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Abstract: In this paper, we investigate the matrix-valued q−Sturm–Liouville problems. We establish an existence and
uniqueness result. Later, we introduce the corresponding maximal and minimal operators for this system. Moreover, we
give a criterion under which these operators are self-adjoint. Finally, we characterize extensions (maximal dissipative,
maximal accumulative, and self-adjoint) of the minimal symmetric operator.
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1. Introduction
This paper deals with the extension theory of symmetric operators. This topic is one of the main research
areas of operator theory. This theory was developed originally by J. Von Neumann [44]. In [22], Calkin gave
the description of self-adjoint extensions of a symmetric operator in terms of abstract boundary conditions.
Extensions of a symmetric operator with aid of linear relations were given by Rofe-Beketov [39]. Later, in
[21, 32], the notion of a space of boundary values was introduced. The readers may find some papers that
are related to extension theory in [28, 38, 47]. In [34], the authors obtained a description of extensions of a
second-order symmetric operator. In [27], the author obtained a description of self-adjoint extensions of Sturm–
Liouville operators with an operator potential. In the case when the deficiency indices take indeterminate
values, a description of extensions of differential operators was given in [6, 35–37].

On the other hand, the study of matrix-valued Sturm–Liouville equations has become an important area
of research because such equations arise in a variety of physical problems (for example, see [15–17, 20, 23]).
Although the matrix Sturm–Liouville equations is more difficult than the scalar Sturm–Liouville equations the
matrix-valued Sturm–Liouville equations have intensively been investigated during the last two decades (see
[9, 13, 18, 19, 24, 45, 46] and references therein).

Recently, q−difference equations have attracted tremendous interest since they have a lot of applications
in sciences, e.g., quantum theory, orthogonal polynomials, hypergeometric functions (see [25] for more details).
Specially, q−Sturm–Liouville problems were studied in [1–5, 8, 10–12, 14, 26, 31, 41–43]. The goal of our paper
is to study the matrix-valued q−Sturm–Liouville operators. In the analysis that follows, we will largely follow
a development of the theory in [6, 29, 33, 40, 47].
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This paper is organized as follows. In Section 2, fundamental concepts of quantum analysis are given. In
Section 3, an existence and uniqueness theorem is proved for the matrix-valued q−Sturm–Liouville equation.
Later, the corresponding maximal and minimal operators for this equation are constructed. In Section 4, a
criterion under which the matrix-valued q−Sturm–Liouville operators are self-adjoint is given. In Section 5,
maximal dissipative, maximal accumulative, and self-adjoint extensions of the minimal operators are studied.

2. Preliminaries
In this section, we recall some basic concepts and useful results of quantum calculus. We refer to [7, 25, 30] and
some references cited therein. Let q be a positive number with 0 < q < 1. A set A ⊂ R is called q−geometric
if for every x ∈ A, qx ∈ A. Let y be a complex-valued function on A. Then, the q−difference operator Dq is
defined by

Dqy (x) = [y (qx)− y (x)] (qx− x)
−1 for all x ∈ A.

The q−derivative at zero is defined by

Dqy (0) = lim
n→∞

[y (xqn)− y (0)]x−1q−n (x ∈ A),

if the limit exists and does not depend on x (see [7]).
The Jackson q− integration is given by

∫ x

0

f (t) dqt = (1− q)x

∞∑
n=0

f (qnx) qn (x ∈ A),

provided that the series converges, and

∫ b

a

f (t) dqt =

∫ b

0

f (t) dqt−
∫ a

0

f (t) dqt (a, b ∈ A).

A function f which is defined on A, 0 ∈ A, is said to be q−regular at zero if

lim
n→∞

f (xqn) = f (0) ,

for every x ∈ A. Through the remainder of the paper, we deal only with q−regular functions at zero.

3. The matrix-valued q−Sturm–Liouville equation

Let us consider the following matrix-valued q−Sturm–Liouville equation

Υ(y) := −1

q
Dq−1 [P (x)Dqy(x)] +Q (x) y(x) = λV (x) y (x) , x ∈ (0, a) , (3.1)

where P (x), V (x) , and Q (x) are n × n complex Hermitian matrix-valued functions, defined on [0, q−1a],

continuous at zero, q− integrable over [0, a], detP (x) ̸= 0, P−1(x) is q− integrable over [0, a] , V (x) is positive,
and λ is a complex parameter.
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Now, we can transform equation (3.1) into the Hamiltonian system. Let

Y(x) =

(
y (x)

P (x)Dqy (x)

)
, Y [q](x) =

(
Dqy (x)

1
qDq−1 (P (x)Dqy (x))

)
,

W1 (x) =

(
V (x) On

On On

)
, J =

(
On −In
In On

)
,

W2 (x) =

(
−Q (x) On

On P−1 (x)

)
,

where In is a unit matrix and On is a zero matrix. Then, the equation (3.1) becomes

τ (Y) := JY [q](x)−W2 (x)Y (x) = λW1 (x)Y (x) , x ∈ (0, a) . (3.2)

Let L2
q,W1

[(0, a);E] =
{
Y :

∫ a

0
(W1Y,Y)E dqx =

∫ a

0
Y∗W1Ydqx <∞

}
with the inner product

(X ,Y) :=

∫ a

0

(W1X ,Y)E dqx =

∫ a

0

Y∗W1Ydqx,

where E = C2n is the 2n -dimensional Euclidean space . For any function Y ∈ L2
q,W1

[(0, a);E] , Y (0) can be
defined as

Y(0) := lim
n→∞

Y(qn). (3.3)

Since Y is q−regular at zero, the limit in (3.3) exists and is finite.
Let C2

q [(0, a);E] = {Y : Y and DqY are q − regular at zero} . It is clear that C2
q [(0, a);E] ⊂ L2

q,W1
[(0, a);E] .

Theorem 3.1 For K ∈ C2n, the equation (3.2) with initial condition

Y(0, λ) = K (λ ∈ C) (3.4)

has a unique solution in C2
q [(0, a);E] .

Proof An integration yields

Y(x, λ) = K − q

∫ x

0

J [λW1 (qt, λ) +W2 (qt, λ)]Y (qt, λ) dqt, (3.5)

where x ∈ (0, a). Conversely, every solution of equation (3.5) is also a solution of the equation (3.2).
Let us define the sequence {Yn}n∈N of successive approximations by

Y0(x, λ) = K,

Yn+1(x, λ) =

K − q

∫ x

0

J [λW1 (qt, λ) +W2 (qt, λ)]Yn (qt, λ) dqt, (3.6)
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where n = 0, 1, 2, ..., and x ∈ (0, a). Then, we shall prove that the sequence {Yn}n∈N converges to a function
y uniformly on each compact subset of (0, a). There exist positive numbers ϑ (λ) and ς (λ) such that

∥J [λW1 (x, λ) +W2 (x, λ)]∥ ≤ ϑ (λ) ,

∥Y1 (x, λ)∥ ≤ ς (λ) , x ∈ (0, a).

Using mathematical induction, we get

∥Yn+1(x, λ)− Yn(x, λ)∥ ≤ ϑ (λ) q
n(n+1)

2
(ς (λ)x (1− q))

n

(q; q)n
(n ∈ N) .

An application of the Weierstrass M -test implies that the sequence {Yn}n∈N converges to a function y uniformly
on each compact subset of (0, a). One can prove that Y and DqY are continuous on [0, a]. It is clear that the
function Y satisfies the condition (3.4).

Now, we show that the equation (3.2) has a unique solution, assume Z is another one. Then Z is
continuous. Therefore, there exists a positive number M such that ∥Y − Z∥ ≤ M. Proceeding as above we
conclude that

∥Y(x, λ)−Z(x, λ)∥ ≤ Mϑ (λ) q
n(n+1)

2
(x (1− q))

n

(q; q)n
(n ∈ N)

Since

lim
n→∞

Mϑ (λ) q
n(n+1)

2
(x (1− q))

n

(q; q)n
= 0,

we arrive at Y = Z on [0, a]. 2

Now, we will give the definition of maximal and minimal operators for the matrix-valued q−Sturm–
Liouville equations.

Denote
Dmax :={

Y ∈L2
q,W1

[(0, a);E] : JY [q](x)−W2 (x)Y (x) =W1F exists in (0, a)

and F ∈ L2
q,W1

[(0, a);E]

}
,

Dmin :=


Y ∈L2

q,W1
[(0, a);E] : Y and PDqY are q − regular at zero,

JY [q](x)−W2 (x)Y (x) =W1F exists in (0, a),
F ∈ L2

q,W1
[(0, a);E] ,

and Ŷ(0) = Ŷ(a) = 0.

 , (3.7)

where Ŷ (x) =

(
y (x)

P (x)Dq−1y (x)

)
.

The operator Tmin defined by

Tmin : Dmin → L2
q,W1

[(0, a);E] ,

Y→TminY =τ (Y) .
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is called the minimal operator generated by the matrix-valued q−Sturm–Liouville equation . Similarly, the
operator Tmax defined by

Tmax : Dmax → L2
q,W1

[(0, a);E] ,

Y→TmaxY =τ (Y) .

is called the maximal operator for the matrix-valued q−Sturm–Liouville equation.
Now, we establish the following Green’s formula.

Theorem 3.2 Let Y,Z ∈ Dmax.Then we have∫ a

0

Z∗ (x) JY [q](x)dqx−
∫ a

0

{
JZ [q](x)

}∗
Y (x) dqx

= Ẑ∗(a)JŶ(a)− Ẑ∗(0)JŶ(0),

where x ∈ (0, a) .

Proof ∫ a

0

Z∗ (x) JY [q](x)dqx−
∫ a

0

{
JZ [q](x)

}∗
Y (x) dqx

=

∫ a

0

(
z (x)

P (x)Dqz (x)

)∗(
On −In
In On

)(
Dqy (x)

1
qDq−1 (P (x)Dqy (x))

)
dqx

−
∫ a

0

{(
Dqz (x)

1
qDq−1 (P (x)Dqz (x))

)}∗(
On −In
In On

)(
y (x)

P (x)Dqy (x)

)
dqx

=

∫ a

0

[
z∗ (x)

{
1

q
Dq−1 (P (x)Dqy (x))

}
+ (P (x)Dqz (x))

∗
Dqy (x)

]
dqx

−
∫ a

0

[{
−1

q
Dq−1 (P (x)Dqz (x))

}∗

y (x) + (Dqz (x))
∗
P (x)Dqy (x)

]
dqx

=

∫ a

0

Dq

{[
(PDqz)

(
q−1x

)]∗
y (x)− z∗(x) (PDqy)

(
q−1x

)}
dqx

= Ẑ∗(a)JŶ(a)− Ẑ∗(0)JŶ(0).

2
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Theorem 3.3 (Green’s formula)

(TmaxY,Z)− (Y, TmaxZ) = [Y,Z]a − [Y,Z]0, (3.8)

where [Y,Z]x := Ẑ∗(a)JŶ(x), x ∈ [0, a].

Lemma 3.4 The operator Tmin is Hermitian.

Proof For Y,Z ∈ Dmin, there exist F,G ∈ L2
q,W1

[(0, a);E] such that τ (Y) =W1F and τ (Z) =W1G. From
(3.7) and (3.8), we conclude that

(TminY,Z)− (Y, TminZ) = (F,Z)− (Y, G)

=

∫ a

0

[Z∗ (t)W1F −G∗ (t)W1Y (t)] dqt

=

∫ a

0

[Z∗ (t) τ (Y)− τ∗ (Z)Y (t)] dqt

= [Y,Z]a − [Y,Z]0 = 0.

2

The following lemma has a similar proof to that of Lemma 3.4.

Lemma 3.5 For all Y ∈ Dmin and for all Z ∈ Dmax, we have

(TminY,Z) = (Y, TmaxZ) .

Lemma 3.6 Let the null space and the range of an operator T be denoted by N (T ) and R (T ) , respectively.
Then we have

R (Tmin) = N (Tmax)
⊥
,

where the superscript ⊥ denotes the orthogonal complement of a subspace.

Proof Given any ξ ∈ R (Tmin) , there exists Y ∈ Dmin such that TminY = ξ. It follows from Lemma 3.5 that

(ξ,Z) = (TminY,Z) = (Y, TmaxZ) = 0,

for each Z ∈ N (Tmax) .

Now we prove that N (Tmax)
⊥ ⊂ R (Tmin) . For any given ξ ∈ N (Tmax)

⊥ and for all Z ∈ N (Tmax) , we
have (ξ,Z) = 0. Let us consider the following problem:

JY [q](x)−W2 (x)Y (x) =W1 (x) ξ (x) , x ∈ (0, a)
Y(0, λ) = P (0)Dq−1Y(0, λ) = 0.

(3.9)
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It follows from Theorem 3.1 that the problem (3.9) has a unique solution on (0, a) . Let Ψ(x) = (ψ1, ψ2, ..., ψn)

be the fundamental solution of the system

JY [q](x)−W2 (x)Y (x) = 0,Ψ(a) = J, x ∈ (0, a) .

It is clear that ψi ∈ N (Tmax) for 1 ≤ i ≤ n. By Theorem 3.3, for 1 ≤ i ≤ n, we get

0 = (ξ, ψi) =

∫ a

0

ψ∗
i (t)W1 (x) ξ (t) dqt =

∫ a

0

ψ∗
i (t) τ (Y) (t) dqt

=

∫ a

0

ψ∗
i (t) τ (Y) (t) dqt−

∫ a

0

τ (ψi)
∗
(t)Y (t) dqt

= [Y, ψi]a − [Y, ψi]0 = [Y, ψi]a.

Thus, we have [Y, ψi]a = Ψ̂∗(a)JŶ(a) = Ŷ(a) = 0, i.e., ξ ∈ R (Tmin) . 2

Theorem 3.7 The operator Tmin is a symmetric operator and the operator Tmax is a densely defined operator.
Furthermore, T ∗

min = Tmax, where T ∗
min denotes the adjoint operator of Tmin.

Proof Firstly, we prove that D⊥
min = {0} . Assume that ξ ∈ D⊥

min. Then, for all Z ∈ Dmin, we have (ξ,Z) = 0.

Set TminZ (x) = φ (x) . Let y (.) be any solution of the system

JY [q](x)−W2 (x)Y (x) =W1 (x) ξ (x) , x ∈ (0, a) .

It follows from Theorem 3.3 that

(Y, φ)− (ξ,Z) =

∫ a

0

φ∗ (t)W1 (t)Y (t) dqt−
∫ a

0

Z∗ (t)W1 (t) ξ (t) dqt

=

∫ a

0

τ (Z)
∗
(t)Y (t) dqt−

∫ a

0

Z∗ (t) τ (Y) (t) dqt

= −[Y,Z]a + [Y,Z]0 = 0,

i.e. (Y, φ) = (ξ,Z) = 0. From Lemma 3.6, we see that Y ∈ R (Tmin) = N (Tmax)
⊥
. Thus, ξ = 0.

We will denote by D∗
min the domain of the operator T ∗

min. Now, we prove that D∗
min = Dmax, and

T ∗
minY = TmaxY for all Y ∈ D∗

min. It follows from Lemma 3.5 that, for any given Y ∈ Dmax,

(Y, TminZ) = (TmaxY,Z) for all Z ∈ Dmin.

Consequently, the functional (Y, Tmin (.)) is continuous on Dmin and Y ∈ D∗
min, i.e. Dmax ⊂ D∗

min.

We prove the reverse conclusion, i.e. D∗
min ⊂ Dmax . If Y ∈ D∗

min, then Y, φ ∈ L2
q,W1

[(0, a);E] , where
φ := T ∗

minY. Assume that U is a solution of the equation

JU [q](x)−W2 (x)U (x) =W1 (x)φ (x) . (3.10)
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By Lemma 3.5, we see that
(φ,Z) = (TmaxU ,Z) = (U , TminZ) .

Thus, we get

(Y − U , TminZ) = (Y, TminZ)− (U , TminZ)

= (T ∗
minY,Z)− (φ,Z) = 0,

i.e. Y − U ∈ R (Tmin)
⊥
. It follows from Lemma 3.6 that Y − U ∈ N (Tmax) .

Using (3.10), we get

JY [q](x)−W2 (x)Y (x)

= JU [q](x)−W2 (x)U (x) =W1 (x)φ (x) , x ∈ (0, a) .

Since Y, φ ∈ L2
q,W1

[(0, a);E] , we have that Y ∈ Dmax and

TmaxY = φ = T ∗
minY.

This completes the proof. 2

4. A criterion of the self-adjoint matrix-valued q−Sturm–Liouville operators
In this section, we give a criterion under which the matrix-valued q−Sturm–Liouville operators are self-adjoint.

Let Σ and Λ be m× 2n matrices such that rank (Σ : Λ) = m. Then, we define the operator T by

T : D → L2
q,W1

[(0, a);E] , (4.1)

where

D :=


Y ∈L2

q,V (0, a) : Y and PDqY are q − regular at zero,
JY [q](x)−W2 (x)Y (x) =W1 (x)F (x) exists in (0, a),

F ∈ L2
q,V (0, a), and

ΣŶ (0) + ΛŶ (a) = 0.

 . (4.2)

Let Ω and Γ be (4n−m) × 2n matrices, chosen so that rank (Ω : Γ) = 4n − m and
(

Σ Λ
Ω Γ

)
is

nonsingular. Let
(

Σ̃ Λ̃

Ω̃ Γ̃

)
be chosen so that

(
Σ̃ Λ̃

Ω̃ Γ̃

)∗(
Σ Λ
Ω Γ

)
=

(
−J 0
0 J

)
. (4.3)

Theorem 4.1 For Y ,Z ∈ Dmax, we have

(TmaxY,Z)− (Y, TmaxZ) =
[
Σ̃Ẑ (0) + Λ̃Ẑ (a)

]∗ [
ΣŶ (0) + ΛŶ (a)

]
+
[
Ω̃Ẑ (0) + Γ̃Ẑ (a)

]∗ [
ΩŶ (0) + ΓŶ (a)

]
.
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Proof By virtue of (3.8) and (4.3), we get

(TmaxY,Z)− (Y, TmaxZ) = [Y,Z]a − [Y,Z]0

=
(

Ẑ∗(0) Ẑ∗(a)
)( −J 0

0 J

)(
Ŷ(0)

Ŷ(a)

)

=
(

Ẑ∗(0) Ẑ∗(a)
)(

Σ̃ Λ̃

Ω̃ Γ̃

)∗(
Σ Λ
Ω Γ

)(
Ŷ(0)

Ŷ(a)

)

=

[(
Σ̃ Λ̃

Ω̃ Γ̃

)(
Ẑ(0)

Ẑ(a)

)]∗ [(
Σ Λ
Ω Γ

)(
Ŷ(0)

Ŷ(a)

)]

=

(
Σ̃Ẑ(0) + Λ̃Ẑ(a)

Ω̃Ẑ(0) + Γ̃Ẑ(a)

)∗(
ΣŶ(0) + ΛŶ(a)

ΩŶ(0) + ΓŶ(a)

)
.

2

Now, we describe the adjoint of the operator T. Denote

D∗ :={
Z ∈L2

q,W1
[(0, a);E] : JZ [q] −W2 (x)Z (x) =W1 (x)F1 (x) exists in (0, a),

F1 ∈ L2
q,W1

[(0, a);E] and Ω̃Ẑ(0) + Γ̃Ẑ(a) = 0.

}
,

Theorem 4.2 For Z ∈ D∗, T ∗Z = F̂1 if and only if

JZ [q] −W2 (x)Z (x) =W1 (x)F1 (x) .

Proof Since Tmin ⊂ T ⊂ Tmax, we have Tmin ⊂ T ∗ ⊂ Tmax. Let Y ∈ D and Z ∈ D∗. It follows from Theorem
4.1 that

(TY,Z)− (Y, T ∗Z) =
[
Σ̃Ẑ(0) + Λ̃Ẑ(a)

]∗ [
ΣŶ(0) + ΛŶ(a)

]
+
[
Ω̃Ẑ(0) + Γ̃Ẑ(a)

]∗ [
ΩŶ (0) + ΓŶ(a)

]
.

Then we get

0 =
[
Ω̃Ẑ(0) + Γ̃Ẑ(a)

]∗ [
ΩŶ (0) + ΓŶ(a)

]
.

Since ΩŶ (0) + ΓŶ(a) is arbitrary, we have Ω̃Ẑ(0) + Γ̃Ẑ(a) = 0.

Conversely, if Z satisfies the criteria listed above then Z ∈ D∗. 2
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Now, we find parametric boundary conditions for D and D∗. Recall that

ΣŶ (0) + ΛŶ (a) = 0,ΩŶ (0) + ΓŶ(a) = F2, (4.4)

where F2 is arbitrary. Hence, we get

(
Σ Λ
Ω Γ

)(
Ŷ(0)

Ŷ(a)

)
=

(
0
F2

)
. (4.5)

If we multiply both sides of (4.5) by (
−J 0
0 J

)(
Σ̃ Λ̃

Ω̃ Γ̃

)∗

we conclude that (
Ŷ(0)

Ŷ(a)

)
=

(
JΩ̃∗F2

−J Γ̃∗F2

)
. (4.6)

Similarly, we can find parametric boundary conditions for D∗. Since

Σ̃Ẑ(0) + Λ̃Ẑ(a) = F3, Ω̃Ẑ(0) + Γ̃Ẑ(a) = 0,

where F3 is arbitrary, we obtain

(
Ẑ∗(0) Ẑ∗(a)

)( Σ̃ Λ̃

Ω̃ Γ̃

)∗

=
(
F ∗
3 0

)
. (4.7)

Multiplying both sides of (4.7) by (
Σ Λ
Ω Γ

)(
−J 0
0 J

)
it follows that

Ẑ(0) = −JΣ∗F3, Ẑ(a) = JΛ∗F3. (4.8)

Now, we have the following theorem.

Theorem 4.3 The operator T is self-adjoint if and only if m = 2n and ΣJΣ∗ = ΛJΛ∗.

Proof Let T be a self-adjoint operator. Then Z satisfies the boundary conditions for D, that is

ΣẐ (0) + ΛẐ (a) = 0.

It follows from (4.8) that

Σ(−JΣ∗F3) + Λ (JΛ∗F3) = 0

[ΣJΣ∗ − ΛJΛ∗]F3 = 0.

Since F3 is arbitrary, we see that
ΣJΣ∗ = ΛJΛ∗.
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Conversely, if ΣJΣ∗ = ΛJΛ∗, then we get

(
−ΣJ ΛJ

)( Σ∗

Λ∗

)
= 0,

i.e. the columns of
(

Σ∗

Λ∗

)
for 2n independent solutions to the equation

(
−ΣJ ΛJ

)
X = 0.

By virtue of (4.4) and (4.6), we deduce that

(
−ΣJ ΛJ

)( Ω̃∗

Γ̃∗

)
= 0.

Thus, there must be a constant, nonsingular matrix K such that(
Ω̃∗

Γ̃∗

)
K∗ =

(
Σ∗

Λ∗

)
.

or

(
Σ Λ

)
= K

(
Ω̃ Γ̃

)
.

Clearly, the conditions ΣŶ (0) + ΛŶ (a) = 0 and ΩŶ (0) + ΓŶ(a) = 0 are equivalent. Since the forms of T and
T ∗ are the same, this gives T = T ∗. 2

5. Extensions of the matrix-valued q−Sturm–Liouville operators
In this section, we shall describe all the self-adjoint, dissipative, and accumulative extensions of the corresponding
minimal operator Tmin .

We begin this section with a definition (see [21, 29, 32]).

Definition 5.1 Let H be a Hilbert space; let Π1 and Π2 be linear mappings of D (B∗) into H , where B is a
closed symmetric operator acting in a Hilbert space H with equal (finite or infinite) deficiency indices. Then
the triplet (H,Π1,Π2) is called a space of boundary values of the operator B if

(i) (B∗h, g)H − (h,B∗g)H = (Π1h,Π2g)H − (Π2h,Π1g)H , ∀h, g ∈ D((B∗) , and
(ii) for every G1, G2 ∈ H , there exists a vector g ∈ D(B∗) such that Π1g = G1 and Π2g = G2.

In the next results, we use the following notation:
Π1, Π2 : Dmax → E ⊕ E, where E = Cn,

Π1Y =

(
−Y(0)
Y(a)

)
, Π2Y =

(
(PDq−1Y)(0)
(PDq−1Y)(a)

)
, (5.1)

and y ∈ Dmax.
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Theorem 5.2 The triplet (E ⊕ E,Π1,Π2) defined by (5.1) is a space of boundary values of the symmetric
operator Tmin .

Proof From (5.1) and (3.8), we conclude that

(Π1Y,Π2Z)E⊕E − (Π2Y,Π1Z)E⊕E = −
(
Y(0), (PDq−1Z)(0)

)
E

+
(
Y(a), (PDq−1Z)(a)

)
E
+
(
(PDq−1Y)(0),Z(0)

)
E

−
(
(PDq−1Y)(a),Z(a)

)
E
= [Y,Z](a)− [Y,Z](0)

= (TmaxY,Z)− (Y, TmaxZ),

where Y,Z ∈ Dmax .
Now, we show the second assumption of the definition of space of boundary values.

Let Λ =

(
Λ1

Λ2

)
,Γ =

(
Γ1

Γ2

)
∈ E ⊕ E. Then the vector-valued function

Y (t) = α1 (t) oΛ1 + α2 (t) oΓ1 + β1 (t) oΛ2 + β2 (t) oΓ2,

where o is a symbol of the Hadamard product of vectors and

α1 (t) =

 α11 (t)
...

α1n (t)

 , α2 (t) =

 α21 (t)
...

α2n (t)

 ∈ E,

β1 (t) =

 β11 (t)
...

β1n (t)

 , β2 (t) =

 β21 (t)
...

β2n (t)

 ∈ E,

satisfy the conditions

α1 (0) =

 α11 (0)
...

α1n (0)

 =

 −1
...
−1

 ,

α1 (a) =

 α11 (a)
...

α1n (a)

 =

 0
...
0

 ,

Dq−1α1 (0) =

 Dq−1α11 (0)
...

Dq−1α1n (0)

 =

 0
...
0

 ,

Dq−1α1 (a) =

 Dq−1α11 (a)
...

Dq−1α1n (a)

 =

 0
...
0

 ,
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α2 (0) =

 α21 (0)
...

α2n (0)

 =

 0
...
0

 ,

α2 (a) =

 α21 (a)
...

α2n (a)

 =

 0
...
0

 ,

Dq−1α2 (0) =

 Dq−1α21 (0)
...

Dq−1α2n (0)

 =

 1
...
1

 ,

Dq−1α2 (a) =

 Dq−1α21 (a)
...

Dq−1α2n (a)

 =

 0
...
0

 ,

β1 (0) =

 β11 (0)
...

β1n (0)

 =

 0
...
0

 ,

β1 (a) =

 β11 (a)
...

β1n (a)

 =

 1
...
1

 ,

Dq−1β1 (0) =

 Dq−1β11 (0)
...

Dq−1β1n (0)

 =

 0
...
0

 ,

Dq−1β1 (a) =

 Dq−1β11 (a)
...

Dq−1β1n (a)

 =

 0
...
0

 ,

β2 (0) =

 β21 (0)
...

β2n (0)

 =

 0
...
0

 ,

β2 (a) =

 β21 (a)
...

β2n (a)

 =

 0
...
0

 ,

Dq−1β2 (0) =

 Dq−1β21 (0)
...

Dq−1β2n (0)

 =

 0
...
0

 ,

Dq−1β2 (a) =

 Dq−1β21 (a)
...

Dq−1β2n (a)

 =

 1
...
1

 .

belongs to the set Dmax and Π1Y = Λ, Π2Y = Γ. This completes the proof. 2

Now, we give the following definition.

Definition 5.3 ([29]) Let L be a linear operator with dense domain D(L) acting on some Hilbert space H.The
operator L is called dissipative if

Im(Lf, f) ≥ 0
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for all f ∈ D(L) and is called maximal dissipative if it does not have a proper dissipative extension. Similarly,
The operator L is called accumulative

Im(Lf, f) ≤ 0

for all f ∈ D(L) and is called maximal accumulative if it does not have a proper accumulative extension.

Let

D1 = {ξ ∈ Dmax : (M − I)Π1ξ + i(M + I)Π2ξ = 0} , (5.2)

D2 = {ξ ∈ Dmax : (M − I)Π1ξ + i(M + I)Π2ξ = 0} , (5.3)

where M is a contraction operator in E ⊕ E .
Then by Theorem 5.2, the following theorem is obtained [29].

Theorem 5.4 The restriction of the operator Tmax to the set D1 is a maximal dissipative extension of the
symmetric operator Tmin . Conversely, any maximal dissipative extensions of Tmin is the restriction of Tmax to
a set D1. Similarly, the restriction of the operator Tmax to the set D2 is a maximal accumulative extension
of the symmetric operator Tmin . Conversely, any maximal accumulative extensions of Tmin is the restriction
of Tmax to a set D2. Here, the contraction M is uniquely determined by the extension. If the operator M is
unitary, these conditions define a self-adjoint extension of Tmin.
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