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Abstract: The classical theorem of Lucas states that the binomial polynomials, which form a basis for integer-valued
polynomials, satisfy a congruence relation related to their integer parameters. We consider here three problems connected
with this result in the setting of discrete valued structures. The first problem asks for the shapes of Lagrange-type
interpolation polynomials which constitute a basis for integer-valued polynomials and satisfy the Lucas property; the
result so obtained extends a 2001 result of Boulanger and Chabert. For the second problem, we show that the Carlitz
polynomials, which form a basis for integer-valued polynomials in a function field, satisfy the Lucas property, and derive
criteria guaranteeing that Carlitz-like polynomials, which constitute a basis for integer-valued polynomials, enjoy the
Lucas property. The third problem is to find conditions on general polynomials which form a basis for integer-valued
polynomials ensuring that they satisfy the Lucas property.
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1. Introduction
Let D be an integral domain with quotient field K . An integer-valued polynomial over D is a polynomial over
K that maps D to itself. Denote the set of all integer-valued polynomials over D by

Int(D) = {f(t) ∈ K[t] | f(D) ⊆ D};

the set Int(D ) is a subring of K[t] containing D[t] and is also a D -module ([3, Chapter I.1], [9]). In the
classical case where D = Z , the Z -module Int(Z) is free with a regular basis, [3, Proposition I.1.1]. One best
known regular basis is the set of binomial polynomials

{(
t
n

)}
n≥0

defined by(
t

0

)
= 1,

(
t

n

)
=
t(t− 1) · · · (t− n+ 1)

n!
(n ≥ 1).

Let p ∈ Z be a prime, and let k, n ∈ N whose base p -representations are
k = k0 + k1p+ · · ·+ ksp

s, n = n0 + n1p+ · · ·+ nsp
s (0 ≤ ki, ni < p).

The classical theorem of Lucas, [7], states that(
k

n

)
≡

(
k0
n0

)(
k1
n1

)
· · ·

(
ks
ns

)
(mod p). (1.1)
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There is a simple, short proof of this theorem in [7] where some information on the number and conditions
for binomial coefficients to be divisible by p is also obtained. Recently, Boulanger and Chabert [2] generalized
Lucas’s theorem from Z to a discrete valuation domain with a finite residue field. We now briefly describe their
work.

Throughout this paper, let V be a discrete valuation domain with valuation ν and a finite residue field,
and let K be its quotient field. Let m = (T ) be the maximal ideal of V generated by T , and let q be the
cardinality of the residue field V/m . Denote the set of representatives of V/m by

U = {u0 = 0, u1, . . . , uq−1},

so that each element A ∈ V can be uniquely represented as a base T -representation [8, Chapter 4] (or power
series in T over U ) of the form

∞∑
i=0

AiT
i ∈ U [[T ]].

Recall that the valuation ν(A) of A ∈ V {0} is a positive integer, indeed it is the largest integer n such that
A ∈ mn ; in a similar manner, denote by νq(ℓ) the largest power of q that divides ℓ ∈ N .

Let {Bn(t)}n≥0 be a sequence of polynomials forming a basis for the V -module Int(V ) . We say that the
sequence {Bn(t)} satisfies the Lucas property modulo m if it enjoys the following property: for n ∈ N0 := N∪{0}
with base q -representation

n = n0 + n1q + · · ·+ nd(n)q
d(n) (0 ≤ ni < q, nd(n) ̸= 0 if n ∈ N), (1.2)

and for A ∈ V with base T -representation

A = A0 +A1T + · · ·+AjT
j + · · · ∈ U [[T ]],

the congruence relation

Bn(A) ≡ Bn0(A0)Bn1(A1) · · ·Bnd(n)
(Ad(n)) (mod m) (1.3)

holds.
If the polynomials {Bn(t)} are constructed as Lagrange-type interpolation polynomials in the manner

similar to that in [2], i.e. there is a sequence {wn}n≥0 of distinct elements in V such that

B0(t) = 1, Bn(t) =
(t− w0)(t− w1) · · · (t− wn−1)

(wn − w0)(wn − w1) · · · (wn − wn−1)
(n ≥ 1), (1.4)

our first problem is to determine the sequence {wn} which characterizes the Lucas property of the basis {Bn(t)} .
This is carried out in Section 2 and will give an extension to a result of Boulanger and Chabert [2].

For our second problem, we work in Fq(x) , the field of rational functions over the finite field Fq of q
elements, equipped with the x -adic valuation whose discrete valuation domain is V , and whose maximal ideal
is m = (x) := xV . In [4–6], Carlitz introduced the following set of polynomials over Fq[x] , referred to as Carlitz
polynomials,

ψ0(t) = t, ψk(t) =
∏

degM<k

(t−M) (k ∈ N), (1.5)
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where the product extends over all polynomials M ∈ Fq[x] of degree < k , including the zero polynomial.
Carlitz defined the following elements in Fq[x] which play the role analogous to the factorials in Z ,

F0 = 1, Fk = ⟨k⟩⟨k − 1⟩q · · · ⟨1⟩q
k−1

(k ≥ 1),

where ⟨k⟩ := xq
k − x . Since ψk(x

k) = ψk(M) = Fk for each monic polynomial M of degree k , we have,
[4], Fk is the product of all monic polynomial in Fq[x] of degree k . The polynomials ψk(t) form a basis for
the so-called linear polynomials over Fq[x] , while a basis for general polynomials over Fq[x] is given by the
polynomials Gk(t) defined by

G0(t) = 1, Gk(t) = ψk0
0 (t)ψk1

1 (t) · · ·ψkd(k)

d(k) (t) (k ≥ 1), (1.6)

where k = k0 + k1q + · · ·+ kd(k)q
d(k) is its base q -representation. Correspondingly, the factorial-like elements

generalizing the Fk ’s are defined by

g0 = 1, gk = F k0
0 F k1

1 · · ·F kd(k)

d(k) (k ≥ 1). (1.7)

Carlitz proved that {Gn(t)/gn} is a basis of the Fq[x] -module Int(Fq[x]) . Since the shape of this basis is
different from the one in (1.4), the first part of our second problem is to show that {Gn(t)/gn} satisfies the
Lucas property. This first part naturally leads us to the second part of asking for criterion rendering the validity
of the Lucas property of the sequences generalizing those of Carlitz polynomials.

Our third and final problem is an amalgamation of the previous two. We ask for conditions on general
polynomials forming a basis for Int(V ) which guarantee that they satisfy the Lucas property.

2. The first problem

Adopting the same notation as in Section 1, let {wn} be a sequence in V whose associated polynomials are
Bn(t) as in (1.4). The sequence {wn} is called a g -IVP (generating integer-valued polynomial) sequence if
its associated polynomial sequence {Bn(t)} is a basis for Int(V ) . It is to be noted that the notion of g -IVP
sequence defined here is essentially equivalent to that of m -ordering sequence first introduced and studied by
Bhargava in [1].

To determine those g -IVP sequences whose associated polynomials satisfy the Lucas property, we need
to introduce some new notion. A sequence {an}n≥0 ⊆ V is said to be a very well distributed and well ordered
(VWDWO) if for all ℓ,m ∈ N0 , the sequence elements satisfy

ν(aℓ − am) = νq(ℓ−m).

We recall the following result from [3, Remarks II.2.2].

Lemma 2.1 A sequence {an} ⊆ V is VWDWO if and only if for all s ∈ N0 , any choice of qs consecutive
terms provides a complete set of residues modulo ms in V .

Any g -IVP sequence {wn} which satisfies the VWDWO property is characterized by the next two
theorems.
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Theorem 2.2 If {wn} is a g -IVP sequence with w0 = 0 , then w1, . . . , wq−1 are units, each of which belongs
to a distinct class in V/m .

Moreover, the first q elements of {wn} can be chosen to be all the elements of the set of representatives
U of V/m , i.e. {w0 = 0, w1, . . . , wq−1} = U .

Proof Let {Bn(t)} be the polynomial sequence associated with {wn} . To show that w1 is a unit in V ,
consider B1(t) =

t−w0

w1−w0
= t

w1
. Since B1(t) is integer-valued, we have B1(1) = 1/w1 ∈ V , so w1 is a unit in

V , and we are done in the case q = 2 .
If q > 2, we proceed by induction, assuming that w1, . . . , wk (1 ≤ k < q − 1) , are units belonging to

different residue classes in V/m , so that ν(wi − wj) = 0 (1 ≤ i < j ≤ k) . Consider

Bk+1(t) =
t(t− w1) · · · (t− wk)

wk+1(wk+1 − w1) · · · (wk+1 − wk)
.

Since k + 1 ≤ q − 1 < |V/m| , there exists a unit A ∈ V \ {0} belonging to a class in V/m different from those
of w0, w1, . . . , wk , and so ν(A− wi) = 0 (0 ≤ i ≤ k) . Since

Bk+1(A) =
A(A− w1) · · · (A− wk)

wk+1(wk+1 − w1) · · · (wk+1 − wk)
∈ V

(i.e. ν(Bk+1(A)) ≥ 0) and ν(A(A− w1) · · · (A− wk)) = 0 , we have

ν(wk+1(wk+1 − w1) · · · (wk+1 − wk)) ≤ 0.

As wk+1(wk+1 − w1) · · · (wk+1 − wk) ∈ V \ {0} , this forces

ν(wk+1(wk+1 − w1) · · · (wk+1 − wk)) = 0.

Because wi ∈ V , we deduce that ν(wk+1) = ν(wk+1 − w1) = · · · = ν(wk+1 − wk) = 0, which shows wk+1 is a
unit in V belonging to a class different from w1, . . . , wk in V/m , and the induction is complete. The second
assertion follows immediately from the first. 2

The next technical lemma provides more precise information about a congruence property of the polyno-
mials Bn(t) .

Lemma 2.3 Let {wn} be a g -IVP sequence whose associated polynomial sequence is {Bn(t)} . Let the subset
of the first q elements of {wn} be {w0 = 0, w1, . . . , wq−1} = U , and denote any other element by

wn = a
(n)
0 + a

(n)
1 T + · · ·+ a

(n)
j T j + · · · (a

(n)
j ∈ U, n ≥ q) (2.1)

(this representation is also applicable for n = 0, 1, . . . , q − 1). Let

A = A0 +A1T + · · ·+AjT
j + · · · ∈ V. (2.2)

For a fixed m ∈ N0 , if the condition on the digit values

a
(n)
0 = wn0

, a
(n)
1 = wn1

, . . . , a(n)m = wnm
(2.3)
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holds for all n ∈ N0 whose base q -representation is (1.2), then for each k ∈ {0, 1, . . . , q − 2} , we have

B(k+1)qm+1(A) ≡
k∏

s=0

Am+1 − a
(sqm+1+rs)
m+1

a
((k+1)qm+1)
m+1 − a

(sqm+1)
m+1

(mod m),

where the integers rs ∈ {0, 1, . . . , qm+1 − 1} are uniquely determined and satisfy the relation

wrs ≡ A0 +A1T + · · ·+AmT
m (mod mm+1).

Proof Assume that a(n)0 = wn0 , a
(n)
1 = wn1 , . . . , a

(n)
m = wnm . For 0 ≤ k ≤ q − 2 , replacing A and wi by

the expressions in (2.2), respectively, (2.1), we write

B(k+1)qm+1(A) =

k∏
s=0

Ωs, where Ωs :=

(s+1)qm+1−1∏
i=sqm+1

A− wi

w(k+1)qm+1 − wi
=

Λ1(s)

Λ2(s)
.

The numerator of Ωs is

Λ1(s) =

(s+1)qm+1−1∏
i=sqm+1

((A0 + · · ·+AmT
m)− (a

(i)
0 + · · ·+ a(i)m Tm)) + (Am+1 − a

(i)
m+1)T

m+1 + . . .

=
∏

N∈U [T ]
degN≤m

(A0 + · · ·+AmT
m −N) + Σ0 ·Π0 + (terms with powers of T ≥ 2m+ 2), (2.4)

where

Σ0 :=

(s+1)qm+1−1∑
i=sqm+1

(Am+1 − a
(i)
m+1)T

m+1,

Π0 :=
∏

M∈U [T ]
degM≤m

M ̸=a
(i)
0 +···+a(i)

m Tm

(A0 + · · ·+AmT
m −M)

Since N and M run through all elements in U [T ] (including 0) of degree ≤ m and M ̸= a
(i)
0 + · · ·+ a

(i)
m Tm ,

in the right-hand expression of (2.4) the first term vanishes, while the second term reduces to

(Am+1 − a
(rs)
m+1)T

m+1
∏

M∈U [T ], degM≤m
M ̸=A0+···+AmTm

(A0 + · · ·+AmT
m −M),

for some uniquely determined rs ∈ {sqm+1, . . . , (s+ 1)qm+1 − 1} satisfying

a
(rs)
i = Ai (0 ≤ i ≤ m). (2.5)
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Thus,

Λ1(s) =(Am+1 − a
(rs)
m+1)T

m+1
∏

degM≤m
M ̸=A0+···+AmTm

(A0 + · · ·+AmT
m −M)

+ (terms with powers of T ≥ 2m+ 2). (2.6)

Note that the denominator Λ2(s) of Ωs takes exactly the same form as Λ1 but with the coefficients Ai of A

being replaced by the coefficients a((s+1)qm+1)
i of w(s+1)qm+1 , and so in an expression similar to the right-hand

side of (2.6) for Λ2(s) , the first term of expansion vanishes and the second term reduces to

(a
((s+1)qm+1)
m+1 − a

(r′s)
m+1)T

m+1
∏

M ′∈U [T ], degM ′≤m

M ′ ̸=a
((s+1)qm+1)
0 +···+a((s+1)qm+1)

m Tm

(a
((s+1)qm+1)
0 + · · ·+ a((s+1)qm+1)

m Tm −M ′),

for some uniquely determined r′s ∈ {sqm+1, . . . , (s+ 1)qm+1 − 1} satisfying

a
(r′s)
i = a

((s+1)qm+1)
i (0 ≤ i ≤ m). (2.7)

By the assumption (2.3), we have

a
((s+1)qm+1)
0 = a

((s+1)qm+1)
1 = · · · = a((s+1)qm+1)

m = w0 = 0

and
a
(sqm+1)
0 = a

(sqm+1)
1 = · · · = a(sq

m+1)
m = w0 = 0,

so (2.7) shows that r′s = sqm+1 , and the second term of Λ2 becomes

(a
((s+1)qm+1)
m+1 − a

(sqm+1)
m+1 )Tm+1

∏
degM ′≤m

M ′ ̸=0

(0−M ′).

Thus,

Λ2(s) = (a
((s+1)qm+1)
m+1 − a

(sqm+1)
m+1 )Tm+1

∏
degM ′≤m

M ′ ̸=0

(0−M ′) + (terms with powers of T ≥ 2m+ 2). (2.8)

We claim now that
∏k

s=0 Λ2(s) ̸= 0 , i.e. the denominator of B(k+1)qm+1(A) does not vanish. To verify

this, observe that since k + 1 ≤ q − 1 , choosing Am+1 in such a way that
∏k

s=0

(
Am+1 − a

(rs)
m+1

)
̸= 0 yields

the nonvanishing of the numerator of B(k+1)qm+1(A) , i.e.
∏k

s=0 Λ1(s) ̸= 0 . This together with the fact that

B(k+1)qm+1(A) is integer-valued, i.e. ∈ V , shows that its denominator
∏k

s=0 Λ2(s) does not vanish.
Since both the sets

{A0 +A1T + · · ·+AmT
m −M |M ∈ U [T ],degM ≤ m, M ̸= A0 +A1T + · · ·+AmT

m}
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and
{−M ′ |M ′ ∈ U [T ],degM ′ ≤ m and M ′ ̸= 0}

are identical with the set of all nonzero residue classes modulo mm+1 , we have∏
degM≤m

M ̸=A0+···+AmTm

(A0 + · · ·+AmT
m −M) ≡

∏
degM ′≤m

M ′ ̸=0

(0−M ′) (mod mm+1). (2.9)

By (2.6), (2.8) and (2.9), we get

B(k+1)qm+1(A) =

k∏
s=0

Λ1(s)

Λ2(s)
≡

k∏
s=0

(Am+1 − a
(rs)
m+1)

(a
((s+1)qm+1)
m+1 − a

(sqm+1)
m+1 )

(mod m),

for some sqm+1 ≤ rs ≤ (s+ 1)qm+1 − 1 and by (2.1) and (2.5), we get a(rs)i = Ai (0 ≤ i ≤ m) , i.e.

wrs ≡ A0 +A1T + · · ·+AmT
m (mod mm+1),

as required. 2

The explicit shape of a g -IVP sequence {wn} which is VWDWO and satisfies the Lucas property is
obtained in the following theorem.

Theorem 2.4 Let {wn} := {w0 = 0, w1, w2, . . .} be a g -IVP sequence whose associated w -polynomial sequence
is {Bn(t)}n≥0 . Assume that

1. the sequence {Bn(t)} satisfies the Lucas property modulo m

2. the sequence {wn} is a VWDWO sequence.

Then the sequence {wn} is uniquely determined in the sense that for each n written with respect to the base
q -representation (1.2), we have

wn = wn0
+ wn1

T + · · ·+ wnd(n)
T d(n). (2.10)

(Since the sequence {wn} mentioned above depends on the choice of w1, . . . , wq−1 and on the choice of T , its
asserted uniqueness is implicitly subject to this dependence.)

Proof Since {wn} is a g -IVP sequence with w0 = 0 , by Theorem 2.2, we can take its first q elements to be
those of U , i.e.

{w0 = 0, w1, . . . , wq−1} = U. (2.11)

Using the notation as set out in (2.1) of Lemma 2.3, the set (2.11) shows that

a
(0)
0 (= 0), a

(1)
0 , · · · , a(q−1)

0 ∈ U, (2.12)

a
(0)
i = a

(1)
i = · · · = a

(q−1)
i = 0 (i ≥ 1). (2.13)

We prove the theorem by establishing (2.10) component-wise that a(n)j = wnj
.
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As the first step, we show that

a
(n)
0 = wn0 for all n ∈ N0. (2.14)

This clearly holds for n ∈ {0, 1, . . . , q − 1} because of (2.12). Since {wn} is a VWDWO sequence, by Lemma
2.1, any q consecutive terms in the sequence form a complete set of residues modulo m . Thus, for 0 ≤ i ≤ q−1 ,
we get

wq+i ≡ wi (mod m) (0 ≤ i ≤ q − 1),

and so
a
(q+i)
0 ≡ wi (mod m);

proceeding inductively, we have

wjq+i ≡ w(j−1)q+i ≡ · · · ≡ wq+i ≡ wi (mod m) (j ∈ N). (2.15)

Using the notation (1.2), we deduce from (2.15) for n ≥ 0 that

a
(n)
0 ≡ wn ≡ wn0 (mod m).

Being elements of U shows then that (2.14) is fulfilled.
As our second (general) step, for e ∈ N0 , we show that

a
(n)
e+1 = wne+1 for all n ∈ N0. (2.16)

We prove this using two induction processes. We proceed by induction on e , assuming that

a
(n)
0 = wn0

, a
(n)
1 = wn1

, · · · , a(n)e = wne
; (2.17)

with the case e = 0 being just verified above. Taking any A = A0 + A1T + · · · ∈ V , using Lemma 2.3 with
m = e, k = 0 and (2.13), we have

Bqe+1(A) ≡
Ae+1 − a

(r0)
e+1

a
(qe+1)
e+1 − a

(0)
e+1

=
Ae+1 − a

(r0)
e+1

a
(qe+1)
e+1

(mod m), (2.18)

for some r0 ∈ {0, 1, . . . , qe+1 − 1} satisfying wr0 ≡ A0 + · · ·+AeT
e (mod me+1) .

If a(r0)e+1 ̸= 0 , then a
(r0)
e+1 = wℓ for some ℓ ∈ {1, 2, . . . , q − 1} . Putting Ae+1 = wℓ , we get

Bqe+1(A) ≡ 0 (mod m). (2.19)

On the other hand, since Bqe+1(A) satisfies the Lucas property, we get

Bqe+1(A) ≡ B1(Ae+1) =
Ae+1 − w0

w1 − w0
=
wℓ

w1
̸= 0 (mod m),

contradicting (2.19). Thus, a(r0)e+1 = 0 = w0 ; this being true for any such r0 implies then that

a
(n)
e+1 = 0 = wne+1

(0 ≤ n ≤ qe+1 − 1). (2.20)
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Next, using Lemma 2.3 with k = 1,m = e , we have

B2qe+1(A) ≡ α0 · α1 (mod m),

where

α0 :=
Ae+1 − a

(r0)
e+1

a
(2qe+1)
e+1 − a

(0)
e+1

, α1 :=
Ae+1 − a

(qe+1+r1)
e+1

a
(2qe+1)
e+1 − a

(qe+1)
e+1

(2.21)

for some 0 ≤ ri ≤ qe+1 − 1 (i ∈ {0, 1}) satisfying

wri ≡ A0 + · · ·+AeT
e (mod me+1) (2.22)

Using (2.13) and (2.20), we see that α0 = Ae+1

a
(2qe+1)
e+1

. We turn now to α1 . Since {wn} is a VWDWO sequence,

the set {w0 = 0, w1, . . . , wqe+2−1} constitutes a residue class modulo me+2 . Thus, from (2.20), for larger n in

the next range, i.e. for qe+1 ≤ n ≤ qe+2 − 1 we must have a(n)e+1 ̸= w0 (= 0) ; in particular, a(q
e+1+r1)

e+1 ̸= w0 .

If a(q
e+1+r1)

e+1 ̸= w1 , then a
(qe+1+r1)
e+1 = wℓ for some ℓ ∈ {2, 3, . . . , q − 1} . Putting Ae+1 = wℓ in (2.21), we have

α1 = 0. (2.23)

However, the Lucas property implies that

α0 · α1 ≡ B2qe+1(A) ≡ B2(Ae+1) =
Ae+1(Ae+1 − w1)

w2(w2 − w1)
≡ wℓ(wℓ − w1)

w2(w2 − w1)
̸= 0 (mod m),

contradicting (2.23), and so a
(qe+1+r1)
e+1 = w1 . Since r1 satisfies (2.22) and the elements A0, A1, . . . , Ae can

take any values in U , the “for some” restriction on r1 can be removed, and so

a
(n)
e+1 = w1 = wne+1 (qe+1 ≤ n ≤ 2qe+1 − 1). (2.24)

From the VWDWO property modulo me+2 , because of (2.20) and (2.24), the residues w0 and w1 have already

been exhausted by those a(n)e+1 with n ∈ {0, 1, . . . , 2qe+1 − 1} . Thus, for larger n in the next range, we have

ane+1 ̸∈ {w0, w1} for all n ∈ {2qe+1, 2qe+1 + 1, . . . , qe+2 − 1}. (2.25)

We pause here to remark that the ongoing proof of (2.16) for q = 2 is now complete from (2.20), (2.24)
and the VWDWO property, while for q = 3 , since there are three residue classes, the proof of (2.16) is also
complete from (2.20), (2.24), (2.25) and the VWDWO property. This leaves us to consider henceforth only the
case q > 3 . We now proceed by induction on h = 1, 2, . . . , q − 3 to show that

a
(n)
e+1 = wne+1 for all n ∈ {(h+ 1)qe+1, . . . , (h+ 2)qe+1 − 1}.

The induction hypothesis asserts that for each 0 ≤ s ≤ qe+1 − 1 , we have

a
(s)
e+1 = w0, a

(qe+1+s)
e+1 = w1, . . . , a

(hqe+1+s)
e+1 = wh and a

((h+1)qe+1)
e+1 ̸∈ {w0, . . . , wh};
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this hypothesis holds when h = 1 as already shown in (2.20), (2.24) and (2.25). Applying Lemma 2.3 with
k = h+ 1,m = e , we get

B(h+2)qe+1(A) ≡
h+1∏
s=0

αs (mod m), αs :=
Ae+1 − a

(sqe+1+rs)
e+1

a
((h+2)qe+1)
e+1 − a

(sqe+1)
e+1

for some rs ∈ {0, 1, . . . , qe+1−1} satisfying wrs ≡ A0+· · ·+AeT
e (mod me+1) . Using the induction hypothesis,

we get

αs =
Ae+1 − ws

a
(h+2)qe+1

1 − ws

(0 ≤ s ≤ h).

Turning now to αh+1 , by arguments similar to those leading to (2.24), we deduce that a(rh+1)
e+1 = wh+1 which

in turn implies that

a
(k)
e+1 = wh+1 ((h+ 1)qe+1 ≤ k ≤ (h+ 2)qe+1 − 1).

Invoking upon the VWDWO property, we arrive at a
((h+2)qe+1)
e+1 ̸∈ {w0, . . . , wh+1} , which completes the

induction on h .
So far we have found that

• a
(0)
e+1 = · · · = a

(qe+1−1)
e+1 = w0

• a
(qe+1)
e+1 = · · · = a

(2qe+1−1)
e+1 = w1

• a
((h+1)qe+1)
e+1 = · · · = a

((h+2)qe+1−1)
e+1 = wh+1, a

(h+2)qe+1

e+1 ̸∈ {w0, . . . , wh+1} (2 ≤ h+ 1 ≤ q − 2) .

By the VWDWO property modulo me+2 , we must have

a
((q−1)qe+1+s)
e+1 = wq−1 (0 ≤ s ≤ qe − 1).

Since {wn} is a VWDWO sequence, considering modulo me+2 , we get

wqe+2+i ≡ wi (mod me+2) (0 ≤ i ≤ qe+2 − 1);

proceeding successively through the VWDWO property, we arrive at

wjqe+2+i ≡ w(j−1)qe+2+i ≡ · · · ≡ wqe+2+i ≡ wi (mod me+2),

for each j ∈ N0 and 0 ≤ i ≤ qe+2 − 1 . Thus, for any n = n0 +n1q+ · · ·+nd(n)q
d(n) ≥ qe+2 (for the case where

n ≤ qe+2 − 1 , the required result has already been found), we have, from what we have found,

a
(n)
0 + a

(n)
1 T + · · ·+ a

(n)
e+1T

e+1 ≡ wn ≡ wn0+···+ne+1qe+1

≡ a
(n0+···+ne+1q

e+1)
0 + · · ·+ a(n0+···+ne+1q

e+1)
e + a

(n0+···+ne+1q
e+1)

e+1 T e+1

= wn0 + · · ·+ wneT
e + wne+1T

e+1 (mod me+2).

Equating the coefficients of T e+1 , we conclude that a(n)e+1 = wne+1
, which completes the induction on e and

finishes the proof of the theorem. 2

Applying Theorem 2.4 to the case of function field, we immediately obtain.
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Corollary 2.5 Let Fq(x) be the field of rational functions over Fq (the finite field with q elements) equipped
with the x-adic valuation. Let {w0 = 0, w1, w2, . . .} be a g -IVP sequence in the corresponding discrete valuation
domain of Fq(x) whose associated w -polynomial sequence is {Bn(t)} . Assume that

• the sequence {wn} is a VWDWO sequence;

• the sequence {Bn(t)} satisfies the Lucas property modulo the principal ideal (x)

Then

wn = wn0
+ wn1

x+ · · ·+ wnd(n)
xd(n), (2.26)

where the base q -representation of n ∈ N0 is as in (1.2).

In passing, it is easily checked that the following converse of Corollary 2.5 is valid: if the relation (2.26)
holds and {wn} is a VWDWO sequence, then the sequence {Bn(t)} satisfies the Lucas property modulo (x) .

Applying Theorem 2.4 to the case of rational number field together with an extra condition about the
representative set U , more precise information can be obtained as shown next.

Corollary 2.6 Let p be a prime, let Vp be the valuation domain of Q with respect to the p-adic valuation,
and let {wn} be a g-IVP sequence in Vp whose associated w -polynomial sequence is {Bn(t)} . Assume that

• the sequence {wn} is a VWDWO sequence;

• the sequence Bn(t) satisfies Lucas property modulo the principal ideal (p) .

Then

wn = wn0 + wn1p+ · · ·+ wnd(n)
pd(n), (2.27)

where the base p-representation of n ∈ N0 is as in (1.2).
Moreover, if

w0 = 0, w1 = 1, . . . , wp−1 = p− 1,

then wn = n (n ∈ N0) .

Proof The first part is immediate from Theorem 2.4. To check the last assertion, we assume that wi = i ∈
{0, 1, . . . , p− 1} . With the base p -representation (1.2) of n , we get

wn = wn0
+ wn1

p+ · · ·+ wnd(n)
pd(n) = n0 + n1p+ · · ·+ nd(n)p

d(n) = n.

2

Similar to the remark after the preceding corollary, the following converse of Corollary 2.6 is true: if the
relation (2.27) holds and {wn} is a VWDWO sequence, then the sequence {Bn(t)} satisfies the Lucas property
modulo (p) .
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3. The second problem

As mention in Section 1, Carlitz proved that the sequence {Gn(t)/gn} is a basis for the Fq[x] -module Int(Fq[x]) ;
this sequence is different from the basis {Bn(t)} in Section 2. In this section, we first confirm that {Gn(t)/gn}n≥0

satisfies the Lucas property. Then we derive conditions on the sequence {wn} generating a basis {Gn(t)} of
Carlitz-like polynomials which satisfies the Lucas property.

We proceed now to verify our first objective.

Theorem 3.1 The sequence of Carlitz polynomials {Gn(t)/gn}n≥0 satisfies the Lucas property modulo the
principal ideal (x) .

Proof Recall from Section 1 that the sequence {Gn(t)/gn} , with G0(t)/g0 = 1 , is a basis for the Fq[x] -module
Int(Fq[x]) . When n = 0 , the Lucas property holds because both sides of (1.3) are equal to 1. For n ≥ 1 with
base q -representation as in (1.2), from (1.6) and (1.7), we have

Gn(t)

gn
=
ψn0
0 (t)ψn1

1 (t) · · ·ψnd(n)

d(n) (t)

Fn0
0 Fn1

1 · · ·Fnd(n)

d(n)

.

Let A = A0 +A1x+ · · · ∈ Fq[x] . If degA < d(n) , by (1.5), we get ψd(n)(A) = 0 . Since Ad(n) = 0 , from (1.6),
we have Gnd(n)(Ad(n))/gd(n) = 0 , and so

Gn(A)

gn
= 0 =

Gn0
(A0)

gn0

· · ·
Gnd(n)

(Ad(n))

gnd(n)

.

Assume henceforth that deg(A) ≥ d(n) . If there is an index k ∈ {1, 2, . . . , d(n)} such that Ak = 0 , then

(A− (A0 +A1x+ · · ·+Ak−1x
k−1)) = Ak+1x

k+1 +Ak+2x
k+2 + · · · ≡ 0 (mod (x)),

and so ψk(A) =
∏

degM<k(A−M) ≡ 0 (mod (x)) . Note also that ψ0(Ak)/F0 = 0 . Thus,

Gn(A)

gn
=

d(n)∏
i=0

(
ψi(A)

Fi

)ni

≡ 0 =

d(n)∏
i=0

(
ψ0(Ai)

F0

)ni

=

d(n)∏
i=0

Gni
(Ai)

gni

(mod (x)),

validating the Lucas property in this case. There remains the case where Ak ̸= 0 for all k ∈ {1, 2, . . . , d(n)} .
Since Fk is the product of all monic polynomial in Fq[x] of degree k , we see that

ψk(A) =
∏

degM<k

(A−M) =
∏

degM<k

((Akx
k + · · ·+A1x+A0 −M) +Ak+1x

k+1)

=
∏

degM ′=k
M ′monic

(AkM
′ +Ak+1x

k+1 + terms with higher powers of x)

= Aqk

k Fk +Nkx
deg(Fk)+1 = AkFk +Nkx

deg(Fk)+1,

for some Nk ∈ Fq[x] . From [6, Lemma1], we know that ψk(t)/Fk is an integer-valued polynomial, and so
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ψk(A)/Fk = Ak +N ′
kx for some N ′

k ∈ Fq[x] . Using ψ0(A) = A, F0 = 1 , we have

Gn(t)

gn
=

(
ψ0(A)

F0

)n0 d(n)∏
k=1

(
ψk(A)

Fk

)nk

= An0

d(n)∏
k=1

(Ak +N ′
kx)

nk ≡ An0
0 An1

1 · · ·And(n)

d(n)

=

(
ψ0(A0)

F0

)n0
(
ψ0(A1)

F0

)n1

· · ·
(
ψ0(Ad(n))

F0

)nd(n)

=
Gn0

(A0)

gn0

· Gn1
(A1)

gn1

· · ·
Gnd(n)

(Ad(n))

gnd(n)

(mod (x)),

showing finally that the Carlitz polynomials basis satisfies the Lucas property modulo (x) . 2

To extend Theorem 3.1, we introduce:

Definition 3.2 Let {wn}n≥0 be a given sequence of distinct elements in Fq[x] .

• Define the interpolating w -polynomial sequence {φn(t)}n≥0 by

φ0(t) =
t− w0

w1 − w0
, φk(t) =

(t− w0)(t− w1) · · · (t− wqk−1)

(wqk − w0)(wqk − w1) · · · (wqk − wqk−1)
(k ≥ 1)

and define the w -Carlitz like polynomial (w -CLP) sequence {Gn(t)}n≥0 of Fq(x)[t] by

G0(t) = 1, Gn(t) = φn0
0 (t)φn1

1 (t) · · ·φnd(n)

d(n) (t) (n ≥ 1 as in (1.2)),

• If w0 = 0 and if the w -CLP sequence is a basis for Int(Fq[x]) , then {wn} is called a g-CLP (generating
Carlitz like polynomial) sequence.

Observe from Definition 3.2 that

1. the sequence of Carlitz polynomials {Gn(t)/gn} is a special case of Gn(t) with {w0 = 0, w1 = 1, . . . , wq−1} =

Fq and wn = wn0 + wn1x+ wnd(n)
xd(n) ;

2. though the polynomials Gn(t) and Bn(t) (in Section 2) are of the same degree n , they are not the same
because all factors of Bn(t) are distinct, while Gn(t) contains repeated factors.

Keeping the notation set out in Section 1, we first prove an auxiliary result.

Lemma 3.3 Let

A = A0 +A1T + · · ·+AjT
j + · · · ∈ U [[T ]]

B = B0 +B1T + · · ·+BjT
j + · · · ∈ U [[T ]]

be two nonzero elements in V . If B is a divisor of A in V , then ν(A) ≥ ν(B) and

A

B
≡
Aν(B)

Bν(B)
(mod m). (3.1)
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Proof Let r = ν(A) and s = ν(B) . If r < s , then

A

B
=
ArT

r +Ar+1T
r+1 + · · ·

BsT s +Bs+1T s+1 + · · ·
=

Ar +Ar+1T + · · ·
T s−r(Bs +Bs+1T · · · )

̸∈ V,

which is a contradiction. Thus, r ≥ s , and we see that

A

B
=
ArT

r−s +Ar+1T
r−s+1 + · · ·

Bs +Bs+1T + · · ·
=
Ar

Bs
T r−s +N ′T r−s+1

for some N ′ ∈ V . If r = s , (3.1) is immediate, while if r > s , both sides of (3.1) are ≡ 0 (mod m) . 2

Our extension of Theorem 3.1 reads:

Theorem 3.4 Given a g -CLP sequence {wn} , let {Gn(t)} be its associated w -CLP sequence. If {Gn(t)}
satisfies the Lucas property modulo (x) , then for each k ∈ N , we have

1. {w0 = 0, . . . , wqk−1} is the set of all polynomials in Fq[x] of degree < k ; in particular {w0 =

0, w1, . . . , wq−1} = Fq ;

2. the sequence element wqk is a polynomial in Fq[x] of degree k with leading coefficient w1 .

Proof To prove the first assertion, we begin with the claim that the set {w0 = 0, w1, · · · , wqk−1} constitutes
a complete residue system modulo (x)k in the ring Fq[x] , or equivalently,

(wi) mod xk := a
(i)
0 + a

(i)
1 x+ · · ·+ a

(i)
k−1x

k−1 (0 ≤ i ≤ qk − 1).

To verify this claim, consider G1(t) = φ0(t) = t/w1 . Since G1(t) ∈ Int(Fq[x]), we get G1(1) = 1/w1 ∈ Fq[x]

showing that w1 is a unit in Fq[x] , i.e. w1 ∈ F∗
q which affirms the first assertion when k = 0 . Next, for

the case k = 1 , since Gq(t) = φ1(t) =
t(t−w1)···(t−wq−1)

wq(wq−w1)···(wq−wq−1)
, by the Lucas property modulo (x) , for each

A = A0 +A1x+ · · · ∈ Fq[x] , we get

A1

B1
=:

A(A− w1) · · · (A− wq−1)

wq(wq − w1) · · · (wq − wq−1)
= Gq(A) ≡ G1(A1) = φ0(A1) =

A1

w1
(mod (x)). (3.2)

The numerator and the denominator are

A1 =

q−1∏
i=0

(
(A0 − a

(i)
0 ) + (A1 − a

(i)
1 )x+ (A2 − a

(i)
2 )x2 + · · ·

)

=

q−1∏
i=0

(A0 − a
(i)
0 ) +

q−1∑
j=0

(A1 − a
(j)
1 )x

q−1∏
i=0
i ̸=j

(A0 − a
(i)
0 ) + (terms with x of powers ≥ 2)

B1 =

q−1∏
i=0

(a
(q)
0 − a

(i)
0 ) +

q−1∑
j=0

(a
(q)
1 − a

(j)
1 )x

q−1∏
i=0
i̸=j

(a
(q)
0 − a

(i)
0 ) + (terms with x of powers ≥ 2).
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If
∏q−1

i=0 (A0 − a
(i)
0 ) ̸= 0 , then

A1

w1
=

q−1∏
i−0

(A0 − a
(i)
0 )

(a
(q)
0 − a

(i)
0 )

;

this relation holds for any A1 ∈ Fq on the left, while the right-hand side is independent of A1 , which is

untenable. Thus,
∏q−1

i=0 (A0−a(i)0 ) = 0 , implying that A0 ∈ Fq . This being true for any A0 ∈ Fq , we must have

{a(0)0 , a
(1)
0 , . . . , a

(q−1)
0 } = Fq , affirming the first assertion when k = 1 .

Proceeding to general k , consider the set {w0 = 0, w1, . . . , wqk−1} of qk − 1 elements. Since

Gqk(t) = φk(t) =
t(t− w1) · · · (t− wqk−1)

wqk(wqk − w1) · · · (wqk − wqk−1)
.

satisfies the Lucas property modulo (x) , we get

Ak

Bk
=:

A(A− w1) · · · (A− wqk−1)

wqk(wqk − w1) · · · (wqk − wqk−1)
= Gqk(A) ≡ G1(Ak) =

Ak

w1
(mod (x)). (3.3)

The numerator and the denominator are

Ak =

qk−1∏
i=0

{(
(A0 +A1x+ · · ·+Ak−1x

k−1)− (a
(i)
0 + a

(i)
1 x+ · · ·+ a

(i)
k−1x

k−1)
)

+(Ak − a
(i)
k )xk + (Ak+1 − a

(i)
k+1)x

k+1 + terms with higher powers of x
}

=

qk−1∏
i=0

(
(A0 +A1x+ · · ·+Ak−1x

k−1)− (a
(i)
0 + a

(i)
1 x+ · · ·+ a

(i)
k−1x

k−1)
)

+

qk−1∑
j=0

(Ak − a
(j)
k )xk

qk−1∏
i=0
i ̸=j

(
(A0 + · · ·+Ak−1x

k−1)− (a
(i)
0 + · · ·+ a

(i)
k−1x

k−1)
)

+ (terms with higher powers of x)

Bk =

qk−1∏
i=0

(
(a

(qk)
0 + a

(qk)
1 x+ · · ·+ a

(qk)
k−1x

k−1)− (a
(i)
0 + a

(i)
1 x+ · · ·+ a

(i)
k−1x

k−1)
)

+

qk−1∑
j=0

(a
(qk)
k − a

(j)
k )xk

qk−1∏
i=0
i ̸=j

(
(a

(qk)
0 + · · ·+ a

(qk)
k−1x

k−1)− (a
(i)
0 + · · ·+ a

(i)
k−1x

k−1)
)

+ (terms with higher powers of x).

Let

N =

qk−1∏
i=0

(
(A0 +A1x+ · · ·+Ak−1x

k−1)− (a
(i)
0 + a

(i)
1 x+ · · ·+ a

(i)
k−1x

k−1)
)

(3.4)

D =

qk−1∏
i=0

(
(a

(qk)
0 + a

(qk)
1 x+ · · ·+ a

(qk)
k−1x

k−1)− (a
(i)
0 + a

(i)
1 x+ · · ·+ a

(i)
k−1x

k−1)
)
.

1473



MEESA et al./Turk J Math

If N ̸= 0 , then there is a least positive integer r such that r = νq(N ) . Lemma 3.3 now ensures that D ̸= 0

and together with (3.3), we deduce that Ak/w1 = α1/α2 , where α1 and α2 are the coefficients of xr in N
and D , respectively. But α1/α2 is independent of Ak , which is untenable, implying that N = 0 . Appealing
to (3.4), using the fact that A0, A1, . . . , Ak−1 are arbitrary elements in Fq , and their total number is equal to
qk , the number of elements in the set {(w0) mod xk , (w1) mod xk , . . . , (wqk−1) mod xk} , we conclude that this last
set is identical with the set of all polynomials in Fq[x] of degree < k . This completes the proof of our claim.

Next, we claim that the mod xk can be removed, i.e. the set {w0, w1, . . . , wqk−1} is indeed the set of all
polynomials of degree < k . Assume to the contrary that there exists n ≤ qk−1 such that degwn ≥ k . Writing

wn = a
(n)
0 + a

(n)
1 x+ · · ·+ a(n)s xs, s ≥ k, a(n)s ̸= 0,

and substituting for t by wn in Gqs(t) , we get

0 = Gqs(wn) ≡ G1(a
(n)
s ) = φ0(a

(n)
s ) =

a
(n)
s

w1
(mod (x)),

contradicting what found earlier that a(n)s /w1 ∈ F∗
q . Thus, the second claim is verified which in turn affirms

the first assertion.
To establish the second assertion, note from the first assertion that {w0, w1, . . . , wqk−1} is the set of

all polynomials of degree < k and we have {w0, w1, . . . , wqk+1−1} is the set of all polynomials of degree

< k + 1 , and so each element of the set{wqk , wqk+1, . . . , wqk+1−1} is of degree k , showing that a
(qk)
k ̸= 0 .

For A = A0 +A1x+ · · · ∈ Fq[x] with Ak ̸= 0 , we get

Gqk(A) = φk(A) =

qk−1∏
i=0

A− wi

wqk − wi
=

∏
degM<k

A−M

wqk −M

=
∏

degM<k

(
A0 + · · ·+Ak−1x

k−1 +Akx
k −M

)
+Ak+1x

k+1 + · · ·(
a
(qk)
0 + · · ·+ a

(qk)
k−1x

k−1 + a
(qk)
k xk −M

)
+ a

(qk)
k+1x

k+1 + · · ·

=
Aqk

k Fk +N1x
1+degFk

(a
(qk)
k )qkFk +N2x1+degFk

Ak

a
(qk)
k

(mod (x)),

where N1, N2 ∈ Fq[x] . On the other hand, the Lucas property modulo (x) yields

Gqk(A) ≡ G1(Ak) = φ0(Ak) =
Ak

w1
(mod (x)).

Thus, a(q
k)

k = w1 for all k ∈ N and the second assertion is established. 2

Specializing the value of w1 , Theorem 3.4 yields at once:

Corollary 3.5 If {wn} is a g -CLP sequence with w1 = 1 , then its associated w -polynomial sequence {φn(t)}
satisfies

φn(t) =
ψn(t)

Fn
(n ∈ N0),

and its associated w -CLP sequence {Gn(t)} is identical with the set of Carlitz polynomials {Gn(t)/gn} .
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4. The third problem

Keeping the notation set out in Section 1, as witnessed in [2, Remark 2.7, p. 309], there are bases of Int(V )

that do not satisfy the Lucas property. One such basis is that of Fermat polynomials Fn(t) , [2], defined, with
m = (T ) , by

F0(t) = 1, F1(t) = t, Fq(t) =
t− tq

T
, Fqh+1(t) = Fq(Fqh),

Fn(t) =

d(n)∏
j=0

(Fqj )
nj for n ∈ N as in (1.2).

Note that Fermat polynomials are neither of the same form as the Lagrange-type interpolation polynomials
Bn(t) in Section 2, nor of the same form as the Carlitz-type polynomials in Section 3. This leads us to ask for
necessary condition(s) on general polynomials which form a basis for Int(V ) and satisfy the Lucas property.

For each i ∈ N0 , let {P (n)
i }n≥0 be a sequence in V with P

(n)
n ̸= 0 , and let

{
Q0 = 1, Qn := Q

(n)
0 +Q

(n)
1 T + · · · ∈ U [[T ]] (n ∈ N)

}
be a sequence in V ∗ := V \ {0} . Define {Hn(t)}n≥0 ⊆ K[t] , a general sequence of polynomials associated with

the sequences {P (n)
i }, {Qn} , by

H0(t) = 1, Hn(t) =
P

(n)
0 + P

(n)
1 t+ · · ·+ P

(n)
n tn

Qn
(n ∈ N).

Observe that degHn(t) = n . We shall find it convenient to use the notation

(
P

(n)
0 + P

(n)
1 A+ · · ·+ P (n)

n An
)

mod mr

to represent the residue of the expression P
(n)
0 + P

(n)
1 A+ · · ·+ P

(n)
n An modulo the principal ideal mr .

Our next theorem gives necessary conditions for Int(V ) .

Theorem 4.1 Keeping the notation in Section 1 and as set out above, if {Hn(t)} is a basis of the V -module
Int(V ) , then for each A = A0 +A1T + · · ·+AjT

j + · · · ∈ V , the following statements hold:

1. if Q(n)
0 ̸= 0 , then Hn(A) ≡ P

(n)
0 +P

(n)
1 A0+···+P (n)

n An
0

Q
(n)
0

(mod m) ;

2. for r ≥ 1 , if Q(n)
0 = Q

(n)
1 = · · · = Q

(n)
r−1 = 0, Q

(n)
r ̸= 0 , then

(
P

(n)
0 + P

(n)
1 A+ · · ·+ P (n)

n An
)

mod mr
= 0.

Proof Since Hn(t) ∈ Int(V ) , we have Hn(A) =
P

(n)
0 +P

(n)
1 A+···+P (n)

n An

Qn
∈ V .
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1. If Q(n)
0 ̸= 0 , by Lemma 3.3, we have

Hn(A) =
P

(n)
0 + P

(n)
1 (A0 +A1T + · · · ) + · · ·+ P

(n)
n (A0 +A1T + · · · )n

Q
(n)
0 +Q

(n)
1 T + · · ·

≡P
(n)
0 + P

(n)
1 A0 + · · ·+ P

(n)
n An

0

Q
(n)
0

(mod m).

2. If Q(n)
0 = Q

(n)
1 = · · · = Q

(n)
r−1 = 0, Q

(n)
r ̸= 0 , then

Hn(A) =
P

(n)
0 + P

(n)
1 A+ · · ·+ P

(n)
n An

Q
(n)
r T r +Q

(n)
r+1T

r+1 + · · ·
.

Since the numerator is a multiple of T r , the assertion follows from the fact that Hn(A) ∈ V . 2

Using Theorem 4.1, we now derive a necessary condition for a basis of Int(V ) to satisfy the Lucas
property.

Corollary 4.2 Keeping the notation of Theorem 4.1, assume that {Hn(t)}n≥0 is a basis of the V -module
Int(V ) . If {Hn(t)} satisfies the Lucas property modulo m , then for each n ≥ q with its base q representation
as in (1.2) and A = A0 +A1q + · · ·+Ajq

j + · · · ∈ V , we have(
P

(n)
0 + P

(n)
1 A+ · · ·+ P

(n)
n An

)
mod ms+1

Q
(n)
s T s

≡
d(n)∏
i=0

P
(ni)
0 + P

(ni)
1 Ai + · · ·+ P

(ni)
ni Ani

i

Qni

(mod m), (4.1)

where s = ν(Qn) .

Proof If s = 0 , by Theorem 4.1 part 1 and Lemma 3.3, we get

Hn(A) ≡
P

(n)
0 + P

(n)
1 A0 + · · ·+ P

(n)
n An

0

Q
(n)
0

≡

(
P

(n)
0 + P

(n)
1 A+ · · ·+ P

(n)
n An

)
mod m

Q
(n)
0

(mod m).

If s ≥ 1 , by Theorem 4.1 part 2, we can write

P
(n)
0 + P

(n)
1 A+ · · ·+ P (n)

n An = RsT
s +Rs+1T

s+1 + · · · ∈ U [[T ]],

and invoking upon Lemma 3.3, we get

Hn(A) =
RsT

s +Rs+1T
s+1 + · · ·

Q
(n)
s T s +Q

(n)
s+1T

s+1 + · · ·
≡ Rs

Q
(n)
s

=

(
P

(n)
0 + P

(n)
1 A+ · · ·+ P

(n)
n An

)
mod ms+1

Q
(n)
s T s

(mod m). (4.2)

Since {Hn(t)} satisfies the Lucas property modulo m , we have

Hn(A) ≡ Hn0
(A0)Hn1

(A1) · · ·Hnd(n)
(Ad(n)) =

d(n)∏
i=0

P
(ni)
0 + P

(ni)
1 Ai + · · ·+ P

(ni)
ni Ani

i

Qni

(mod m). (4.3)
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The desired result follows at once from (4.2) and (4.3). 2

As an application of Corollary 4.2, we give another proof that the sequence of Fermat polynomials Fn(t)

does not satisfy the Lucas property. Taking in this case, K = F2(x) equipped with the x -adic valuation so that
the discrete valuation domain is

V =

{
f(x)

g(x)
∈ F2(x) ; x ∤ g(x)

}
.

Consider the Fermat polynomials

F0(t) = 1, F1(t) = t, F2(t) =
t− t2

x
, F4(t) = F2(F2(t)) =

0 + xt− (1 + x)t2 − 0 · t3 − t4

x3
.

Let

n = 4 = 0 + 0 · 2 + 1 · 22,

P
(4)
0 + P

(4)
1 t+ P

(4)
2 t2 + P

(4)
3 t3 + P

(4)
4 t4

Q4
= H4(t) = F4(t) =

0 + xt− (1 + x)t2 + 0 · t3 − t4

x3
,

P
(0)
0

Q0
= H0(t) = F0(t) =

1

1
,

P
(1)
0 + P

(1)
1 t

Q1
= H1(t) = F1(t) =

t

1
,

P
(2)
0 + P

(2)
1 t+ P

(2)
2 t2

Q2
= H2(t) = F2(t) =

t− t2

x
,

so that

d(4) = 2, n0 = n1 = 0, n2 = 1,

Q0 = Q1 = 1, Q2 = x,Q4 = x3 = 0 + 0 · x+ 0 · x2 + 1 · x3, s = ν(Q4) = 3, Q
(4)
3 = 1.

Taking A = x = 0 + 1 · x, A1 = 1, Ai = 0 (i ̸= 1) , the left-hand expression of (4.1) is

(
0 + x · x− (1 + x)x2 + 0 · x3 − x4

)
mod (x)4

1 · x3
= 1,

while the right-hand expression of (4.1) is

2∏
i=0

P
(ni)
0 + P

(ni)
1 Ai + · · ·+ P

(ni)
ni Ani

i

Qni

=
P

(0)
0

Q0
· P

(0)
0

Q0
· P

(1)
0 + P

(1)
1 A2

Q1
= 0.

These two values contradict the result of Corollary 4.2 implying that the sequence of Fermat polynomials does
not satisfy the Lucas property.
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