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Abstract: The aim of the present study is to find the essential properties for some subclasses of analytic functions
which are related to Poisson distribution that are member of the classes of spiral-like univalent functions. Further, we
studied inclusion relations for such subclasses, and also we determined some properties of an integral operator related to
Poisson distribution series. Several corollaries and consequences of the main results are also considered.
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1. Introduction and definitions
Let A denote the class of functions of the form

f(z) = z +

∞∑
n=2

anz
n, (1.1)

which are analytic in the open unit disk U := {z ∈ C : |z| < 1} , and normalized by the conditions f(0) = 0 =

f ′(0) − 1 . Also, denote by S the subclass of A consisting of functions of the form given by (1.1) that are
univalent in U .

For functions f ∈ A given by (1.1) and g ∈ A given by g(z) = z +
∞∑

n=2
bnz

n , we denote the Hadamard

(or convolution) product of f and g by

(f ∗ g)(z) := z +

∞∑
n=2

anbnz
n, z ∈ U.

For two analytic functions f and g analytic in U we say that f is subordinate to g , denoted by
f(z) ≺ g(z) , if there exists a function ω analytic in U , with ω(0) = 0 and |ω(z)| < 1 for all z ∈ U , such
that f(z) = g(ω(z)) , z ∈ U . Note that if the function g is univalent in U (see also Miller and Mocanu [5] and
Bulboacă [2]) we have

f(z) ≺ g(z) ⇔ f(0) = g(0) and f(U) ⊂ g(U).
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The two well-known subclasses of S are mentioned as the class of starlike functions of order λ and convex
function of order λ which were introduced by Robertson [15]. Thus, a function f ∈ A is said to be starlike of
order λ (0 ≤ λ < 1) , if and only if

Re
zf ′(z)

f(z)
> λ, z ∈ U,

or equivalently,
zf ′(z)

f(z)
≺ 1 + (1− 2λ)z

1− z
,

where the symbol “≺” represents the subordination.
Such class of functions is denoted by S∗(λ) , and S∗(0) =: S∗ is the well-known class of starlike functions.

The concept of starlike functions was introduced by Alexander [1] according to the property that f maps
conformally the open unit disk U onto a starlike domain with respect to the origin.

A function f ∈ S is said to be convex of order λ (0 ≤ λ < 1) , if and only if

Re

(
1 +

zf ′′(z)

f ′(z)

)
> λ, z ∈ U,

that is

1 +
zf ′′(z)

f ′(z)
≺ 1 + (1− 2λ)z

1− z

and the class of all convex functions of order λ is denoted by C(λ) .
Clearly, C(0) =: C is the class of convex functions with the property that f maps conformally the open

unit disk U onto a convex domain. The classes S∗(λ) and C(λ) satisfies Alexander’s duality relation:

f ∈ C(λ) ⇔ zf ′ ∈ S∗(λ), 0 ≤ λ < 1.

A function f ∈ A is said to be a spirallike function if

Re

(
e−iα zf

′(z)

f(z)

)
> 0, z ∈ U,

for some α ∈ R with |α| < π

2
. The class of spirallike function was introduced by Spaček [16].

Motivated by the recent remarkable results of various researches that are available in [6–14], hereby we
state the two subclasses of A as follows:

Definition 1.1 For 0 ≤ δ < 1 , 0 ≤ β < 1 and α ∈ R with |α| < π

2
, let S(α, β, δ) be the subclass of A defined

as follows:

S(α, β, δ) :=
{
f ∈ A : Re

(
eiα

zf ′(z)

(1− δ)f(z) + δzf ′(z)

)
> β cosα, z ∈ U

}
.

Following the Alexander’s duality relation, we define the next subclass of A :
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Definition 1.2 For 0 ≤ δ < 1 , 0 ≤ β < 1 and α ∈ R with |α| < π

2
, let C(α, β, δ) be the subclass of A defined

by

C(α, β, δ) :=
{
f ∈ A : Re

(
eiα

zf ′′(z) + f ′(z)

f ′(z) + δzf ′′(z)

)
> β cosα, z ∈ U

}
.

Remark 1.3 1. As we mentioned above, the subclasses S(α, β, δ) and C(α, β, δ) are connected by the Alexan-
der’s type duality relation

f ∈ C(α, β, δ) ⇔ zf ′ ∈ S(α, β, δ).

2. For the special value δ = 0 , the above two subclasses reduces to the class of α-spirallike functions of
order β studied in [3, 4]

S(α, β) := S(α, β, 0) =
{
f ∈ A : Re

(
eiα

zf ′(z)

f(z)

)
> β cosα, z ∈ U

}
,

and to the class of α-convex spirallike functions of order β

C(α, β) := C(α, β, 0) =
{
f ∈ A : Re

[
eiα

(
1 +

zf ′′(z)

f ′(z)

)]
> β cosα, z ∈ U

}
,

respectively.

The next subclass Rτ (γ, η) was initially introduced by Swaminathan in [17, p. 3] as follows:

Definition 1.4 For τ ∈ C \ {0} , 0 ≤ η < 1 , and γ < 1 , the subclass Rτ (γ, η) is defined by

Rτ (γ, η) :=

f ∈ A :

∣∣∣∣∣∣∣
(1− η)

f(z)

z
+ ηf ′(z)− 1

2τ(1− γ) + (1− η)
f(z)

z
+ ηf ′(z)− 1

∣∣∣∣∣∣∣ < 1, z ∈ U

 .

Now we will give a few the necessary and sufficient conditions for the functions f given by (1.1) to be in
the above subclasses.

Lemma 1.5 [6, Corollary 2.1.] A function f of the form (1.1) belongs to S(α, β, δ) if

∞∑
k=2

[(1− δ)(k − 1) secα+ (1− β)(1 + kδ − δ)] |ak| ≤ 1− β,

where |α| < π

2
, 0 ≤ δ < 1 and 0 ≤ β < 1 .

Lemma 1.6 [12, Lemma 1.5.] A function f of the form (1.1) belongs to C(α, β, δ) if

∞∑
k=2

k [(1− δ)(k − 1) secα+ (1− β)(1 + kδ − δ)] |ak| ≤ 1− β,

where |α| < π

2
, 0 ≤ δ < 1 and 0 ≤ β < 1 .
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Lemma 1.7 [17, Theorem 2.3.] Let f ∈ S be of the form (1.1). If f ∈ Rτ (η, γ) , then

|ak| ≤
2 |τ | (1− γ)

1 + η(k − 1)
, k ∈ N \ {1}. (1.2)

The bounds given in (1.2) are sharp.

A random variable X is said to be a Poisson distribution with parameter m ∈ R if it takes the values

0 , 1 , 2 , 3 , …with the probabilities e−m , me−m

1!
, m2e−m

2!
, m3e−m

3!
, …respectively, thus

P
(
X = x

)
=

mxe−m

x!
, x = 0, 1, 2, 3, . . . .

In 2014 Porwal [13] introduced a power series whose coefficients are probabilities of Poisson distribution, that
is

Pm(z) := z +

∞∑
k=2

mk−1 e−m

(k − 1)!
zk, z ∈ U, (1.3)

where m > 0 . From the ratio test it follows that the radius of convergence of the above power series is infinity.
Using the Hadamard product, a new linear operator Lm : A → A defined by a convolution product was

introduced and defined by Porwal and Kumar [14] by

Lmf(z) := Pm(z) ∗ f(z) = z +

∞∑
k=2

mk−1 e−m

(k − 1)!
akz

k, z ∈ U, (1.4)

where f ∈ A is given by (1.1).
In the present study we will determine sufficient conditions such that the power series Pm be member

of the classes S(α, β, δ) and C(α, β, δ) . Also, sufficient conditions such that the images of Rτ (η, γ) ∩ S by the
operator Lm belongs to the classes S(α, β, δ) and C(α, β, δ) were obtained. Finally, sufficient conditions for

the function Fm which is defined by the Alexander integral operator Fm(z) :=

∫ z

0

Pm(t)

t
dt belongs to the

classes S(α, β, δ) and C(α, β, δ) were discussed.

2. Sufficient conditions for Pm to belong to S(α, β, δ) and C(α, β, δ)

The two results of this section represent sufficient conditions such that the function Pm defined by (1.3) belongs
to the classes S(α, β, δ) and C(α, β, δ) , respectively.

Theorem 2.1 Let m > 0 , 0 ≤ δ < 1 , 0 ≤ β < 1 , and |α| < π

2
. If

m [secα+ δ(1− β − secα)] ≤ (1− β)e−m, (2.1)

then Pm ∈ S(α, β, δ) .
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Proof Since Pm has the power series expansion (1.3), according to Lemma 1.5 it is sufficient to prove that

∞∑
k=2

[(1− δ)(k − 1) secα+ (1− β)(1 + kδ − δ)]
mk−1

(k − 1)!
e−m ≤ 1− β. (2.2)

From the assumption (2.1) a simple computation yields to

∞∑
k=2

[(1− δ)(k − 1) secα+ (1− β)(1 + kδ − δ)]
mk−1

(k − 1)!
e−m

=

∞∑
k=2

{[
secα+ δ(1− β − secα)

]
k + (1− δ)(1− β − secα)

} mk−1

(k − 1)!
e−m

=

∞∑
k=2

[secα+ δ(1− β − secα)] (k − 1)
mk−1

(k − 1)!
e−m +

∞∑
k=2

(1− β)
mk−1

(k − 1)!
e−m

= m [secα+ δ(1− β − secα)] + (1− β)(1− e−m) ≤ 1− β.

It follows that the inequality (2.2) holds, therefore Pm ∈ S(α, β, δ) . 2

Theorem 2.2 Let m > 0 , 0 ≤ δ < 1 , 0 ≤ β < 1 , and |α| < π

2
. If

m2 [secα+ δ(1− β − secα)] +m [(1 + 2δ) (1− β − secα) + 3 secα] ≤ (1− β)e−m, (2.3)

then Pm ∈ C(α, β, δ) .

Proof Since Pm is given by (1.3), in virtue of Lemma 1.6 it is sufficient to show that

∞∑
k=2

k [(1− δ)(k − 1) secα+ (1− β)(1 + kδ − δ)]
mk−1

(k − 1)!
e−m ≤ 1− β. (2.4)

We easily get that
∞∑
k=2

k [(1− δ)(k − 1) secα+ (1− β)(1 + kδ − δ)]
mk−1

(k − 1)!
e−m

=

∞∑
k=2

{[
secα+ δ(1− β − secα)

]
k2 + (1− δ)(1− β − secα)k

} mk−1

(k − 1)!
e−m

=

∞∑
k=2

[
secα+ δ(1− β − secα)

]
(k − 1)(k − 2)

mk−1

(k − 1)!
e−m

+

∞∑
k=2

[(1 + 2δ)(1− β − secα) + 3 secα] (k − 1)
mk−1

(k − 1)!
e−m

+

∞∑
k=2

(1− β)
mk−1

(k − 1)!
e−m = m2 [secα+ δ(1− β − secα)]

+m
[
(1 + 2δ) (1− β − secα) + 3 secα

]
+ (1− β)(1− e−m)

≤ 1− β,
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whenever the assumption inequality (2.3) holds. Thus, (2.4) is satisfied that leads to Pm ∈ C(α, β, δ) . 2

3. Images of the Rτ (η, γ) classes by the Lm convolution operator

Next, we will give as sufficient condition such that the images of the functions fromRτ (η, γ)∩S by the operator
Lm defined by (1.4) belong to the classes S(α, β, δ) and C(α, β, δ) , respectively.

Theorem 3.1 Let τ ∈ C \ {0} , 0 < γ ≤ 1 , and η < 1 . If

2 |τ | (1− γ)

η

{[
secα+ δ(1− β − secα)

] (
1− e−m

)
+
(1− δ)(1− β − secα) [1− e−m(1 +m)]

m

}
≤ 1− β, (3.1)

then
Lm (Rτ (η, γ) ∩ S) ⊂ S(α, β, δ).

Proof Let f ∈ Rτ (η, γ) ∩ S be given by (1.1). In order to prove our result, according to Lemma 1.5 it is
sufficient to show that

∞∑
k=2

[(1− δ)(k − 1) secα+ (1− β)(1 + kδ − δ)]
mk−1

(k − 1)!
e−m|ak| ≤ 1− β. (3.2)

Since f ∈ Rτ (η, γ) ∩ S , from Lemma 1.7 we have

|ak| ≤
2 |τ | (1− γ)

1 + η(k − 1)
, k ∈ N \ {1},

and using the fact that 1 + η(k − 1) ≥ kη together with the assumption (3.1) we obtain

∞∑
k=2

[(1− δ)(k − 1) secα+ (1− β)(1 + kδ − δ)]
mk−1

(k − 1)!
e−m|ak|

≤ 2 |τ | (1− γ)

η

{ ∞∑
k=2

1

k

[
(1− δ)(k − 1) secα+ (1− β)(1 + kδ − δ)

] mk−1

(k − 1)!
e−m

}

=
2 |τ | (1− γ)

η

{ ∞∑
k=2

[
secα+ δ(1− β − secα)

] mk−1

(k − 1)!
e−m

+

∞∑
k=2

(1− δ)(1− β − secα)
mk−1

k!
e−m

}

=
2 |τ | (1− γ)

η

{[
secα+ δ(1− β − secα)

] (
1− e−m

)
+
(1− δ)(1− β − secα) [1− e−m(1 +m)]

m

}
≤ 1− β.

Hence, the inequality (3.2) holds and therefore Lmf ∈ S(α, β, δ) . 2

Using the same technique as in the proof of Theorem 2.2, we similarly get the following result:
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Theorem 3.2 Let τ ∈ C \ {0} , 0 < γ ≤ 1 , and η < 1 . If

2 |τ | (1− γ)

η

{
m2

[
secα+ δ(1− β − secα)

]
+m

[
(1− β − secα) (1 + 2δ) + 3 secα

]
+(1− β)

(
1− e−m

)}
≤ 1− β,

then
Lm (Rτ (η, γ) ∩ S) ⊂ C(α, β, δ).

4. Images of the Pm functions by the Alexander integral operator
Next we will give two sufficient conditions such that the Alexander integral of the Pm belongs to the classes
S(α, β, δ) and C(α, β, δ) , respectively.

Theorem 4.1 If the function Fm is defined by

Fm(z) :=

∫ z

0

Pm(t)

t
dt, z ∈ U, (4.1)

where Pm is given by (1.3), and

[secα+ δ(1− β − secα)]
(
1− e−m

)
+
(1− δ)(1− β − secα) [1− e−m(1 +m)]

m
≤ 1− β, (4.2)

then Fm ∈ S(α, β, δ) .

Proof Since

Fm(z) = z +

∞∑
k=2

mk−1

(k − 1)!k
e−mzk, z ∈ U, (4.3)

according to Lemma 1.5 it is sufficient to verify that

∞∑
k=2

1

k
[(1− δ)(k − 1) secα+ (1− β)(1 + kδ − δ)]

mk−1

(k − 1)!
e−m ≤ 1− β. (4.4)

From the assumption (4.1) we get

∞∑
k=2

1

k
[(1− δ)(k − 1) secα+ (1− β)(1 + kδ − δ)]

mk−1

(k − 1)!
e−m

=

∞∑
k=2

{
[secα+ δ(1− β − secα)] +

1

k
(1− δ)(1− β − secα)

}
mk−1

(k − 1)!
e−m

=

∞∑
k=2

[secα+ δ(1− β − secα)]
mk−1

(k − 1)!
e−m +

∞∑
k=2

(1− δ)(1− β − secα)
mk−1

k!
e−m

= [secα+ δ(1− β − secα)]
(
1− e−m

)
+

(1− δ)(1− β − secα) [1− e−m(1 +m)]

m

≤ 1− β.
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Therefore, the inequality (4.4) holds and thus Fm ∈ S(α, β, δ) . 2

Theorem 4.2 If the function Fm is given by (4.1) and

m [secα+ δ(1− β secα)] ≤ (1− β)e−m,

then Fm ∈ C(α, β, δ) .

Proof Since Fm was the power series expansion (4.3), according to Lemma 1.6 we need only to verify that

∞∑
k=2

k [(1− δ)(k − 1) secα+ (1− β)(1 + kδ − δ)]
1

k

mk−1

(k − 1)!
e−m ≤ 1− β,

or, equivalently
∞∑
k=2

[(1− δ)(k − 1) secα+ (1− β)(1 + kδ − δ)]
mk−1

(k − 1)!
e−m ≤ 1− β.

The remaining part of the proof is similar to that of Theorem 2.1, and so we will omit the details. 2

5. Special cases

Considering the special value δ = 0 in the previous six theorems we will obtain the next results connected to
the classes S(α, β) and C(α, β) , respectively:

Corollary 5.1 Let m > 0 , 0 ≤ β < 1 , and |α| < π

2
. If

m secα ≤ (1− β)e−m,

then Pm ∈ S(α, β) .

Corollary 5.2 Let m > 0 , 0 ≤ β < 1 , and |α| < π

2
. If

m2 secα+m (1− β + 2 secα) ≤ (1− β)e−m,

then Pm ∈ C(α, β) .

Corollary 5.3 Let τ ∈ C \ {0} , 0 < γ ≤ 1 , and η < 1 . If

2 |τ | (1− γ)

η

{(
1− e−m

)
secα+

(1− β − secα) [1− e−m(1 +m)]

m

}
≤ 1− β,

then
Lm (Rτ (η, γ) ∩ S) ⊂ S(α, β).
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Corollary 5.4 Let τ ∈ C \ {0} , 0 < γ ≤ 1 , and η < 1 . If

2 |τ | (1− γ)

η

[
m2 secα+m (1− β + 2 secα) + (1− β)

(
1− e−m

) ]
≤ 1− β,

then
Lm (Rτ (η, γ) ∩ S) ⊂ C(α, β).

Corollary 5.5 If the function Fm is given by (4.1) and

(
1− e−m

)
secα+

(1− β − secα) [1− e−m(1 +m)]

m
≤ 1− β,

then Fm ∈ S(α, β) .

Corollary 5.6 If the function Fm is given by (4.1) and

m secα ≤ (1− β)e−m,

then Fm ∈ C(α, β) .

6. Conclusion
The novelty of the above results consists in the fact that using some recent results we found sufficient conditions
such that the function Pm defined by (1.3) belongs to the classes S(α, β, δ) and C(α, β, δ) , respectively.

Moreover, with the aid of these new results we gave sufficient condition such that the images of the
functions from Rτ (η, γ) by the operator Lm defined by (1.4) belong to the classes S(α, β, δ) and C(α, β, δ) .

Finally, in the same way we gave two sufficient conditions such that the Alexander integral of the Pm

belongs to the classes S(α, β, δ) and C(α, β, δ) .
Moreover, for appropriate choices of the parameters we found a few interesting special cases of the above

main results.
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