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Abstract: By application of some fixed point theorems, that is, the Banach fixed point theorem, Schaefer’s and the Leray-
Schauder fixed point theorem, we establish new existence results of solutions to boundary value problems of fractional
differential equations. This paper is motivated by Agarwal et al. (Georgian Math. J. 16 (2009) No.3, 401-411).
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1. Introduction

In this manuscript, we study the fractional differential equations
‘D¥u(t) = f(t,u(t)), teJ =100, (1.1)
subject to boundary conditions
u(0) — u'(0) = wo, u(b) + u'(b) = up, u”(b) = uj. (1.2)

Here 2 < v <3, ©D¥ designates the Caputo fractional derivative of order v, f: 7 x R — R is a continuous
and wug,up, u; are real constants. We investigate the existence and uniqueness of solutions for boundary value
problems (BVPs) for fractional differential equations.

Fractional differential equations have captivated much concentration since they can be practiced in diverse
areas of science and engineering. Many phenomena in viscoelasticity, electrochemistry, control theory, porous
media, electromagnetism, etc. can be modelled as fractional differential eqautions. For structures, view the
documents of Kilbas et al. [16], Kiryakova [17], Miller and Ross [20], Oldham and Spanier [21], Podlubny [22],
and Samko et al.[23]. Some the latest improvements to the hypothesis of fractional differential equations may
be observed in [1-14, 18, 19, 24-28].

In [5], Bai and Lii studied the BVP of fractional order

D§,x(t) + f(t,z(t) =0, t e (0,1), a € (1,2], (1.3)
z(0) =xz(1) =0. (1.4)
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Here D§ x(t) is the Caputo fractional derivative, and f : [0, 1] x [0, 400) — [0, +00) is continuous.They found
some existence and multiplicity results of positive solutions by employing some fixed point theorems .
In [26], Zhang investigated the existence and multiplicity of positive solutions for BVPs of nonlinear

fractional differential equations

D x(t) = f(t,z(t)), te(0,1), a€(1,2], (1.5)
z(0) + 2/(0) = 0, z(1) +2'(1) = 0. (1.6)

Here Dg, x(t) is the Caputo fractional derivative, f :[0,1] x [0, +00) — [0, +00) is continuous. He found some
existence results of positive solutions by employing fixed point theorem on cones.

In [28], the authors established the existence of multiple positive solutions for the nonlinear fractional
differential equation BVP

Dgra(t) + f(t,z(t)) =0, t€(0,1), o€ (2,3, (L.7)
2(0) = 2/(0) = 2/(1) = 0, (1.8)

where Df, x(t) is the Caputo fractional derivative. They established some new existence criteria for singular
and nonsingular fractional differential equation BVP by the characteristics of the Green function, the lower and
upper solution method and fixed point theorem.

Inspired by the work of the above papers, in this paper we discuss the BVPs (1.1),(1.2). Using the
Banach fixed point theorem, for the applications of Schaefer’s and the Leray-Schauder fixed point theorem, we
give some new existence results for BVPs (1.1),(1.2). Recently, Agarwal et al. examined the BVPs for fractional
differential equations (1) and (2) in [1]. As far as we know, BVPs for fractional differential equations (1.1),(1.2)
have not been studied. We will complete this opening in the written matter.

The plan of this manuscript is the following way. In Section 2, we recall several useful preliminaries that
will be used to verify main results. Main results are given in Section 3. In Section 4, an illustration is displayed

to clarify the principal conclusions.

2. Background

For the usefulness of the reader, one gives several notation, descriptions, preliminary facts, which can be found
in [16, 22]. They will be used in the proofs of our results.

By C(J,R) one represents the Banach space of all continuous functions from J into R endowed with
lullo == sup{|u(t)| : t € T}
Definition 2.1 The fractional integral of order v € R for a function y € L'([a,b], R ) is given as

I2y(t) = %) / (t — 5" Yy(s)ds,

tu—l

o) for t > 0,

here T' is the gamma function. If a = 0, then one has I"y(t) = y(t) x ¢, (t), where ¢, (t) =
0, (t) =0 for t <0, ¢, —d(t) as v — 0, here ¢ is the delta function.
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Definition 2.2 The Riemann-Liouville fractional derivative of order v for a function y defined on [a,b] can

be described by
1 d\" [ y(s)
Dl y(t) = — | — —
=) (dt> / (E— )R

where

and [v] denotes the integer part of v.

Definition 2.3 Caputo’s fractional derivative of order v for a function y given on [a,b] can be prescribed as

1 ¢ ) (s
‘D y(t) = T(k—v) /a @ EIS)E_)kH ds.

3. Main results

We shall begin with the following definition.

Definition 3.1 u € C*(J,R) with its v-derivative occuring on J is called to be a solution of BVP (1.1)
and (1.2) if u solves the equation °DYu(t) = f(t,u(t)) on J and boundary conditions u(0) — u'(0) =
ug, u(d) +u'(b) =up, u(b) =u.

Here the notation C%(J,R) means continuously twice differentiable.

In order to establish the existence of solutions for the BVP (1.1) and (1.2), one has to use lemma as follows:

Lemma 3.2 (/26]). For v > 0, the solution of the differential equation “D"y(t) =0 is presented as
y(t) =co+cit +eat’ +--cp1t" "t here ¢; €R, j=0,1,2,...,n—1
where
- V+1 if n¢{0,1,2,...}
Tl v if ne{0,1,2,...}.
Taking into account Lemma 3.2, one has that

I"DYy(t) = y(t) + co + it + cot® + - cp1t"

forc;eR, j=0,1,2,...,n—1, where

[ W+1 if n¢{0,1,2,...
L if ne{0,1,2,...

(SN

By means of Lemma 3.2 one has the next result which is valuable.
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Lemma 3.3 Suppose that y : J — R is continuous,and 2 < v < 3. Let d=b+2 # 0. Then u is a solution

of the integral expression

t b
u(t) = F(ly) /0 (t—w)”_ly(w)dw—mtz /O (b — w)~3y(w)dw
2 b b
+2dF(lZ/—2)t/O (bw)”?’y(w)dwdrl(y)t/o (b —w)" ty(w)dw
b b
+dF(VbZ)t/O (b—w)"3y(w)dw — ﬁt/{) (b —w)" 2y(w)dw

b2 ’ V=3 1 ’ v—1
+2df(1/—2)/0 (b —w)" 3y(w)dw — dF(V)/O (b —w)" ry(w)dw

b ’ v— 1 ’ v—2
+m/0 (b—w) 3y(w)dw—m/0 (b —w)’ “y(w)dw

up Up Ug u’gb2 upb up U quQ upb
t - - - v
S T ¥ B R e B S R

<= wu is a solution of the BVP

¢D¥u(t) = y(t), teJd,

w(0) —u'(0) = ug,  w(d)+u'(b) =up, u’(b)=uj.
Proof Express u(t) using the RL integral as

u(t) = co + ert + cot? + (IVy)(t),

(3.4)

and then point out that the Caputo derivative annihilates the polynomial terms in the front and acts as an

inverse to the RL integral in this situation (see[[16], Lemma 2.21 ]).
Applying the boundary conditions for (3.3), we find that

_ u _uo 52/” )-8
co = ug+ 7 4 de +2dF(V—2) O(b w)" " Py(w)dw
1 b v—1 UZ b ’ v—3
df(u)/o (b —w) y(w)dwdb+dr(y_2)/0 (b —w)"y(w)dw
i |
AT —1) J, W e
— %_W_wbkb2+l)2/b(b_ )11—3( )d
T g T W Tarwo9 ), W e
1/b<b— P Iy(w)d —“zb+"/b<b— )y
ar() J, T e T T ar — oy f, T e
b b Ly
T [, b e,

1152



DOGAN/Turk J Math

and

* b
o o= - é/ (b—w)" Py (w)duw.
2 2A°(v—2) Jp

If we substitute the values cg,c1, co in (3.4), then we obtain the solution given by (3.1). Inversely, it is obvious
that if u fulfills Eq. (3.1), then Eq. (3.2) and (3.3) are satisfied. O

By applying the Banach fixed point theorem, we give our first result.
Theorem 3.4 Let f: J xR — R be a continuous function satisfying the Lipschitz conditions:

(C1) |f(t,w) — f(t,w)| < N1|lw—w|, for t€J, w,weR, N;>0.

Let

N1b”

3 2 7
Tw+1) D)  2w- 1)] <L (3.5)

There exists a unique solution for BVP (1.1) and (1.2) on J.

Proof Convert BVP (1.1) and (1.2) into a fixed point problem. Define an operator
Q:C(J,R)—=C(JT,R) as

t b
Qut) = g7 [ =0V Fleuto)de - et [ (b= ) o (oo
2 b
+mt/o (b— )3 f(o, u(0))do — d%(y)t

b B b b o
x/o (b—o) f(a,u(a))da+mt/o (b— 0)"3 (0, u(0))do

1 b L b2
Tdr (v — 1)t/0 (b=0)""%f (o, u(0))do + 24T (v — 2)
’ — 1 ’ v—1
y /O (b— )3 (0, u(0))do — M/O (b— )" (0, u(o))do

b b o 1
+dr(l/—2)/0 (b—0) 3 f(o,u(c))do — To=1)

b * * 1.2
x/ (b= 0)"2f(0,ulo))do + Lg2 4 Yoy _ M0y DT, upb
0

2 d d 2d dt

wuo uph® uph
Tt T T od T a

Undoubtedly, the fixed points of the operator @ are solutions of the BVP (1.1) and (1.2). We will apply
the Banach contraction principle to show that ) has a fixed point. We shall verify that ¢ is a contraction.
If up,us € C(J,R), for t € J we have
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|(QU1)(t) - (QU2)(t)| S%V)/o (t— g)”*l|f(g7 Ul(Q)) _ f(Q,Uz(g))\dQ

sy [0 0 o) ~ floms(e)ld
2 (v — 2) Jo 0 0, u1(e 0, uz(e))|de

b3 b s
+ g [ 6 0l (ene) ~ Houslo))de

T ﬁ‘m/ (b= )| (0. u(0)) — Fle,us(e))lde

b2 b s

* m/g (b= 0)""If(0,u1(0)) = f(o,ua(0))|do
b b v—2

+m/0 (b—0)"""|f(e,u1(0)) — f(o,uz2(0))|do

b2 b ) s ]
s | 6= 0 U us() — flous(elde

b
s [0 0 e (o) - e ustelde

b ’ v—3
- m/o (b—0)"""|f (0, ur1(0)) = f (0 u2(0))|de

1 b .
+ m/g (b= 0)""*If(0.u1(0)) — f(o u2(0))ldo

Niffur — uslfoo /t ~1 b? N1 l[us — ugllo
<ML = B2llee [y py—lgp 4 — I T 2200
- T 0 (E=p)""dp+ 20 (v — 2)

b 3 b
_« b N1H’U,1*'LL2||OO/ .
X b—p) 3dp4 —— 07t 72l b v=34
./0 (b= P 2dT(v — 2) 0 (b=p) P

bN1|lug — usl|o /b v—1 b2 Ny llur — uz||eo
ey LTt ey

b b
_ leHul—uQHoo _
X b—"3d+—/b_u2d
/o( Pt —irg gy ), 0o e
BN — allos [* 3 Nil[ur — uz|oo
5 b—p) 3dp+ —1— =21
T (v —2) /0( Py dot (b+2)C(v)
bN1HU1—U2HOO

b b
X b—p)' " td +—/ b— o)V =3d
/0( R T2 I LU
Nif|ur — us||so /” .
e 7allico b— 0)*"2d
+ dl'(v —1) 0( p) p

+ +

<N b T +1) + (v —1) + 2Y(v—1) T(w+1) Tw-1)

1 1 1 1 1
M) Tare ) T T 1) oy | el

Consequently we obtain

3 2 7

||Q(U1) - Q(Uz)” < Nybv” F(V—|— 1) + F(l/) + QF(Z/ — 1)‘| ||’LL1 - u2||007

which, by (3.5), implies that @ is a contraction. We conclude that @ has a fixed point which is a solution of
the BVP (1.1) and (1.2) by applying Banach fixed point theorem. O
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Next, one will apply Schaefer’s fixed point theorem to obtain the second result.

Theorem 3.5 Suppose that
(C2) f:T xR — R is continuous;
(C3) there exists a fized No > 0 satisfying
[f(t,2)| < Noy teJ, z€eR.
BVP (1.1) and (1.2) has at least one solution on J.

Proof We need to prove that the operator @ has a fixed point. The proof can be broken down into steps as
follows.

(1) @ is continuous.

If {u,} is a sequence such that u, — u in C(J,R), then we have

1 t .
\(Qun)(t)*(Qu)(t)ISF(V)/O(tﬂ?) NFW,un(9)) — £(9,u(d))|d9

T / (b= ) (D, un(9)) — £(0, u(9))]d0
2l (v —2) Jo o ’

b3 ’ v—3
+m/0 (b= 0)" 7?1 (9, un(9)) — £ (0, u(¥))|dV
b ’ v—1|¢
+m/0 (b= 9)" (W, un(9)) — f(0,u(9))|dV

b2 b s
+ g | 0 970, 00) — 0 uo)]a9

b b
+m/o (b—=9)" 2| f (0, un(9)) = F(9,u(9))|d0

+m/0 (b= 0)" £, un(9)) — f(I, u(V))|dV

L 9 0, w0 9, u(V))|dv
+ 257 [ 0= 9 0.0 0) = £0.u(o)

TR /b(b =0)" 2| f (9, un(9)) = F(9, u(9))|dY
dl'(v —2) Jo e ’

RN S /b(b =92 (9, un(9)) = f(0, u(9))]dd
dU(v —1) Jo n ST ’

Because f is a continuous function, we have

[1Q(urn) — Q(u)]|oc = 0 as n — oo.

(2) @ maps bounded sets into bounded sets in C(J,R).
In fact, it suffices to verify that for £* > 0 there exists a fixed Ry > 0 satisfying u € Be« = {u € C(J,R) :
[|u]loo < &*} we have ||Q(u)||co < Ri. From (C3), for ¢t € J, we have
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1 ' v—1
b2 b s
+m_/0 (b—0)"""f(o,u(0))|do

* s, o) IS )l

b b v—1
+ a5 [ 0= e u(o)ldo

b2 b v—3
o L 0o eu(e)ldo

b
" ﬁ / (b=0)""|f(0, u(0))|do
2 b
* ﬁ / (b=0)" " f(ou(0))|do

1 ’ v—1
+m/0 (b—0)"""|f(o,u(0))|do

b
" m /0 (b= 0)""*If (o, u(0))ldo

1 b v—2
o= L 0o o) o

2 b3 b2 b2 b
Tt

1y | fu
+\uo|( +1+ )+—(1+b)+\ub\5 ottt

d d

N2 t 1 b2N2 b L
<2 o) R \CN iy
~I(v) /0 (t—0)" "do+ (0= 2) /0 (b—0)"*do

3 b "
= )/ W RO
0

"2 -2) Jy dr(v)
b2N, b o bN, b .
+m/o(bio—) dU%’m\/g(b*U) do
bQNQ b V3 N2 b b
+m/0 (b—o0) dg+df(y)/() (b—0)" tdo

bN2 b v_3 ]\[2 b s
+dF(V—2)/O (b—o0) dg+dF(V—1)/(b_J) do

1N Jugl ¥R B b
1 ) Mol 1y rL .z
+\u0|( +14 +d(+)+\ub\ +2d+d+2d+d
.NQ NQ N2 N2 N2
< b % % % %
“to+1” Tawe-1” Tawe-1n Tre+)’ TTe-D

2 v 2 v 2 b’/+ 2 bu+ Qby

() 2T (v — 1) * I(v+1) T(v—1) )
|us| 2 2 b}

b2
tlol(2 14 )+ gy g [T o D Y,

which implies that

38N2 ., 2N»,, TNy
+1 e e -’
Ll
d

|Qul|oo Sr(

|uo]
od o)+ =22+ 3) = Ry
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(3) @ maps bounded sets into equicontinuous sets of C(J,R).

For my,ma € J, my < mg, suppose that Bg¢- is a bounded set of C(J,R) like in (2). For any u € Be-,

we have

|Qu(mz) — Qu(m1)] —‘

o [ =
N (m2 _ m1)2 /’mz

I'(v—2)

mi1

—(ml—C

[ e = 0 o) +

mq

mo
></ (mg — )"t
mi

f(s,

u(<))ds +

[ e = 0 o) +

my

o R (RO

mq

X/mmr@%w@mw

mq

* /m2 (ma —<)" "1 f(s,u(s))ds +

my
m2

x (ma — <) f(s,u(<))ds +

mq

ma

X
T

1

I

L wl

= 5|

(mg — m1) +

(ma — )" 2 (s, u(s))ds

|uo

+

)" (s, u(s))ds

me — v—3 (
(ma = )" (s, ul9)ds +

(m2 —ma)

I'(v)

(mg —mq)

I'(v—2)

(m2 —ma)

I'(v-1)
1

I'(v—2)

1
ds + ——

I'(v)

1
I'(v—2)
1
F(V -1)

(m

m1)2

(mg —mq) + [u b‘bQ(m —ml)

>"| 1 \ub
18l ) gl (14 1) + ‘+|w(
N. my
< [ lm-g
0

I'(v)

ma
x/ (ma — )" ds +

mq

T

ma
></ (ma — )" ds +

my

Na(mg —my) /

mo
(ma — <) tds +

mi

Ny (mg
I'(v—2)

= (ma =) Mds + —~— =

I'(v—

Na " -1
_ 2 _ vy
* gy, e
No e -1
_ 2 _ vy
+r(y—2)/m (ma = )" de +
‘u;|(m2 —m)*+ ] mo — my
‘ |b2(m —my) + ub|b(m27

2d

|us|

+|u0|<1+$> +

b2
+ i (57 +

mi

Na(mg —m1) /m (ma — )" ds

1) miy

il

o [

miy

Na(mg —ma1)”
(

*m“/mmm—WH&

NQ(mQ —m
I'(v

—2)

(mg — )" tds

(mg —<)" tds
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Ny v v Ny
SF(V+1)[(m2 ml) +m1 _m2}+r(y_1)(m2_m1)
N2 N2
oM M) gy e —m)
Ny v Ny
+ (v — 1)(m2 my)” + () (mg —maq)
Ny v Ny y
oM ™) gy me —m)
Ny v Ny
T —1) M2~ M)+ gy (me —m)
—|—|u7b(m m)2+|b‘(m m)+%(m —my)
uy uy
+ %bQ(mg —my) + | ;‘b(mg —myq)
1 U b b
+\uo|(1+&> +|le‘+\ui\(ﬁ+g) — 0 as my — mo.

In view of (1) to (3), it follows by Arzela-Ascoli theorem that @ : C(J,R) — C(J,R) is completely
continuous.

(4) A priori bounds.
Finally we will verify that the set

Q={uel(J,R)|u=2Qu, Ae(0,1)}

is bounded.

Let u e 2, u=AQu for \e& (0,1). Therefore, for ¢t € J, we have

t b
ut) = o5 [ =0 eaoyis - gt [0y (o ute)ao
2 b
+2dl“?1/b2)t/0 (b—0) 2 f(o,u(c))do — dl“)\(l/)t

% ’ - v—1 Ab ’ . v—3
| 0=y e atonas + gzt [0 =0y oulo)io

A b _— Ab?
_mt/o e

’ -3 A ’ v—1
< [[0=or = seutona - s [ =) o u(e)io
b b . A
+7dI‘(y —5 /0 (b—0a) 3 f(o,u(o))do — FNOE]

b *
X /O (b~ 0) (o, u(0))do + A2

M 2

+E[—uo+ub—

—u;;b} +/\u0<1—2) +A%—Auz(%+g).

*
upb
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This indicates by (C3) that for ¢t € J we have

t 2 b
) <y | =0 e+ gy [ b-er
b3 N, - DNy [P
b aa s [0 tae s 2N [ ey a

b2N, . bN, b .
+m/(b*§) 3df+m/0(b*§) 2de

tom s [-graes 2 [0
oty | (0 e sde + ot | (- 62
+|uo|( +1+d)+|7|(1+b)+|u;;| s ;’Z+%+§—Z+Z

= Z/I]‘\EZZ/) TP zj)vrz(u 5" T on - 2])Vr2(y 5t yév(zu) v
*(y—z)];[“?y—mbu(u—1)]¥2(y—1)by+z(y—2])vr2(y—2)by
N g Nz b+ N2 v

vI'(v) (v—2T(v-2) v-=1TI'(v—- 1)b

Jus| b2b b2 b b
- +=+ =+

14+b -z
(+)+|ub|2 2d " d T 2d " d

+|u0|( +1+d)+

Hence for every t € J we have

3N, 2N, N,
b b b
T+ T Tawe—1

lulloo <

|ub| 3 2 |Ub| |U0|
2b b+ 2b) + b+1 2b
+t54 (20° 4 5b° 4 2b) + ¥ (b+1)+ g ——(2b+3) := R».
We have shown that the set €2 is bounded. We can complete that @ has a fixed point which is a solution of
the BVP (1.1)-(1.2) by using Schaefer’s fixed point theorem. O

Now we establish our existence results for the BVP (1.1) and (1.2) by employing the Leray-Schauder fixed point

theorem, here the assumption (C3) is diminished.
Theorem 3.6 Suppose that assumption (C2) holds. Define Ny = Dy + 1, where

b? b3
Dy =17 |l9(N2) + 5 (1" %) (b (N2) +

(I 20, (B)0(N2)

O o) B N) + I o) DR (N) + (I ) (B
<N+ (2o ) BN + (1) B

D2 ) Byu ) + LI o) )

1\ | Ju b¥oov b b
+|uo|( +1+d)+ d(1+b)+|ub|< togt gttt
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Suppose that
(C4) there exist a continuous nondecreasing function v : [0,00) — (0,00) and a function ¢y € L*(J,R")
satisfying
fEw) <er@y(w), ted, weR.

Then the BVP (1.1) and (1.2) has at least one solution on J.

Proof We recognize the operator @ described in Theorems 3.4, 3.5. It is easy to prove that @ is continuous,
completely continuous. Let A € [0,1]. Suppose u is such that for ¢t € J we have u(t) = A(Qu)(¢). By (C4) for
t € J we have

2

t b
) <g7 [ €= et + g [ 6= ertliunin

3 b
+ gz, 0= et b+ 7
' b v-l d b’ ' b v=3 d
< [ o= egmutiuemin+ g [ 6= s mu(uenan
b b Yo b?
T [, e unan+ gt
b b
< [ 0= e mutunan + g [ 6= esmu(utan
b b s 1
oy L O e un+ s

b
< [ = undn + ol (5 + 1+ 3)

+M(1+b)+\*\ ﬁ+§+ﬁ+ﬁ+é
d W\ T g T d T2 a

3 b
sz | 0= e ndn+ i) g7

b 2 b
< [ o=nr ertidn+ vl g5 | 6= e st
b2

b
b )/0 (b*n)”*2¢f(n)dn+w(llul\oo)m

+¢(||u||oo)dr(l/7_1

b b
< [ o=nr S egtian+ vllull) gy [ 0=t
1

b
5 [ 6= s man+ vllull) g

+w(||“||°°)m

b b 1
X b—n)""20r(n)dn + |uo|( = +14+ =
| o= Eesman+ ol (5 +1+ 3)

el gy g LR
— ull =+ —=+—-=+-—-+-].
d P2 24 d 24 d
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Therefore

[lulloo

<1

%
|

where

2 b3

D, = w(\IUIIw)III”WHEﬂL%(IV’QW)(b)w(HUIIw)+ﬁ(f”’2<pf)(b)¢(IIU\loo)

2
F2 (IO lulloe) + 7 (o) O ((ulloe) + 5 (" )0)

xp(lllloe) + 552 ) O lulloc) + 5 Bl

(=)

(o) )(lull) + 3 (o) 0)(lull)

b 1N ful N I R R
O n) 4 el LA A A
+|u0|<d+ +d)+ T gl | gt T gt o

Put
W={uel(T,R): ||ulloc < D1 +1}.
Clearly, Q : W — C(J,R) is continuous, completely continuous. By the select of W, there is no u € OW

satisfying u = AQ(u) for 0 < A < 1. We can complete that @ has a fixed point u € W, which is a solution of
the BVP (1.1)-(1.2) by employing the Leray-Schauder fixed point theorem [15]. O

4. Applications

In this section, we present some examples to illustrate our results.

Example 4.1 Ezamine the fractional BVP

e thuf) ~ )
Dult) = Gt ey ted =01 € (2,3, (4.1)
u(0) — v/ (0) = 0, uw(l) + /(1) =1, (1) =0 (4.2)

Let

e tu

flt,u) = CEXDE)

(t,u) € J x [0,00).
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For uj,us € [0,00) and t € J, one has

eft

(9 +e)

Uy U2
14+u T+wus

|f(t7u1)7f(t7u2)| =

e uy — us
(9+e!)(1 4+ u1)(1 4 ug)

—t

e
P —

S Gyt el
< - | |

> 10 3% Uz|,

=

where N1 = %0. Thus, the assumption (C1) is satisfied. Choose b = 1. We will confirm that assumption (3.5)
holds. In fact,

3 2 7 3 2 7

Nibv” T+ 1) + ) + T —1) <l<& NOES) + () + (v — 1) < 10. (4.3)
One has
%Sﬁ<; 1§%<27 (4.4)
and
3 < 7 -] < (4.5)

for an suitably selected constant x that will be defined. From (4.3)-(4.5), we can write as

3 2 7 3
) 10. 4.6
Tw+1) T orw—1 2 2trs (4.6)

From inequality (4.6), it follows that

< E
>
By (4.5) we obtain
7
13~ 0538462 <T(v — 1), (4.7)

which holds for some 2 < v < 3. Therefore, by Theorem 3./, there exists a unique solution for the BVP (4.1)
and (4.2) on [0,1]. It is easy to see that inequality (4.7) is satisfied for the values of v.

Example 4.2 Consider the fractional BVP

cos? ¢

DEull) = R
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2
s - . cos“t
where v = 5 b=1, and f(t,u):= m'
We have
cos?t 1
Ful == | S o

Choosing Na = §, then by Theorem 3.5, the BVP (4.8)-(4.9) has at least one solution on [0,1].

Example 4.3 Consider the fractional BVP

D3u(t) = (5+31t+t2) (é x < ft;ﬁ +4), teo,1], (4.10)
u(0) —u/(0) = 0, uw(l) +4'(1) =1, u”(1) =0, (4.11)
where v = %, b=1, and f(t,u) = (5+31t+t2)(% X 1f|;|6 +4).
We have
Pl < sgrs (51l + ).
Choosing @(t) = @ and YP(|u|) = %|u\ + 4, then by Theorem 3.6, the BVP (4.10)-(4.11) has at least

one solution on [0, 1].
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