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Abstract: The theoretical development of fractional calculus includes the formulation of different definitions, the
extension of properties from standard calculus, and the application of fractional operators to special functions. In two
recent papers, incomplete versions of classical fractional operators were formulated in connection with special functions.
Here, we develop the theory of incomplete fractional calculus more deeply, investigating further properties of these
operators and answering some fundamental questions about how they work. By considering appropriate function spaces,
we discover that incomplete fractional calculus may be used to analyse a wider class of functions than classical fractional
calculus can consider. By using complex analytic continuation, we formulate definitions for incomplete Riemann–Liouville
fractional derivatives, hence extending the incomplete integrals to a fully-fledged model of fractional calculus. Further
properties proved here include a rule for incomplete differintegrals of products, and composition properties of incomplete
differintegrals with classical calculus operations.
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1. Introduction
The field of fractional calculus has its roots in the question, posed by L’Hopital to Leibniz in the 17th century, of
what would happen to the operation of multiple differentiation dny

dxn if the order n were taken to be 1
2 . During

the 18th and 19th centuries, this question, and also the broader issue of extending n to any real or complex value,
was answered in a number of different ways. Thus, several competing definitions were created for fractional
differentiation and integration (often referred to together as fractional differintegration). These included what
are now referred to as the Riemann–Liouville and Grünwald–Letnikov models of fractional calculus. For a more
detailed discussion of the history of fractional calculus up to the late 20th century, we refer the reader to [6, 20].

In more recent decades, interest in the field has been increasing rapidly. Partly this is due to the
discovery of practical applications in various areas including fluid dynamics, chaos theory, bioengineering, etc.
[13, 15, 18, 19, 30]. Partly also the expansion is due to the realisation that the classical definitions of fractional
differintegrals are only the tip of the iceberg: dozens of other types can be proposed and analysed, displaying
a variety of different types of behaviours [1, 7, 16, 24, 28]. For discussions of the interaction between the pure
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and applied viewpoints of fractional calculus, we recommend the interested reader to some recent papers such
as [2, 10].

Many of the recently proposed models of fractional calculus have been defined by replacing the power
function kernel in the classical fractional calculus with other types of kernel function. From the applied point
of view, this is useful since different kernel functions can capture different behaviours. From the mathematical
point of view, however, this direction of research is becoming sterile: some new definitions are equivalent or
identical to old definitions [9, 12], and the idea of classifying the operators into general classes [3, 17] means
that, mathematically, there is often little point in investigating individual operators when the results can be
proved in general for a whole class such as the class of operators with general analytic kernels [11] or even more
general classes [23].

Therefore, the time has come to investigate other ways of generalising the standard operators of fractional
calculus. One direction of this type is the study of fractional operators in the abstract mathematical setting
of distributions and generalised integrals [21, 31]. This allows the notion of fractional calculus to be extended
to larger function spaces, which will be useful in defining weak solutions of partial differential equations of
fractional order.

Another, relatively new, idea for generalising fractional calculus is to use incomplete integrals [25, 26]:
instead of integrating over a full interval as classical fractional integrals do, it is possible to integrate over a
variable piece of this interval. This allows for a more general definition of fractional integrals, in which the
singular and nonsingular parts of the integral can be separated into two distinct integrals.

The most frequently used model of fractional calculus is the Riemann–Liouville one, in which fractional
integrals are defined using a power-function kernel and fractional derivatives are defined using standard deriva-
tives of fractional integrals:

RL
aI

−µ
x f(x) = RL

aD
µ
xf(x) :=

1

Γ(−µ)

∫ x

a

(x− t)−µ−1f(t) dt, Re(µ) < 0; (1.1)

RL
aD

µ
xf(x) :=

dn

dxn
RL

aI
n−µ
x f(x), n := ⌊Re(µ)⌋+ 1, Re(µ) ≥ 0. (1.2)

Definition (1.1) of Riemann–Liouville (RL) fractional integrals is valid for x ∈ (a, b) and f ∈ L1(a, b) , but these
are not necessary conditions: we can if desired replace the L1 space by other function spaces such as the space
of absolutely continuous functions [20, 29]. Definition (1.2) of RL fractional derivatives is valid for x ∈ (a, b)

and f ∈ Cn(a, b) , although again these are not the only viable set of conditions to impose [20, 29].

Fractional calculus has strong well-established connections with the study of special functions. The
classical textbooks such as [20, 22] emphasise how various special functions (hypergeometric functions, Bessel
functions, etc.) have formulae and relations given by using fractional operators, and these connections continue
to be seen in new research such as [4, 5, 24, 27]. Also, many of the newer alternative models of fractional
calculus involve changing the kernel in (1.1) from a power function to some special function, the motivation
being to model a wider spectrum of different fractional behaviours [1, 15].

Some special functions with a particularly strong connection to fractional calculus are the so-called
incomplete gamma and incomplete beta functions, defined as follows. The upper and lower incomplete gamma
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functions are respectively

Γ(ν, x) :=

∫ ∞

x

tν−1e−t dt, Re(ν) > 0; (1.3)

γ(ν, x) :=

∫ x

0

tν−1e−t dt, Re(ν) > 0. (1.4)

The incomplete beta function is

By(a, b) :=

∫ y

0

ta−1(1− t)b−1 dt, 0 ≤ y ≤ 1,Re(a) > 0,Re(b) > 0. (1.5)

To see the significance of these functions in fractional calculus, let us consider the Riemann–Liouville differ-
integrals of some of the most fundamental elementary functions: namely, exponential functions and power
functions. The following results are proved in [20]:

RL
aD

µ
x(e

αx) =
αµeαx

Γ(−µ)
γ(−µ, α(x− a)), µ ∈ C, α ̸= 0; (1.6)

RL
aD

µ
x(x

α) =
xα−µ

Γ(−µ)
B x−a

x
(−µ, α+ 1), Re(µ) < 0,Re(α) > −1. (1.7)

When fractional differintegral operators are applied, some of the most basic functions of calculus become relatives
of the incomplete gamma and beta functions. Thus, these incomplete functions are in fact fundamental to the
field of fractional calculus, and it is worth studying them in more detail to understand the connection between
fractionality and incompleteness.

Recently, a new type of fractional calculus was defined which is called incomplete Riemann–Liouville
fractional calculus [25]. The underlying idea is to consider the same operation of “incompletifying” that leads
us from the integrals defining the gamma and beta functions to those defining the incomplete gamma and
beta functions, and apply this same operation to the integral (1.1) defining the Riemann–Liouville fractional
integral. This gives rise to the following equivalent expressions for the lower incomplete Riemann–Liouville
fractional integral:

RL
0D

µ
x[f(x); y] =

1

Γ(−µ)

∫ yx

0

(x− t)−µ−1f(t) dt (1.8)

=
x−µ

Γ(−µ)

∫ y

0

(1− u)−µ−1f(ux) du (1.9)

=
x−µy

Γ(−µ)

∫ 1

0

(1− wy)−µ−1f(ywx) dw, Re(µ) < 0. (1.10)

And for the upper incomplete Riemann–Liouville fractional integral:

RL
0D

µ
x{f(x); y} =

1

Γ(−µ)

∫ x

yx

(x− t)−µ−1f(t) dt (1.11)

=
x−µ

Γ(−µ)

∫ 1

y

(1− u)−µ−1f(ux) du (1.12)

=
x−µy

Γ(−µ)

∫ 1−y

0

v−µ−1f((1− v)x) dv, Re(µ) < 0. (1.13)
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In the seminal work [25], the incomplete Riemann–Liouville fractional integral operators were applied to some
elementary and special functions, as example results to establish their validity. This paper was followed by
another [26] in which variants of Caputo type were defined for these operators. Thus, the field of incomplete
fractional calculus has been opened for investigation. There is still much to be done in this field, ranging from
fundamental properties such as the function spaces on which the operators can be defined, to more advanced
results such as Leibniz’s rule. In the current work, we aim to investigate and establish a number of results
concerning the already defined incomplete Riemann–Liouville fractional integrals, and also to introduce and
analyse some related operators of incomplete fractional type.

2. A rigorous analysis of incomplete Riemann–Liouville fractional calculus

2.1. Function spaces for the fractional integrals

It is known that the standard Riemann–Liouville fractional integral (1.1) is defined for x ∈ [a, b] and f ∈ L1[a, b] .
For the incomplete Riemann–Liouville fractional integrals (1.8)–(1.13), we have taken the lower bound to be
a = 0 , so it can be assumed that x lies in a fixed interval [0, b] . In order to formulate a fully rigorous definition,
we also need to consider the conditions on the function f , and specify a function space for f such that the
incomplete RL fractional integrals of f are well-defined.

Theorem 2.1 If b > 0 and 0 < y < 1 and µ ∈ C with Re(µ) > 0 , then the µ th lower incomplete Riemann–
Liouville fractional integral defines a bounded operator

RL
0D

−µ[·; y] : L1[0, yb] → L1[0, b].

Proof Let f be a function defined on [0, b] . We need to prove that the L1[0, b] norm of the function
RL

0D
−µ
x [f(x); y] is uniformly bounded in terms of the L1[0, yb] norm of f . Note that here we are defining µ to

be the order of integration, not the order of differentiation, so its sign is reversed from the earlier expressions.
We start from Definition (1.8). For any x ∈ [0, b] ,

∣∣∣RL
0D

−µ
x [f(x); y]

∣∣∣ ≤ 1

|Γ(µ)|

∫ yx

0

|f(t)|(x− t)Re(µ)−1 dt

≤ 1

|Γ(µ)|

(
sup
[0,yx]

(x− t)Re(µ)−1

)∫ yx

0

|f(t)|dt.

The value of this supremum depends on the sign of Re(µ) − 1 . Thus, there are two cases to be considered
according to the value of µ .

Case 1: 0 < Re(µ) ≤ 1 . Here the supremum occurs at t = yx , so we have

∣∣∣RL
0D

−µ
x [f(x); y]

∣∣∣ ≤ (x− yx)Re(µ)−1

|Γ(µ)|

∫ yx

0

|f(t)|dt

≤ (x− yx)Re(µ)−1

|Γ(µ)|

∥∥∥f(t)∥∥∥
L1[0,yb]

.
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Integrating this inequality over all x ∈ [0, b] , we deduce that

∥∥∥RL
0D

−µ[f ; y]
∥∥∥
L1[0,b]

≤
∫ b

0

(x− yx)Re(µ)−1

|Γ(µ)|

∥∥∥f(t)∥∥∥
L1[0,yb]

dx

=
(1− y)Re(µ)−1bRe(µ)

|Γ(µ)|Re(µ)

∥∥∥f(t)∥∥∥
L1[0,yb]

. (2.1)

The fraction coefficient on the right-hand side depends only on b , y , and µ , so we have a bound of the desired
form in this case.

Case 2: Re(µ) > 1 . Here the supremum over t ∈ [0, yx] of the function (x− t)Re(µ)−1 occurs at t = 0 ,
so we have ∣∣∣RL

0D
−µ
x [f(x); y]

∣∣∣ ≤ xRe(µ)−1

|Γ(µ)|

∫ yx

0

|f(t)|dt

≤ xRe(µ)−1

|Γ(µ)|

∥∥∥f(t)∥∥∥
L1[0,yb]

.

Integrating this inequality over all x ∈ [0, b] , we deduce that

∥∥∥RL
0D

−µ[f ; y]
∥∥∥
L1[0,b]

≤
∫ b

0

xRe(µ)−1

|Γ(µ)|

∥∥∥f(t)∥∥∥
L1[0,yb]

dx

=
bRe(µ)

|Γ(µ)|Re(µ)

∥∥∥f(t)∥∥∥
L1[0,yb]

. (2.2)

Again, the fraction on the right-hand side depends only on b , y , and µ , so we have a bound of the desired
form. 2

Theorem 2.2 If b > 0 and 0 < y < 1 and µ ∈ C with Re(µ) > 1 , then the µ th upper incomplete Riemann–
Liouville fractional integral defines a bounded operator

RL
0D

−µ{·; y} : L1[0, b] → L1[0, b].

Proof Let f be a function defined on [0, b] . We need to prove that the L1[0, b] norm of the function
RL

0D
−µ
x {f(x); y} is uniformly bounded in terms of the L1[0, b] norm of f . Again µ is the order of integration,

not the order of differentiation, so its sign is reversed from the earlier expressions (1.11)–(1.13).
We start from Definition (1.11). For any x ∈ [0, b] ,

∣∣∣RL
0D

−µ
x {f(x); y}

∣∣∣ ≤ 1

|Γ(µ)|

∫ x

yx

|f(t)|(x− t)Re(µ)−1 dt

≤ 1

|Γ(µ)|

(
sup
[yx,x]

(x− t)Re(µ)−1

)∫ x

yx

|f(t)|dt.

Since we assumed Re(µ) > 1 , the supremum occurs at t = yx . (In this case, if we had 0 < Re(µ) < 1 , the
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supremum would be infinite due to the blowup at t = x .) So we have

∣∣∣RL
0D

−µ
x {f(x); y}

∣∣∣ ≤ (x− yx)Re(µ)−1

|Γ(µ)|

∫ x

yx

|f(t)|dt

≤ (x− yx)Re(µ)−1

|Γ(µ)|

∥∥∥f(t)∥∥∥
L1[0,b]

.

Integrating this inequality over all x ∈ [0, b] , we deduce that

∥∥∥RL
0D

−µ{f ; y}
∥∥∥
L1[0,b]

≤
∫ b

0

(x− yx)Re(µ)−1

|Γ(µ)|

∥∥∥f(t)∥∥∥
L1[0,b]

dx

=
(1− y)Re(µ)−1bRe(µ)

|Γ(µ)|Re(µ)

∥∥∥f(t)∥∥∥
L1[0,yb]

. (2.3)

The fraction on the right-hand side depends only on b , y , and µ , so we have a bound of the desired form. 2

Given Theorems 2.1 and 2.2, it is possible to specify a function space as the domain for the lower and
upper incomplete Riemann–Liouville fractional integrals. We state the definitions formally as follows.

Definition 2.3 Let b > 0 , 0 < y < 1 , and µ ∈ C with Re(µ) > 0 . For any function f : [0, b] → C which is
L1 on the subinterval [0, yb] , the µ th lower incomplete Riemann–Liouville fractional integral of f is defined by
the equations

RL
0I

µ
x[f(x); y] =

1

Γ(µ)

∫ yx

0

(x− t)µ−1f(t) dt

=
xµ

Γ(µ)

∫ y

0

(1− u)µ−1f(ux) du

=
xµy

Γ(µ)

∫ 1

0

(1− wy)µ−1f(ywx) dw,

namely by precisely the existing equations (1.8)–(1.10), with the sign of µ inverted so that we are considering
the µ th fractional integral instead of the µ th fractional derivative.

Definition 2.4 Let b > 0 , 0 < y < 1 , and µ ∈ C with Re(µ) > 1 . For any function f ∈ L1[0, b] , the µ th
upper incomplete Riemann–Liouville fractional integral of f is defined by the equations

RL
0I

µ
x{f(x); y} =

1

Γ(µ)

∫ x

yx

(x− t)µ−1f(t) dt

=
xµ

Γ(µ)

∫ 1

y

(1− u)µ−1f(ux) du

=
xµy

Γ(µ)

∫ 1−y

0

vµ−1f((1− v)x) dv,

namely by precisely the existing equations (1.8)–(1.10), with the sign of µ inverted so that we are considering
the µ th fractional integral instead of the µ th fractional derivative.
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In order to define the upper incomplete RL fractional integral for 0 < Re(µ) < 1 , we need a different way
of bounding the integral (1.11). This is provided by Theorem 2.5 below, after which we state another formal
definition to accompany Definition 2.4.

Theorem 2.5 If b > 0 and 0 < y < 1 and µ ∈ C with Re(µ) > 0 , then the µ th lower incomplete Riemann–
Liouville fractional integral defines a bounded operator

RL
0D

−µ[·; y] : L∞[0, yb] → L∞[0, b],

and the µ th upper incomplete Riemann–Liouville fractional integral defines a bounded operator

RL
0D

−µ{·; y} : L∞[0, b] → L∞[0, b].

Proof Let f be a function defined on [0, b] . We need to prove that the L∞[0, b] norm of the function
RL

0D
−µ
x [f(x); y] is uniformly bounded in terms of the L∞[0, yb] norm of f , and that the L∞[0, b] norm of the

function RL
0D

−µ
x {f(x); y} is uniformly bounded in terms of the L∞[0, b] norm of f .

Case 1: lower incomplete. We start from Definition (1.8). For any x ∈ [0, b] ,

∣∣∣RL
0D

−µ
x [f(x); y]

∣∣∣ ≤ 1

|Γ(µ)|

∫ yx

0

|f(t)|(x− t)Re(µ)−1 dt

≤ 1

|Γ(µ)|

(
ess sup
[0,yx]

|f |

)∫ yx

0

(x− t)Re(µ)−1 dt

=
1

Re(µ)|Γ(µ)|
ess sup
[0,yx]

|f |
[
(x− t)Re(µ)

]t=yx

t=0

=
xRe(µ)

Re(µ)|Γ(µ)|

[
1− (1− y)Re(µ)

]
ess sup
[0,yx]

|f |

≤ bRe(µ)

Re(µ)|Γ(µ)|

[
1− (1− y)Re(µ)

] ∥∥∥f∥∥∥
L∞[0,yb]

.

Taking the supremum over all x , we deduce that

∥∥∥RL
0D

−µ[f ; y]
∥∥∥
L∞[0,b]

≤ bRe(µ)

Re(µ)|Γ(µ)|

[
1− (1− y)Re(µ)

] ∥∥∥f∥∥∥
L∞[0,yb]

. (2.4)

The coefficient accompanying the norm on the right-hand side depends only on b , y , and µ , so we have the
desired result for lower incomplete RL integrals.
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Case 2: upper incomplete. We start from Definition (1.11). For any x ∈ [0, b] ,∣∣∣RL
0D

−µ
x {f(x); y}

∣∣∣ ≤ 1

|Γ(µ)|

∫ x

yx

|f(t)|(x− t)Re(µ)−1 dt

≤ 1

|Γ(µ)|

(
ess sup
[0,yx]

|f |

)∫ x

yx

(x− t)Re(µ)−1 dt

=
1

Re(µ)|Γ(µ)|
ess sup
[yx,x]

|f |
[
(x− t)Re(µ)

]t=x

t=yx

=
xRe(µ)

Re(µ)|Γ(µ)|

[
(1− y)Re(µ) − 0

]
ess sup
[yx,x]

|f |

≤ bRe(µ)(1− y)Re(µ)

Re(µ)|Γ(µ)|

∥∥∥f∥∥∥
L∞[0,b]

.

(Note that here we have used the assumption that Re(µ) > 0 .) Taking the supremum over all x , we deduce
that ∥∥∥RL

0D
−µ{f ; y}

∥∥∥
L∞[0,b]

≤ bRe(µ)(1− y)Re(µ)

Re(µ)|Γ(µ)|

∥∥∥f∥∥∥
L∞[0,b]

. (2.5)

Again, the fraction on the right-hand side depends only on b , y , and µ , so we have the desired result for upper
incomplete RL integrals. 2

Given the second part of Theorem 2.5, it is possible to specify a function space as the domain for the
upper incomplete Riemann–Liouville fractional integral even in the case 0 < Re(µ) ≤ 1 . We state the definition
formally as follows, to complement Definition 2.4.

Definition 2.6 Let b > 0 , 0 < y < 1 , and µ ∈ C with 0 < Re(µ) ≤ 1 . For any function f ∈ L∞[0, b] , the µ th
upper incomplete Riemann–Liouville fractional integral of f is defined by the same equations as in Definition
2.4, namely once again by (1.11)–(1.13) with the sign of µ inverted.

Note that the restriction Re(µ) ≤ 1 is not required for Definition 2.6 to make sense. We include it only
because the definition in the case Re(µ) > 1 is already established, on a larger function space than L∞[0, b] ,
by the previous Definition 2.4.

Remark 2.7 The nature of the domain of the lower incomplete RL fractional integral, as specified in the above
theorems and definitions, is interesting because these operators allow us to extend the domain of good behaviour
for f .

For example, if we start with a function f : [0, b] → C which is L1 only on the subinterval [0, yb] , then
after applying the lower incomplete RL fractional integral, we obtain a new function which is L1 on the whole
of [0, b] . Similarly with L∞ or indeed, by Hölder’s inequality, any other Lp space.

Such extension of domains could be very important in the theory of partial differential equations, in which
a well-behaved forcing function is used to prove regularity results for an unknown solution function [8, 14]. In
the real world, it may be an important breakthrough in modelling to be able to start with a function whose good
behaviour is only on a small domain and then apply an operator which guarantees good behaviour on a larger
domain. By choosing the value of y appropriately, it would be possible to choose an arbitrarily small domain
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for presuming good behaviour and still work on a preferred large domain after applying an incomplete fractional
integral. The nonlocal properties of fractional operators, combined with the domain-morphing properties of
incomplete operators, combine in an interesting way here.

In the case where µ is real, the inequalities bounding the operator norms for the incomplete RL integrals
can be written in a more elegant form. We include this result as a corollary.

Corollary 2.8 Let b > 0 , 0 < y < 1 , µ ∈ R+ , and let f be a function defined on [0, b] .

1. If f ∈ L1[0, yb] and 0 < µ ≤ 1 , then

∥∥∥RL
0D

−µ[f ; y]
∥∥∥
L1[0,b]

≤ (1− y)µ−1bµ

Γ(µ+ 1)

∥∥∥f(t)∥∥∥
L1[0,yb]

.

2. If f ∈ L1[0, yb] and µ > 1 , then

∥∥∥RL
0D

−µ[f ; y]
∥∥∥
L1[0,b]

≤ bµ

Γ(µ+ 1)

∥∥∥f(t)∥∥∥
L1[0,yb]

.

3. If f ∈ L1[0, b] and µ > 1 , then

∥∥∥RL
0D

−µ{f ; y}
∥∥∥
L1[0,b]

≤ (1− y)µ−1bµ

Γ(µ+ 1)

∥∥∥f(t)∥∥∥
L1[0,yb]

.

4. If f ∈ L∞[0, yb] , then

∥∥∥RL
0D

−µ[f ; y]
∥∥∥
L∞[0,b]

≤ [1− (1− y)µ] bµ

Γ(µ+ 1)

∥∥∥f∥∥∥
L∞[0,yb]

.

5. If f ∈ L∞[0, b] , then ∥∥∥RL
0D

−µ{f ; y}
∥∥∥
L∞[0,b]

≤ (1− y)µbµ

Γ(µ+ 1)

∥∥∥f∥∥∥
L∞[0,b]

.

Proof These results are just the inequalities (2.1),(2.2),(2.3),(2.4),(2.5) in the case µ ∈ R . 2

Remark 2.9 Letting y → 0 in the above inequalities for L1 and L∞ norms of the lower incomplete RL integral
yields some interesting results.

The inequality (2.1) is

∥∥∥RL
0D

−µ[f ; y]
∥∥∥
L1[0,b]

≤ (1− y)Re(µ)−1bRe(µ)

|Γ(µ)|Re(µ)

∥∥∥f(t)∥∥∥
L1[0,yb]

.

As y → 0 , the right-hand side of this inequality tends to

bRe(µ)

|Γ(µ)|Re(µ)
lim
y→0

∥∥∥f(t)∥∥∥
L1[0,yb]

,
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which equals
bRe(µ)f(0)

|Γ(µ)|Re(µ)

if 0 is a Lebesgue point of f .
The inequality (2.2) is

∥∥∥RL
0D

−µ[f ; y]
∥∥∥
L1[0,b]

≤ bRe(µ)

|Γ(µ)|Re(µ)

∥∥∥f(t)∥∥∥
L1[0,yb]

.

As y → 0 , the right-hand side of this inequality again tends to

bRe(µ)f(0)

|Γ(µ)|Re(µ)

if 0 is a Lebesgue point of f .
The inequality (2.4) is

∥∥∥RL
0D

−µ[f ; y]
∥∥∥
L∞[0,b]

≤
[
1− (1− y)Re(µ)

]
bRe(µ)

Re(µ)|Γ(µ)|

∥∥∥f∥∥∥
L∞[0,yb]

.

As y → 0 , the right-hand side of this inequality tends asymptotically to

[yRe(µ)] bRe(µ)

Re(µ)|Γ(µ)|
lim
y→0

∥∥∥f∥∥∥
L∞[0,yb]

,

which yields the following leading-order linear term:

ybRe(µ)f(0)

|Γ(µ)|
,

if 0 is a point of continuity of f .

2.2. Definitions for the fractional derivatives
Fractional integrals of incomplete Riemann–Liouville type were proposed in [25] and their conditions carefully
specified in the work above. What about fractional derivatives? Definitions 2.3, 2.4, and 2.6 are specified
to define RL

0D
µ
x[f(x); y] and RL

0D
µ
x{f(x); y} only in the case Re(µ) < 0 , but for a fully developed model of

fractional calculus it should also be possible to define these operators in the case Re(µ) ≥ 0 .
In the classical Riemann–Liouville model, the fractional derivatives are defined by taking standard integer-

order derivatives of appropriate fractional integrals. Thus, we might be tempted to do the same thing here,

e.g., defining RL
0D

1/2
x [f(x); y] = d

dx

(
RL

0D
−1/2
x [f(x); y]

)
and RL

0D
1/2
x {f(x); y} = d

dx

(
RL

0D
−1/2
x {f(x); y}

)
. This

also seems like a natural complement to the existing definition for incomplete Caputo fractional derivatives [26].
However, it is not clear whether or not this would be a natural extension of the Definitions 2.3, 2.4, and 2.6.

The obvious question to ask, then, is: what makes the Riemann–Liouville derivatives a ‘natural’ extension
of the definition of Riemann–Liouville integrals? What is the justification for this definition over, say, that of
Caputo derivatives?
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One answer to this question is that the Riemann–Liouville fractional derivative RL
cD

µ
xf(x),Re(µ) ≥ 0,

forms the analytic continuation in µ of the Riemann–Liouville fractional integral RL
cD

µ
xf(x),Re(µ) < 0 . This

way of thinking is unique to fractional calculus: with µ as a continuous variable, it is possible to perform
calculus with respect to µ as well as with respect to x .

More specifically, if we define a function Fx by

Fx(µ) =
RL

cD
µ
xf(x), Re(µ) < 0,

then this function is analytic and satisfies the following functional equation:

d

dx
Fx(µ) = Fx(µ+ 1), Re(µ) < −1. (2.6)

This can then be used to extend Fx to a meromorphic function on the entire complex plane. The functional
equation (2.6) gives us a way of defining Fx(µ) for 0 ≤ Re(µ) < 1 , then for 1 ≤ Re(µ) < 2 , then for
2 ≤ Re(µ) < 3 , etc., in such a way that it is analytic on each of these regions. This analytic continuation is
precisely the Riemann–Liouville fractional derivative.

Can we similarly use analytic continuation to define upper and lower incomplete Riemann–Liouville
fractional derivatives? In order to find an analogue of the functional equation (2.6), we must consider the effect
of the differentiation operator on the upper and lower incomplete Riemann–Liouville fractional integrals. To
this end, the following two theorems are established.

Theorem 2.10 The composition of the lower incomplete Riemann–Liouville fractional integral with the standard
operation of differentiation is given by the following identities:

d

dx

(
RL

0D
−µ
x [f(x); y]

)
=

y(1− y)µ−1

Γ(µ)
xµ−1f(xy) + RL

0D
1−µ
x [f(x); y], (2.7)

RL
0D

−µ
x [f ′(x); y] =

xµ−1

Γ(µ)

(
(1− y)µ−1f(xy)− f(0)

)
+ RL

0D
1−µ
x [f(x); y], (2.8)

valid for Re(µ) > 1 and for f, x, y satisfying the appropriate criteria from Definition 2.3.

Proof To prove (2.7), we start from Definition (1.8) and use the standard method for differentiating with
respect to x an integral expression whose x -dependence is both in the integrand and in the upper bound of
integration:

d

dx

(
RL

0D
−µ
x [f(x); y]

)
=

d

dx

(
1

Γ(µ)

∫ yx

0

(x− t)µ−1f(t) dt

)
=

1

Γ(µ)

(
y(x− yx)µ−1f(yx) +

∫ yx

0

(µ− 1)(x− t)µ−2f(t) dt

)

=
y(1− y)µ−1xµ−1f(yx)

Γ(µ)
+

µ− 1

Γ(µ)

∫ yx

0

(x− t)µ−2f(t) dt

=
y(1− y)µ−1

Γ(µ)
xµ−1f(yx) + RL

0D
1−µ
x [f(x); y],

as required, where for the final step we used the fact that Γ(µ) = (µ− 1)Γ(µ− 1) .
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To prove (2.8), we again start from the definition (1.8) and use integration by parts:

RL
0D

−µ
x [f ′(x); y] =

1

Γ(µ)

∫ yx

0

(x− t)µ−1f ′(t) dt

=
1

Γ(µ)

([
(x− t)µ−1f(t)

]t=yx

t=0
+

∫ yx

0

(µ− 1)(x− t)µ−2f(t) dt

)
=

1

Γ(µ)

(
(x− yx)µ−1f(xy)− xµ−1f(0)

)
+

µ− 1

Γ(µ)

∫ yx

0

(x− t)µ−2f(t) dt

=
xµ−1

Γ(µ)

(
(1− y)µ−1f(xy)− f(0)

)
+ RL

0D
1−µ
x [f(x); y],

as required, where again we used Γ(µ) = (µ− 1)Γ(µ− 1) in the final step. 2

Theorem 2.11 The composition of the upper incomplete Riemann–Liouville fractional integral with the stan-
dard operation of differentiation is given by the following identities:

d

dx

(
RL

0D
−µ
x {f(x); y}

)
= −y(1− y)µ−1

Γ(µ)
xµ−1f(xy) + RL

0D
1−µ
x {f(x); y}, (2.9)

RL
0D

−µ
x {f ′(x); y} = −xµ−1

Γ(µ)
(1− y)µ−1f(xy) + RL

0D
1−µ
x {f(x); y}, (2.10)

valid for Re(µ) > 1 and for f, x, y satisfying the appropriate criteria from Definitions 2.4 and 2.6.

Proof To prove (2.9), we start from Definition (1.11) and use the standard method for differentiating with
respect to x an integral expression whose x -dependence is in the integrand and in both bounds of integration:

d

dx

(
RL

0D
−µ
x {f(x); y}

)
=

d

dx

(
1

Γ(µ)

∫ x

yx

(x− t)µ−1f(t) dt

)

=
1

Γ(µ)

(
(x− x)µ−1f(x)− y(x− yx)µ−1f(yx) +

∫ x

yx

(µ− 1)(x− t)µ−2f(t) dt

)

=
−y(1− y)µ−1xµ−1f(yx)

Γ(µ)
+

µ− 1

Γ(µ)

∫ x

yx

(x− t)µ−2f(t) dt

=
−y(1− y)µ−1

Γ(µ)
xµ−1f(yx) + RL

0D
1−µ
x {f(x); y},

as required, where in the third line we used the assumption that Re(µ) > 1 .
To prove (2.10), we again start from the definition (1.11) and use integration by parts:

RL
0D

−µ
x {f ′(x); y} =

1

Γ(µ)

∫ x

yx

(x− t)µ−1f ′(t) dt

=
1

Γ(µ)

([
(x− t)µ−1f(t)

]t=x

t=yx
+

∫ x

yx

(µ− 1)(x− t)µ−2f(t) dt

)

=
1

Γ(µ)

(
(x− x)µ−1f(x)− (x− yx)µ−1f(xy)

)
+

µ− 1

Γ(µ)

∫ x

yx

(x− t)µ−2f(t) dt

=
xµ−1

Γ(µ)

(
−(1− y)µ−1f(xy)

)
+ RL

0D
1−µ
x {f(x); y},
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as required, where again we used Re(µ) > 1 in the third line. 2

The above Theorems 2.10 and 2.11 can be used, in the same way as discussed at the start of this section, to
construct analytic continuations of RL

0D
µ
x[f(x); y] and RL

0D
µ
x{f(x); y} which are valid for Re(µ) ≥ 0 (fractional

derivatives) as well as for Re(µ) < 0 (fractional integrals). The definitions are stated formally in Definitions
2.12 and 2.13.

It is important to note that the existing formulae for RL
0D

µ
x[f(x); y] and RL

0D
µ
x{f(x); y} given by

Definitions 2.3, 2.4, and 2.6 are analytic on the open left half-plane as functions of the complex variable µ .
Thus, the concept of analytic continuation outside of this domain makes sense.

Definition 2.12 The µ th lower incomplete Riemann–Liouville fractional derivative of a function f is defined
by using the equation (2.7) for each successive region

0 ≤ Re(µ) < 1 , 1 ≤ Re(µ) < 2 , 2 ≤ Re(µ) < 3 , . . . (2.11)

In other words, we define

RL
0D

µ
x[f(x); y] =

d

dx

(
RL

0D
µ−1
x [f(x); y]

)
− y(1− y)−µ

Γ(1− µ)
x−µf(xy), (2.12)

for µ in each of the regions (2.11) successively, and thence on the entire half-plane Re(µ) ≥ 0 .

Definition 2.13 The µ th upper incomplete Riemann–Liouville fractional derivative of a function f is defined
by using the equation (2.9) for µ in each of the regions (2.11) successively. In other words, we define

RL
0D

µ
x{f(x); y} =

d

dx

(
RL

0D
µ−1
x {f(x); y}

)
+

y(1− y)−µ

Γ(1− µ)
x−µf(xy), (2.13)

to get an analytic continuation to the entire half-plane Re(µ) ≥ 0 .

The above work has established that it is possible to define fractional derivatives as well as fractional
integrals in the incomplete Riemann–Liouville context. However, they would still be difficult to compute when
Re(µ) is large, requiring many iterations of the equations (2.12) and (2.13). It is much easier to use the direct
formulae given by the following theorems.

Theorem 2.14 We have the following exact equivalence, valid for all µ ∈ C and all functions f such that the
operators are defined:

RL
0D

µ
x{f(x); y} = RL

xyD
µ
xf(x). (2.14)

Proof For Re(µ) < 0 , this follows immediately from the integral definitions of the operators. Starting from
the formula (1.11), we have:

RL
0D

µ
x{f(x); y} =

1

Γ(−µ)

∫ x

yx

(x− t)−µ−1f(t) dt = RL
xyD

µ
xf(x).

Having proved the result for Re(µ) < 0 , we can now extend it to all µ ∈ C by analytic continuation, since both
sides of (2.14) are analytic as functions of µ . 2
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Remark 2.15 Note that the result of Theorem 2.14 does not mean the upper incomplete RL operator is just a
special case of the usual RL operator. The theory is different in the incomplete case, due to the x-dependence
appearing in a new place in the expression. The result is important, but it does not reduce incomplete RL
fractional calculus to merely a subset of RL fractional calculus.

For example, although it is true that

d

dx

(
RL

cD
µf(x)

)
= RL

cD
µ+1f(x)

for any constant c , this result is not true when c is replaced by xy as in (2.14). Instead, we have the
differentiation relation (2.9) which was already proved in Theorem 2.11. Or again, although the operator RL

cD
µ

has a semigroup property in µ for any constant c , the operator RL
xyD

µ does not. (We explore the semigroup
property for our operators more thoroughly in Section 3 below.)

Remark 2.16 From the viewpoint of applications, Theorem 2.14 may provide a way to take account of dynamic
initial data. Usually, initial value problems are posed using a fixed starting point at which the function or its
derivatives may take certain preassigned values. But in reality, we may be forced to deal with problems in which
the starting point moves around. Here, by considering a new type of fractional integral where the constant of
integration becomes dependent on x , we can capture a new range of possible behaviours.

Theorem 2.17 The formulae (1.8)–(1.10) are valid expressions for RL
0D

−µ
x [f(x); y] for all µ ∈ C , not only

for Re(µ) > 0 .

Proof The restriction Re(µ) > 0 was never actually required for these formulae. It is required for the definition
of the usual Riemann–Liouville integral, because the integrand of

∫ x

0
(x−t)−µ−1f(t) dt has a singularity at t = x .

But when the integral is restricted to [0, yx] instead of [0, x] , this singularity is no longer part of the domain.
The same argument holds for each of the integrals in (1.8)–(1.10): respectively, the points t = x in (1.8), u = 1

in (1.9), and w = 1
y in (1.10) are excluded from the domain of integration. 2

The importance of Theorems 2.14 and 2.17 is that they are easier to use and apply than Definitions 2.12
and 2.13 as expressions for the upper and lower incomplete RL derivatives. For the incomplete RL integrals,
we already have the original formulae (1.8)–(1.10) and (1.11)–(1.13) which can be applied as in the original RL
model; but for the incomplete RL derivatives, it is much easier to use the formulae (1.8)–(1.10) and (2.14) than
iterations of the formulae (2.12) and (2.13).

As examples to illustrate the above theorems, we compute the incomplete fractional derivatives of some
simple functions, and verify that all the formulae considered above are consistent.

Example 2.18 We consider the function f(x) = xλ . It is known [25, Theorems 19–20] that the incomplete
fractional integrals of this function are given by

RL
0D

µ
x[x

λ; y] =
By(λ+ 1,−µ)

Γ(−µ)
xλ−µ, Re(λ) > −1,Re(µ) < 0; (2.15)

RL
0D

µ
x{xλ; y} =

B1−y(−µ, λ+ 1)

Γ(−µ)
xλ−µ, Re(λ) > −1,Re(µ) < 0. (2.16)

1431



FERNANDEZ et al./Turk J Math

By analytic continuation, we expect that the same expressions (2.15) and (2.16) will be valid for all µ ∈ C , i.e.
for fractional derivatives as well as fractional integrals. This can be verified using Definitions 2.12 and 2.13, as
follows.

Firstly, lower incomplete. For 0 ≤ Re(µ) < 1 , we substitute the known expression (2.15) for RL
0D

µ−1
x [xλ; y]

into the identity (2.12) to get:

RL
0D

µ
x[f(x); y] =

d

dx

(
RL

0D
µ−1
x [f(x); y]

)
− y(1− y)−µ

Γ(1− µ)
x−µf(xy)

=
d

dx

(
By(λ+ 1, 1− µ)

Γ(1− µ)
xλ−µ+1

)
− y(1− y)−µ

Γ(1− µ)
x−µ(xy)λ

= (λ− µ+ 1)
By(λ+ 1, 1− µ)

Γ(1− µ)
xλ−µ − yλ+1(1− y)−µ

Γ(1− µ)
xλ−µ

=
(λ− µ+ 1)By(λ+ 1, 1− µ)− yλ+1(1− y)−µ

Γ(1− µ)
xλ−µ.

The following is a natural property of the incomplete beta function, following from integration by parts applied
to the defining integrals:

(λ− µ+ 1)By(λ+ 1, 1− µ)− yλ+1(1− y)−µ = −µBy(λ+ 1,−µ).

This confirms the expression (2.15) for the lower incomplete derivative when 0 ≤ Re(µ) < 1 .
The same argument works to confirm it for 1 ≤ Re(µ) < 2 , 2 ≤ Re(µ) < 3 , etc., since there was no

assumption on the value of µ in the above manipulations of incomplete beta functions. Thus, as expected, (2.15)
is valid for all µ ∈ C .

Secondly, upper incomplete. For 0 ≤ Re(µ) < 1 , we substitute the known expression (2.16) for
RL

0D
µ−1
x {xλ; y} into the identity (2.13) to get:

RL
0D

µ
x{f(x); y} =

d

dx

(
RL

0D
µ−1
x {f(x); y}

)
+

y(1− y)−µ

Γ(1− µ)
x−µf(xy)

=
d

dx

(
B1−y(1− µ, λ+ 1)

Γ(1− µ)
xλ−µ+1

)
+

y(1− y)−µ

Γ(1− µ)
x−µ(xy)λ

= (λ− µ+ 1)
B1−y(1− µ, λ+ 1)

Γ(1− µ)
xλ−µ +

yλ+1(1− y)−µ

Γ(1− µ)
xλ−µ

=
(λ− µ+ 1)B1−y(1− µ, λ+ 1) + yλ+1(1− y)−µ

Γ(1− µ)
xλ−µ.

As before, it is a natural property of the incomplete beta function that

(λ− µ+ 1)B1−y(1− µ, λ+ 1) + yλ+1(1− y)−µ = −µB1−y(−µ, λ+ 1).

This confirms the expression (2.16) for the upper incomplete derivative when 0 ≤ Re(µ) < 1 .
The same argument works to confirm it for 1 ≤ Re(µ) < 2 , 2 ≤ Re(µ) < 3 , etc., since there was no

assumption on the value of µ in the above manipulations of incomplete beta functions. Thus, as expected, (2.16)
is valid for all µ ∈ C .
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Example 2.19 We consider the function f(x) = xλ−1(1 − x)−α . The incomplete fractional integrals of this
function can be computed using the definitions (1.9) and (1.12):

RL
0D

µ
x[x

λ−1(1− x)−α; y] =
x−µ

Γ(−µ)

∫ y

0

(1− u)−µ−1(ux)λ−1(1− ux)−α du

=
xλ−µ−1

Γ(−µ)

∫ y

0

(1− u)−µ−1(u)λ−1(1− ux)−α du;

RL
0D

µ
x{xλ−1(1− x)−α; y} =

x−µ

Γ(−µ)

∫ 1

y

(1− u)−µ−1(ux)λ−1(1− ux)−α du

=
xλ−µ−1

Γ(−µ)

∫ 1

y

(1− u)−µ−1(u)λ−1(1− ux)−α du.

Using the integral expressions for the incomplete hypergeometric functions, namely [25, Eq. (27)] for lower
incomplete and its analogue for upper incomplete, we can rewrite these as follows:

RL
0D

µ
x[x

λ−1(1− x)−α; y] =
xλ−µ−1

Γ(−µ)
B(λ,−µ) 2F 1(α, [λ, λ− µ; y];x)

=
Γ(λ)

Γ(λ− µ)
xλ−µ−1

2F 1(α, [λ, λ− µ; y];x); (2.17)

RL
0D

µ
x{xλ−1(1− x)−α; y} =

xλ−µ−1

Γ(−µ)
B(λ,−µ) 2F 1(α, {λ, λ− µ; y};x)

=
Γ(λ)

Γ(λ− µ)
xλ−µ−1

2F 1(α, {λ, λ− µ; y};x). (2.18)

These identities are valid for Re(µ) < 0 , Re(λ) > 0 , Re(α) > 0 , and |x| < 1 . By analytic continuation, we
expect that the same expressions (2.17) and (2.18) should be valid for all µ ∈ C , i.e. for fractional derivatives
as well as fractional integrals. Using Definitions 2.12 and 2.13, we can argue as follows.

Firstly, lower incomplete. For 0 ≤ Re(µ) < 1 , we substitute the known expression (2.17) for RL
0D

µ−1
x [xλ; y]
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into the identity (2.12) to get:

RL
0D

µ
x[f(x); y] =

d

dx

(
RL

0D
µ−1
x [f(x); y]

)
− y(1− y)−µ

Γ(1− µ)
x−µf(xy)

=
d

dx

(
Γ(λ)

Γ(λ− µ+ 1)
xλ−µ

2F 1(α, [λ, λ− µ+ 1; y];x)

)
− y(1− y)−µ

Γ(1− µ)
x−µ(xy)λ−1(1− xy)−α

=
Γ(λ)

Γ(λ− µ+ 1)
(λ− µ)xλ−µ−1

2F 1(α, [λ, λ− µ+ 1; y];x)

+
Γ(λ)

Γ(λ− µ+ 1)
xλ−µ

(
αλ

λ− µ+ 1

)
2F 1(α+ 1, [λ+ 1, λ− µ+ 2; y];x)

− yλ(1− y)−µ

Γ(1− µ)
xλ−µ−1(1− xy)−α

=
Γ(λ)

Γ(λ− µ)
xλ−µ−1

[
2F 1(α, [λ, λ− µ+ 1; y];x)

+
αλ

(λ− µ)(λ− µ+ 1)
x 2F 1(α+ 1, [λ+ 1, λ− µ+ 2; y];x) +

yλ(1− y)−µ

µB(λ,−µ)
(1− xy)−α

]
=

Γ(λ)

Γ(λ− µ)
xλ−µ−1

2F 1(α, [λ, λ− µ; y];x),

where we have used identities from [25, Theorems 12–13] to simplify the expressions involving the incomplete
hypergeometric function. This confirms the expression (2.17) for the lower incomplete derivative when 0 ≤
Re(µ) < 1 .

The same argument works to confirm it for 1 ≤ Re(µ) < 2 , 2 ≤ Re(µ) < 3 , etc., since there was no
assumption on the value of µ in the above manipulations of incomplete hypergeometric functions. Thus, as
expected, (2.17) is valid for all µ ∈ C .

For the upper incomplete case, we can deduce (2.18) from (2.17) using the fact that their sum is the usual
Riemnn–Liouville fractional differintegral which is well known [20].

Remark 2.20 Given Examples 2.18 and 2.19, we can immediately verify that the derivative and integral
operators we have defined do not have inverse properties. For instance, applying an incomplete fractional
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integral and then an incomplete fractional derivative to a simple power function yields the following:

RL
0D

µ
x

[
RL

0I
µ
x[x

λ; y]; y
]
= RL

0D
µ
x

[
By(λ+ 1, µ)

Γ(µ)
xλ+µ; y

]
=

By(λ+ 1, µ)

Γ(µ)
RL

0D
µ
x[x

λ+µ; y]

=
By(λ+ 1, µ)

Γ(µ)

(
By(λ+ µ+ 1,−µ)

Γ(−µ)
xλ+µ−µ

)
=

By(λ+ 1, µ)By(λ+ µ+ 1,−µ)

Γ(µ)Γ(−µ)
xλ;

RL
0D

µ
x

{
RL

0I
µ
x{xλ; y}; y

}
= RL

0D
µ
x

{
B1−y(µ, λ+ 1)

Γ(µ)
xλ+µ; y

}
=

B1−y(µ, λ+ 1)

Γ(µ)
RL

0D
µ
x{xλ+µ; y}

=
B1−y(µ, λ+ 1)

Γ(µ)

(
B1−y(−µ, λ+ µ+ 1)

Γ(−µ)
xλ+µ−µ

)
=

B1−y(µ, λ+ 1)B1−y(−µ, λ+ µ+ 1)

Γ(µ)Γ(−µ)
xλ.

Since neither By(λ + 1, µ)By(λ + µ + 1,−µ) nor B1−y(µ, λ + 1)B1−y(−µ, λ + µ + 1) are identically equal
to Γ(µ)Γ(−µ) , we surmise that the incomplete fractional derivatives are not left inverses to the incomplete
fractional integrals. This is one disadvantage of Definitions 2.12 and 2.13, but it is counterbalanced by the
advantages of a unified differintegral formula given by the analytic continuation method.

3. Further properties of incomplete Riemann–Liouville fractional calculus

The previous section established rigorous definitions for incomplete Riemann–Liouville fractional calculus, by
specifying function spaces on which the operators act, and defining fractional derivatives as well as fractional
integrals in this model.

In the current section, we shall investigate further properties and results concerning these operators.
Since the theory of incomplete Riemann–Liouville fractional calculus is still very new, there are many important
properties which have yet to be examined, and useful theorems which have yet to be proved.

One fundamental question in any model of fractional calculus is whether the operators satisfy a semigroup
property. In the standard Riemann–Liouville model, for example, the fractional integrals have a semigroup
property while the fractional derivatives do not [20, 29]. What happens in the incomplete Riemann–Liouville
model?

We have already seen in Remark 2.20 that the incomplete fractional derivatives and integrals lack an
inversion property, which would be a special case of the semigroup property for composition of fractional
differintegral operators. A simple example is enough to verify that the semigroup property is not valid either
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for combinations of fractional integrals or for combinations of fractional derivatives:

RL
0I

µ
x

[
RL

0I
ν
x[x

λ; y]; y
]
= RL

0I
µ
x

[
By(λ+ 1, ν)

Γ(ν)
xλ+ν ; y

]
=

By(λ+ 1, ν)

Γ(ν)
RL

0I
µ
x[x

λ+ν ; y]

=
By(λ+ 1, ν)

Γ(ν)

(
By(λ+ ν + 1, µ)

Γ(µ)
xλ+µ+ν

)
=

By(λ+ 1, ν)By(λ+ ν + 1, µ)

Γ(µ)Γ(ν)
xλ+µ+ν ;

RL
0D

µ
x

[
RL

0D
ν
x[x

λ; y]; y
]
= RL

0D
µ
x

[
By(λ+ 1,−ν)

Γ(−ν)
xλ−ν ; y

]
=

By(λ+ 1,−ν)

Γ(−ν)
RL

0D
µ
x[x

λ−ν ; y]

=
By(λ+ 1,−ν)

Γ(−ν)

(
By(λ− ν + 1,−µ)

Γ(−µ)
xλ−µ−ν

)
=

By(λ+ 1,−ν)By(λ− ν + 1,−µ)

Γ(−µ)Γ(−ν)
xλ−µ−ν ;

RL
0I

µ
x

{
RL

0I
ν
x{xλ; y}; y

}
= RL

0I
µ
x

{
B1−y(ν, λ+ 1)

Γ(ν)
xλ+ν ; y

}
=

B1−y(ν, λ+ 1)

Γ(ν)
RL

0I
µ
x{xλ+ν ; y}

=
B1−y(ν, λ+ 1)

Γ(ν)

(
B1−y(µ, λ+ ν + 1)

Γ(µ)
xλ+µ+ν

)
=

B1−y(ν, λ+ 1)B1−y(µ, λ+ ν + 1)

Γ(µ)Γ(ν)
xλ+µ+ν ;

RL
0D

µ
x

{
RL

0D
ν
x{xλ; y}; y

}
= RL

0D
µ
x

{
B1−y(−ν, λ+ 1)

Γ(−ν)
xλ−ν ; y

}
=

B1−y(−ν, λ+ 1)

Γ(−ν)
RL

0D
µ
x{xλ−ν ; y}

=
B1−y(−ν, λ+ 1)

Γ(−ν)

(
B1−y(−µ, λ− ν + 1)

Γ(−µ)
xλ−µ−ν

)
=

B1−y(−ν, λ+ 1)B1−y(−µ, λ− ν + 1)

Γ(−µ)Γ(−ν)
xλ−µ−ν .

And there is no identity such as

By(λ+ 1, ν)By(λ+ ν + 1, µ) = By(λ+ 1, µ+ ν)B(µ, ν)
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or

B1−y(ν, λ+ 1)B1−y(µ, λ+ ν + 1) = B1−y(µ+ ν, λ+ 1)B(µ, ν)

for incomplete beta functions. Thus we surmise that there is no semigroup property for incomplete fractional
differintegrals of either lower or upper type.

Theorem 3.1 Let b > 0 , 0 < y < 1 , x ∈ [0, b] , and f ; [0, b] → C .

If f ∈ L1[0, yb] , then

lim
µ→0+

RL
0I

µ
x[f(x); y] = 0,

where µ → 0+ denotes convergence of µ towards 0 within the right half plane Re(µ) > 0 .

If f ∈ L1[0, b] and x is a Lebesgue point of f , then

lim
µ→0+

RL
0I

µ
x{f(x); y} = f(x),

where µ → 0+ is as before.

Proof Firstly, we consider the lower incomplete RL integral. Here we are considering the quantity

1

Γ(−µ)

∫ yx

0

(x− t)−µ−1f(t) dt, µ → 0+.

The gamma reciprocal function 1
Γ(z) is entire with a zero at z = 0 , while the integrand is a well-behaved

function of t everywhere on the domain [0, yx] , so the limit is equal to zero as required. (The reason this
argument does not work for the classical RL integral is due to the singularity at t = x , which is not included
in the domain of the lower incomplete RL integral.)

For the upper incomplete RL integral, we need a more complicated argument. Recall the definition of
Lebesgue points, namely that x is a Lebesgue point of f if

lim
t→0

1

t

∫ t

0

(f(x− u)− f(x)) du = 0.

Define

F (t) =

∫ x

x−t

f(u) du =

∫ t

0

f(x− u) du,

so that

c(t) :=
F (t)

t
− f(x) =

1

t

∫ t

0

(f(x− u)− f(x)) du → 0 as t → 0,
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by the Lebesgue property. Now, starting from (1.11) and using integration by parts, we have

RL
0I

µ
x{f(x); y} =

1

Γ(µ)

∫ x

yx

(x− t)µ−1f(t) dt

=
1

Γ(µ)

∫ (1−y)x

0

tµ−1f(x− t) dt =
1

Γ(µ)

∫ (1−y)x

0

tµ−1F ′(t) dt

=
1

Γ(µ)

[
tµ−1F (t)

](1−y)x

0
− µ− 1

Γ(µ)

∫ (1−y)x

0

tµ−2F (t) dt

=
xµ−1(1− y)µ−1F ((1− y)x)

Γ(µ)
− lim

t→0

[
tµ

Γ(µ)

F (t)

t

]
− 1

Γ(µ− 1)

∫ (1−y)x

0

tµ−2 (tc(t) + tf(x)) dt

=
xµ−1(1− y)µ−1F ((1− y)x)

Γ(µ)
− lim

t→0

[
tµ

Γ(µ)
f(x)

]

− 1

Γ(µ− 1)

∫ (1−y)x

0

tµ−1c(t) dt− f(x)

Γ(µ− 1)

∫ (1−y)x

0

tµ−1 dt

=
xµ(1− y)µ

Γ(µ)

(
F ((1− y)x)

(1− y)x
− µ− 1

µ
f(x)

)
− 1

Γ(µ− 1)

∫ (1−y)x

0

tµ−1c(t) dt.

Write X = (1− y)x , so that

RL
0I

µ
x{f(x); y} =

Xµ

Γ(µ)

(
F (X)

X
− µ− 1

µ
f(x)

)
− 1

Γ(µ− 1)

∫ X

0

tµ−1c(t) dt. (3.1)

We know that c(t) → 0 as t → 0 , so for any ϵ > 0 , there exists δ > 0 such that 0 < t < δ ⇒ |c(t)| < ϵ . We fix
ϵ and argue from (3.1) as follows.

RL
0I

µ
x{f(x); y} − f(x) =

Xµ

Γ(µ)

F (X)

X
−
(
µ− 1

µ

Xµ

Γ(µ)
+ 1

)
f(x)

− 1

Γ(µ− 1)

∫ δ

0

tµ−1c(t) dt− 1

Γ(µ− 1)

∫ X

δ

tµ−1c(t) dt.

As µ → 0+ , we have:

Xµ

Γ(µ)

F (X)

X
→ 0;

µ− 1

µ

Xµ

Γ(µ)
=

(µ− 1)Xµ

Γ(µ+ 1)
→ −1;∣∣∣∣∣ 1

Γ(µ− 1)

∫ δ

0

tµ−1c(t) dt

∣∣∣∣∣ ≤ δµϵ

µ|Γ(µ− 1)|
=

|µ− 1|δµϵ
Γ(µ+ 1)

→ ϵ;

1

Γ(µ− 1)

∫ X

δ

tµ−1c(t) dt → 0;

and therefore
lim

µ→0+

∣∣∣RL
0I

µ
x{f(x); y} − f(x)

∣∣∣ ≤ ϵ.
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But since ϵ > 0 was arbitrary, this means the limit must in fact be 0 , which concludes the proof. 2

Lemma 3.2 Let b > 0 , 0 < y < 1 , µ ∈ C , and n ∈ N . For any function f : [0, b] → C in the appropriate
function spaces given by Definitions 2.3, 2.4, or 2.6, we have the following results:

RL
0D

µ
x[x

nf(x); y] =

n∑
k=0

(
n

k

)
xn−k(−1)k

Γ(−µ+ k)

Γ(−µ)
RL

0D
µ−k
x [f(x); y]; (3.2)

RL
0D

µ
x{xnf(x); y} =

n∑
k=0

(
n

k

)
xn−k(−1)k

Γ(−µ+ k)

Γ(−µ)
RL

0D
µ−k
x {f(x); y}. (3.3)

Proof The binomial theorem gives

tn = (x− (x− t))n =

n∑
k=0

(
n

k

)
xn−k(−1)k(x− t)k,

so starting from the definition (1.8) for Re(µ) < 0 , we have

RL
0D

µ
x[x

nf(x); y] =
1

Γ(−µ)

∫ yx

0

(x− t)−µ−1f(t)

[
n∑

k=0

(
n

k

)
xn−k(−1)k(x− t)k

]
dt

=
1

Γ(−µ)

n∑
k=0

(
n

k

)
xn−k(−1)k

∫ yx

0

(x− t)−µ+k−1f(t) dt

=

n∑
k=0

(
n

k

)
xn−k(−1)k

Γ(−µ+ k)

Γ(−µ)
RL

0D
µ−k
x [f(x); y].

This gives the result for lower incomplete fractional integrals (Re(µ) < 0), which can easily be extended to all
lower incomplete fractional differintegrals by analytic continuation. The proof for upper incomplete fractional
differintegrals is exactly analogous. 2

Theorem 3.3 (Incomplete fractional Leibniz rule) Let b > 0 , 0 < y < 1 , µ ∈ C . For any function
f : [0, b] → C in the appropriate function spaces given by Definitions 2.3, 2.4, or 2.6, and for any analytic
function g : [0, b] → C , we have the following results:

RL
0D

µ
x[f(x)g(x); y] =

∞∑
k=0

(
µ

k

)
RL

0D
µ−k
x [f(x); y]RL

0D
k
xg(x); (3.4)

RL
0D

µ
x{f(x)g(x); y} =

∞∑
k=0

(
µ

k

)
RL

0D
µ−k
x {f(x); y}RL

0D
k
xg(x). (3.5)

Proof Since g is analytic, we can write

g(t) = g(x− (x− t)) =

∞∑
k=0

(−1)k

k!
(x− t)k RL

0D
k
xg(x),
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where this series is locally uniformly convergent. Substituting this into the integral definition (1.8) for the lower
incomplete fractional integral (Re(µ) < 0), we find:

RL
0D

µ
x[f(x)g(x); y] =

1

Γ(−µ)

∫ yx

0

(x− t)−µ−1f(t)

[ ∞∑
k=0

(−1)k

k!
(x− t)k RL

0D
k
xg(x)

]
dt

=
1

Γ(−µ)

∞∑
k=0

(−1)k

k!
RL

0D
k
xg(x)

∫ yx

0

(x− t)−µ+k−1f(t) dt

=

∞∑
k=0

(−1)k

k!
RL

0D
k
xg(x)

Γ(−µ+ k)

Γ(−µ)
RL

0D
µ−k
x [f(x); y].

(Note that we have used local uniform convergence of the Taylor series for g , in order to swap the order of
summation and integration.) By the reflection formula for the gamma function, we have

Γ(−µ+ k)

Γ(−µ)
=

π sin(−πµ)Γ(1 + µ)

π sin(πk − πµ)Γ(1 + µ− k)
=

(−1)kΓ(1 + µ)

Γ(1 + µ− k)
,

which gives the desired result for lower incomplete fractional integrals. Once again, we can deduce the result
for lower incomplete fractional derivatives by using analytic continuation, and then prove the result for upper
incomplete fractional differintegrals in an entirely analogous fashion. 2

Theorem 3.4 (Incomplete fractional chain rule) Let b > 0 , 0 < y < 1 , µ ∈ C . For any analytic
composite function f ◦ g : [0, b] → C , we have the following results:

RL
0D

µ
x[f(g(x)); y] =

∞∑
k=0

(
µ

k

)
1− (1− y)k−µ

Γ(1 + k − µ)
xk−µ

k∑
r=1

drf(g(x))

dg(x)r

∑
(r1,...,rk)

[
k∏

j=1

j
rj !(j!)

rj

(
djg(x)
dxj

)rj]
, (3.6)

RL
0D

µ
x{f(g(x)); y} =

∞∑
k=0

(
µ

k

)
(1− y)k−µ

Γ(1 + k − µ)
xk−µ

k∑
r=1

drf(g(x))

dg(x)r

∑
(r1,...,rk)

[
k∏

j=1

j
rj !(j!)

rj

(
djg(x)
dxj

)rj]
, (3.7)

where the innermost summation in each expression is taken over all (r1, . . . , rk) ∈
(
Z+
0

)m such that
∑

j rj = r

and
∑

j jrj = k .

Proof We apply Theorem 3.3 to the product of the two functions f ◦ g(x) and 1 , where f ◦ g is analytic.
This yields the following formulae:

RL
0D

µ
x[f(g(x)); y] =

∞∑
k=0

(
µ

k

)
RL

0D
µ−k
x [1; y]

dkf ◦ g(x)
dxk

;

RL
0D

µ
x{f(g(x)); y} =

∞∑
k=0

(
µ

k

)
RL

0D
µ−k
x {1; y}d

kf ◦ g(x)
dxk

.

By Example 2.18, we know that the incomplete fractional differintegrals of the constant function 1 are given
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by:

RL
0D

µ
x[1; y] =

By(1,−µ)

Γ(−µ)
x−µ =

1− (1− y)−µ

Γ(1− µ)
x−µ;

RL
0D

µ
x{1; y} =

B1−y(−µ, 1)

Γ(−µ)
x−µ =

(1− y)−µ

Γ(1− µ)
x−µ.

And by the classical Faà di Bruno formula for repeated derivatives of a composite function, we also have

dkf(g(x))

dxk
=

k∑
r=1

drf(g(x))

dg(x)r

∑
(r1,...,rk)

[
k∏

j=1

j
rj !(j!)

rj

(
djg(x)
dxj

)rj]
,

where the inner summation is taken over all (r1, . . . , rk) ∈
(
Z+
0

)m such that
∑

j rj = r,
∑

j jrj = k .

Putting all of the above expressions together, we have the desired results. 2

4. Conclusion
In this work, we have performed a rigorous study and analysis of the recently defined incomplete fractional
integrals of Riemann–Liouville type. Starting from the operators proposed in [25], we considered appropriate
function spaces for their domain and range, and thence derived precise and rigorous definitions for these
operators. We then considered how they interact with the standard differentiation operator, and deduced
an extension of the definitions to incomplete fractional derivatives as well as integrals.

Consideration of function spaces also yielded an unusual property of the lower incomplete fractional
integral: acting on functions which are well-behaved on a small subinterval, it yields functions with larger
domains of good behaviour. This extension property is a special feature of incomplete fractional calculus which
may be useful in, for example, the theory of partial differential equations. Another interesting property we
discovered is that the upper incomplete fractional integral can be written in the form of a classical Riemann–
Liouville fractional integral with the constant of integration (lower bound of the integral operator) replaced by
a variable quantity. Both of these features may be found useful in modelling and differential equations in the
future.

We also studied several important questions which are natural in any model of fractional calculus. Is a
semigroup property satisfied? Are the fractional derivatives and integrals inverse to each other? How do they
behave as the order of differintegration converges to zero? Is it possible to find fractional differintegrals for the
product or composition of two functions? All of these questions are analysed and answered in the incomplete
Riemann–Liouville fractional calculus, in order to flesh out the fundamentals of the theory.

Many different future directions of research in incomplete fractional calculus are possible, and we list just
a few as follows. Incomplete versions of other fractional operators, beyond Riemann–Liouville and Caputo, can
be defined and studied. The idea of incomplete integration can be extended to other types of integrals, such as
Lebesgue, Henstock–Kurzweil, etc. Ordinary and partial fractional differential equations with these operators
can be posed and solved. The operators can be approximated numerically by various quadrature methods.
Applications can be discovered by considering the special properties of incomplete fractional calculus different
from other types of operators. The operators may be extended to other function spaces as well as L1 spaces,
for example in the context of distribution theory or qualitative theory of differential equations.
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