGd of crossed modules in group-groupoids.

We need some techniques of the proof for the following result in later parts and hence we only state the main ideas.

Theorem 3.1 [30, Theorem 4.7] Crossed modules in group-groupoids and double group-groupoids are categorically equivalent.

$$
\text { XModGpGd } \simeq \text { DGpGpd }
$$

Proof For a crossed module in group-groupoid (G, H, ∂), one has a corresponding double group-groupoid $\left(H \ltimes G, H_{0} \ltimes G_{0}, H, H_{0}\right)$ in which the compositions are defined as follows:

$$
\left(h^{\prime}, g^{\prime}\right) \circ_{h}(h, g)=\left(h^{\prime} \circ h, g^{\prime} \circ g\right)
$$

,

$$
\left(h^{\prime}, g^{\prime}\right) \circ_{v}(h, g)=\left(h, g^{\prime}+g^{\prime}\right)
$$

. By [30, Lemma 3.4], group operation of $G \ltimes H$ is

$$
\begin{equation*}
\left(h_{1}, g_{1}\right)+(h, g)=\left(h_{1}+h, g_{1}+h_{1} \cdot g\right) \tag{3.5}
\end{equation*}
$$

Conversely for a double group-groupoid $(S ; H, V ; P)$ one has a crossed module in group-groupoid (K, V, ∂) where

$$
K=\left(\operatorname{Ker} d_{0}^{h}, \operatorname{Ker} d_{0}^{H}, d_{0}^{v}, d_{1}^{v}, \varepsilon^{v}, n^{v}, m^{v}\right)
$$

and

$$
V=\left(V, P, d_{0}^{V}, d_{1}^{V}, \varepsilon^{V}, n^{V}, m^{V}\right)
$$

the boundary map is $\partial=\left(\partial_{1}=d_{1}^{h}, \partial_{0}=d_{1}^{H}\right)$ and the action of V on $\operatorname{Ker} d_{0}^{h}$ is given by

$$
\begin{equation*}
a . b=-\varepsilon^{h}(b)+a+\varepsilon^{h}(b) \tag{3.6}
\end{equation*}
$$

for $a \in \operatorname{Ker} d_{0}^{h}$ and $b \in V$. We refer to the cited reference for more details.

We now state how to construct a double group-groupoid from a topological group-groupoid and obtain the corresponding crossed module in group-groupoids.

Example 3.2 We know that for a topological group X, the fundamental groupoid πX is a group-groupoid. Hence if G is a topological group-groupoid, then G and G_{0} are topological groups and then we have related four group-groupoids $\left(\pi G, \pi G_{0}\right),(\pi G, G),\left(\pi G_{0}, G_{0}\right)$ and $\left(G, G_{0}\right)$. So we have a quadruple $\left(\pi G ; \pi G_{0}, G ; G_{0}\right)$ which becomes a double group-groupoid. Therefore by Theorem 3.1 we have a corresponding crossed module $d_{1}: S t_{\pi G} 0 \rightarrow G$ in group-groupoids.

4. Liftings and coverings of crossed modules in group-groupoids

In this section evaluating the equivalence of the categories in Theorem 3.1 we obtain the lifting notion for a crossed module in the category of group-groupoids associated with a horizontal action of a double group-groupoid on a group-groupoid. We first have the following preparation.

For given a double group-groupoid $\mathcal{S}=(S ; H, V ; P)$ horizontally acting on a group-groupoid G via a morphism $\omega: G \rightarrow V$ of group-groupoids suppose that (A, B, ∂) is the crossed module of group-groupoids associated with \mathcal{S} by Theorem 3.1. We then actually have the following.
(i) a morphism of group-groupoids $\omega: G \rightarrow B$
(ii) an action of G on $A=\operatorname{Ker} d_{0}^{h}$ via ω defined by

$$
\begin{equation*}
A \times G \rightarrow A ; \quad(a, g) \mapsto a . g=-\varepsilon^{h}(\omega(g))+a+\varepsilon^{h}(\omega(g)) \tag{4.1}
\end{equation*}
$$

(iii) an action of G_{0} on $A_{0}=\operatorname{Ker} d_{0}^{H}$ via ω_{0} defined by

$$
A_{0} \times G_{0} \rightarrow A_{0} ; \quad(x, y) \mapsto x . y=-\varepsilon^{H}\left(\omega_{0}(y)\right)+x+\varepsilon^{H}\left(\omega_{0}(y)\right)
$$

(iv) a group-groupoid morphism

$$
\begin{equation*}
\varphi: A \rightarrow G \quad \varphi_{1}(a)=0_{G} \bullet a, \quad \varphi_{0}(x)=0_{G_{0}} \bullet x \tag{4.2}
\end{equation*}
$$

such that $\omega \varphi=\partial$.

We now state the following theorem.

Theorem $4.1(A, G, \varphi)$ is a crossed module in group-groupoids.

Proof By [30, Proposition 3.9], we need to prove that $\left(A, G, \varphi_{1}\right)$ satisfies the axioms of a crossed module of groups.
[CM1]

$$
\begin{align*}
\varphi_{1}(a . g) & =\varphi_{1}\left(-\varepsilon^{h}(\omega(g))+a+\varepsilon^{h}(\omega(g))\right) \tag{byEq.4.1}\\
& =0_{G} \bullet\left(-\varepsilon^{h}(\omega(g))+a+\varepsilon^{h}(\omega(g))\right) \tag{byEq.4.2}\\
& =(-g+g) \bullet\left(-\varepsilon^{h}(\omega(g))+a+\varepsilon^{h}(\omega(g))\right) \\
& =\left((-g) \bullet \varepsilon^{h}(\omega(-g))\right)+g \bullet\left(a+\varepsilon^{h}(\omega(g))\right) \tag{byEq.3.4}\\
& =(-g)+\left(0_{G}+g\right) \bullet\left(a+\varepsilon^{h}(\omega(g))\right) \\
& =(-g)+0_{G} \bullet a+g \bullet \varepsilon^{h}(\omega(g)) \\
& =-g+\varphi_{1}(a)+g
\end{align*}
$$

(by $\left.g \bullet \varepsilon^{h}(\omega(g))=g\right)$
(by Eq. 3.4)
(by Eq.4.2)
[CM2]

$$
\begin{align*}
a_{1} \varphi_{1}(a) & =a_{1}\left(0_{G} \bullet a\right) \\
& =-\varepsilon^{h}\left(\omega\left(0_{G} \bullet a\right)\right)+a_{1}+\varepsilon^{h}\left(\omega\left(0_{G} \bullet a\right)\right) \tag{byEq.4.1}\\
& =-\varepsilon^{h}\left(d_{1}^{h}(a)\right)+a_{1}+\varepsilon^{h}\left(d_{1}^{h}(a)\right) \\
& =a_{1} d_{1}^{h}(a) \\
& =-a+a_{1}+a
\end{align*}
$$

(by Eq.4.2)
$\left(\right.$ by $\left.\omega\left(0_{G} \bullet a\right)=d_{1}^{h}(a)\right)$
(by Eq.3.6)

Therefore (A, G, φ) becomes a crossed module of group-groupoids as required.
Therefore we can state definition below.
Definition 4.2 Suppose that (A, B, ∂) is a crossed module in group-groupoids and $\omega: G \rightarrow B$ is a morphism of group-groupoids. A crossed module (A, G, φ) in which G acts on A via ω is called a lifting of (A, B, ∂) if the following diagram commutes, i.e. $\omega \varphi=\partial$

We will denote such a lifting by (φ, G, ω).
A morphism $\rho:(\varphi, G, \omega) \rightarrow\left(\varphi^{\prime}, G^{\prime}, \omega^{\prime}\right)$ of such liftings is a morphism $\rho: G \rightarrow G^{\prime}$ of group-groupoids satisfying $\rho \varphi=\varphi^{\prime}$ and $\omega^{\prime} \rho=\omega$. Therefore we have a category LXModGpGd $/(A, B, \partial)$ of liftings and morphisms of them.

Example 4.3 For every crossed module (A, B, ∂) of group-groupoids, $\left(\partial, B, 1_{B}\right)$ becomes a lifting of (A, B, ∂).

Example 4.4 If N is a normal subgroup-groupoid of G as defined in [23, Definition 2.10], there exists a morphism $\partial: G \rightarrow H$ of group-groupoids with $\operatorname{Ker} \partial=N$ by [23, Theorem 2.19]. Hence for a crossed module in group-groupoid $\partial: G \rightarrow H$ with Ker $\partial=N$, there is a unique morphism $\tilde{\partial}: G / N \rightarrow H$ with the commutative diagram below.

This means that $(G, G / N, \eta)$ is a lifting of (G, H, ∂) by group-groupoid morphism $\tilde{\partial}$.
The following theorem extends [24, Example 4.8].

Theorem 4.5 If $p: \widetilde{G} \rightarrow G$ is a covering morphism of topological group-groupoids, then there exists a crossed module in group-groupoids $d_{1}: \mathrm{St}_{\pi G} 0 \rightarrow G$ with a lifting $\tilde{d}_{1}: \mathrm{St}_{\pi G} 0 \rightarrow \widetilde{G}$.

Proof We observe from Example 3.2 that for a topological group-groupoid $G, d_{1}: S t_{\pi G} 0 \rightarrow G$ is a crossed module in group-groupoids. Since $p: \widetilde{G} \rightarrow G$ is a covering morphism of groupoids, for a path α in G with initial point 0 , identity, there exists a path $\tilde{\alpha}$ in \widetilde{G} with initial point $\tilde{0}$ such that $p(\tilde{\alpha})=\alpha$. Thus we obtain a function $\tilde{d}_{1}: S t_{\pi G} 0 \rightarrow \widetilde{G}$ which assigns the homotopy class $[\alpha]$ of α to the final point of $\tilde{\alpha}$. So we have the commutative diagram below.

Hence $\left(\tilde{d}_{1}, \widetilde{G}, p\right)$ becomes a lifting of $\left(S t_{\pi G} 0, G, d_{1}\right)$.
As a result we can give the following categorical equivalence.

Theorem 4.6 Let S be a double group-groupoid and (A, B, ∂) be the crossed module in group-groupoid which corresponds to S. Then the following categories are equivalent.

$$
\mathrm{DGpGpdAct}_{\mathrm{H}}(\mathrm{~S}) \simeq \operatorname{LXModGpGd} /(A, B, \partial)
$$

Proof Let us begin with defining a functor $\theta: \operatorname{DGpGpdAct}_{H}(\mathrm{~S}) \rightarrow \operatorname{LXModGpGd}^{\operatorname{La}}(A, B, \partial)$ which assigns each horizontal action (G, ω) of the double group-groupoid S to a lifting (φ, G, ω) of (A, B, ∂) in which φ is defined by

$$
\begin{gathered}
\varphi_{1}: A \rightarrow G, \varphi_{1}(a)=0_{G} \bullet a \\
\varphi_{0}: A_{0} \rightarrow G_{0}, \varphi_{0}(b)=0_{G_{0}} \bullet b
\end{gathered}
$$

such that $\omega \varphi=\partial$.

Let us consider the functor $\delta: \mathrm{LXModGpGd} /(A, B, \partial) \rightarrow \mathrm{DGpGpdAct}_{\mathrm{H}}(\mathrm{S})$ which assigns every lifting (φ, G, ω) to a horizontal action of double group-groupoid (G, ω) of S on G with action

$$
\begin{gathered}
S \times G \rightarrow G,(s, g) \mapsto g \bullet s=\varphi_{1}\left(s-\varepsilon^{h}\left(d_{0}^{h}(s)\right)\right)+g \\
H \times G_{0} \rightarrow G_{0},(h, x) \mapsto x \bullet h=\varphi_{0}\left(h-\varepsilon^{H}\left(d_{0}^{H}(h)\right)+x\right.
\end{gathered}
$$

We now proceed to show that $\theta \circ \delta$ and $\delta \circ \theta$ are naturally isomorphic to $1_{\text {LXModGpGd } /(A, B, \partial)}$ and $1_{\mathrm{DGpGpdAct}_{\mathrm{H}}(\mathrm{S})}$, respectively. If $(\varphi, G, \omega) \in \mathrm{LXModGpGd} /(A, B, \partial)$ then $(\theta \circ \delta)(\varphi, G, \omega)=\left(\varphi^{\prime}, G, \omega,\right)$ where

$$
\varphi_{1}^{\prime}(a)=0_{G} \bullet a=\varphi_{1}\left(a-\varepsilon^{h}\left(d_{0}^{h}(a)\right)\right)+0_{G}=\varphi_{1}(a)
$$

and

$$
\varphi_{0}^{\prime}(b)=x \bullet b=\varphi_{0}\left(b-\varepsilon^{H}\left(d_{0}^{H}(b)\right)+x=\varphi_{0}(b)\right.
$$

. Therefore $\theta \circ \delta=1$.
Conversely if $(G, \omega) \in \operatorname{DGpGpdAct}_{\mathrm{H}}(\mathrm{S})$ with an action of S on G by

$$
S \times G \rightarrow G,(s, g) \mapsto g \bullet s ; \quad H \times G_{0} \rightarrow G_{0},(h, x) \mapsto x \bullet h
$$

then we have an induced action defined by

$$
\begin{array}{rlrl}
g \bullet s & =\varphi_{1}\left(s-\varepsilon^{h}\left(d_{0}^{h}(s)\right)\right)+g & & \\
& =0_{G} \bullet\left(s-\varepsilon^{h}\left(d_{0}^{h}(s)\right)\right)+\left(g \bullet \varepsilon^{h}(\omega(g))\right. & & \\
& =\left(0_{G}+g\right) \bullet\left(s-\varepsilon^{h}\left(d_{0}^{h}(s)\right)+\varepsilon^{h}(\omega(g))\right) \\
& =g \bullet s . & &
\end{array}
$$

The action of H on G_{0} can be checked in a similar way. Hence $\delta \circ \theta=1$ which completes the proof.

The definition of covering of double group-groupoid was given in [12]. Evaluating the detailed proof of Theorem 3.1, we can characterize the morphism of crossed modules in group-groupoids corresponding to covering of double group-groupoid as follows.

Definition 4.7 A morphism (f, g) of crossed modules in group-groupoids from $\left(A^{\prime}, B^{\prime}, \partial^{\prime}\right)$ to (A, B, ∂) is called covering morphism if $f: A^{\prime} \rightarrow A$ and and $g: B^{\prime} \rightarrow B$ are isomorphisms.

Therefore we obtain a category of $\mathrm{XModCov} /(A, B, \partial)$ of coverings for a given crossed module (A, B, ∂) in group-groupoids.

Example 4.8 The morphism $\left(1_{A}, 1_{B}\right):(A, B, \partial) \rightarrow(A, B, \partial)$ of crossed module in group-groupoids is a covering morphism.

By using the categorical equivalence given in Theorem 3.1, we introduce the below corollary.

Corollary 4.9 The category $\operatorname{Cov}_{\mathrm{H}} \mathrm{DGpGpd} / \mathrm{S}$ of coverings of double group-groupoid S and the category XModCov/ (A, B, ∂) of coverings of corresponding crossed module in group-groupoids are equivalent.

The proof of the following corollary follows from [24, Theorem 5.2].

Corollary 4.10 Let (A, B, ∂) be a crossed module in group-groupoids. Then the category LXModGpGd $/(A, B, \partial)$ of liftings and the category XModCov/(A, B, ∂) of coverings are equivalent.

Acknowledgement

We would like to thank the anonymous referees for their useful comments to improve the paper; and also the editors for editorial process.

References

[1] Akız HF, Alemdar N, Mucuk O, Şahan T. Coverings of internal groupoids and crossed modules in the category of groups with operations. Georgian Mathematical Journal 2013; 20 (2): 223-238.
[2] Baez JC, Lauda AD. Higher-dimensional algebra V: 2-groups. Theory and Applications of Categories 2004; 12: 423-491.
[3] Brown R. Computing homotopy types using crossed n-cubes of groups. Adams Memorial Symposium on Algebraic Topology, 1. London Mathematical Society Lecture Note Series, 175. Cambridge, UK: Cambridge University Press, 1992, pp. 187-210.
[4] Brown R. Topology and Groupoids. Deganwy, UK: BookSurge LLC, 2006.
[5] Brown R, Hardy JPL. Topological groupoids I: Universal constructions. Mathematische Nachrichten 1976; 71: 273286.
[6] Brown R, Danesh-Naruie G, Hardy JPL. Topological groupoids II: Covering morphisms and G-spaces. Mathematische Nachrichten 1976; 74: 143-156.
[7] Brown R, Higgins PJ, Sivera R. Nonabelian Algebraic Topology: filtered spaces, crossed complexes, cubical homotopy groupoids. European Mathematical Society Tracts in Mathematics 2011; 15.
[8] Brown R, Mackenzie KCH. Determination of a double Lie groupoid by its core diagram. Journal of Pure and Applied Algebra 1992; 80: 237-272.
[9] Brown R, Mucuk O. Covering groups of non-connected topological groups revisited. Mathematical Proceedings of the Cambridge Philosophical Society 1994; 115: 97-110.
[10] Brown R, Spencer CB. Double groupoids and crossed modules. Cahiers de Topologie et Géométrie Différentielle Catégoriques 1976; 17: 343-362.
[11] Brown R, Spencer CB. G-groupoids, crossed modules and the fundamental groupoid of a topological group. Koninklijke Nederlandse Akademie van Wetenschappen A 1976; 38: 296-302.
[12] Demir S, Mucuk O. Actions of double group-groupoids and covering morphism. Gazi University Journal of Science 2020; 33 (4): 810-819. doi: 10.35378/gujs. 604849
[13] Ehresmann C. Categories doubles et categories structurees. Comptes Rendus Mathématique Académie des Sciences. Paris 1963; 256: 1198-1201. (in French)
[14] Ehresmann C. Categories structures. Annales Scientifiques de l'École Normale Supérieure 1963; 80: 349-426. (in French)
[15] Ellis G, Steiner R. Higher-dimensional crossed modules and the homotopy groups of ($n+1$)-ads. Journal of Pure and Applied Algebra 1987; 46: 117-136.

DEMİR KARAKAŞ and MUCUK/Turk J Math

[16] Higgins PJ. Notes on categories and groupoids. Van Nostrand Rienhold Mathematical Studies, No. 32. New York, NY, USA: Van Nostrand Reinhold Co., 1971.
[17] Icen I, Özcan AF. Topological crossed modules and G-groupoids. Algebras, Groups and Geometries 2001; 18 (4): 401-410.
[18] Loday JL. Spaces with finitely many nontrivial homotopy groups. Journal of Pure and Applied Algebra 1982; 24 (2): 179-202.
[19] Mackenzie KCH. Lie groupoids and Lie algebroids in differential geometry. London Mathematical Society Lecture Note Series, 124. Cambridge, UK: Cambridge University Press, 1987.
[20] Mucuk O, Akız HF. Covering morphisms of topological internal groupoids. Hacettepe Journal of Mathematics and Statistics 2020; 49 (3): 1020-1029.
[21] Mucuk O, Demir S. Normality and quotient in crossed modules over groupoids and double groupoids. Turkish Journal of Mathematics 2018; 42: 2336-2347.
[22] Mucuk O, Demir S. Covering groupoids of categorical rings. Filomat 2015; 29 (1): 39-49.
[23] Mucuk O, Şahan T, Alemdar N. Normality and quotients in crossed modules and group-groupoids. Applied Categorical Structures 2015; 23 (3): 415-428.
[24] Mucuk O, Şahan T. Group-groupoid actions and liftings of crossed modules. Georgian Mathematical Journal 2019; 26 (3): 437-447.
[25] Mucuk O, Şahan T. Covering groupoids of categorical groups. Hacettepe Journal of Mathematics and Statistics 2013; 42 (4): 419-430.
[26] Norrie K. Actions and automorphisms of crossed modules. Bulletin de la Société Mathématique de France 1990; 118 (2): 129-146.
[27] Orzech G. Obstruction theory in algebraic categories I. Journal of Pure and Applied Algebra 1972; 2: 287-314.
[28] Orzech G. Obstruction theory in algebraic categories II. Journal of Pure and Applied Algebra 1972; 2: 315-340.
[29] Şahan T, Erciyes A. Actions of internal groupoids in the category of Leibniz Algebras. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 2019; 68 (1): 619-632.
[30] Temel S, Şahan T, Mucuk O. Crossed modules, double group-groupoids and crossed squares. Filomat 2020; 34 (6): 1755-1769. doi: 10.2298/FIL2006755T
[31] Whitehead JHC. Note on a previous paper entitled on adding relations to homotopy groups. Annals of Mathematics 1946; 47 (2): 806-810.
[32] Whitehead JHC. Combinatorial homotopy II. Bulletin of the American Mathematical Society 1949; 55: 453-496.

[^0]: *Correspondence: srpdmr89@gmail.com
 2010 AMS Mathematics Subject Classification: 20L05, 57M10, 18D35, 18D05

