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Abstract: In this paper,we define a class of analytic functions F(β,λ) (H,α, δ, µ) , satisfying the following subordinate
condition associated with Chebyshev polynomialsα
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]
. We obtain initial coefficients |a2| and |a3| for this subclass by means of Chebyshev polynomials expansions

of analytic functions in D. Furthermore, we solve Fekete-Szegö problem for functions in this subclass.We also provide
relevant connections of our results with those considered in earlier investigations. The results presented in this paper
improve the earlier investigations.
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1. Introduction
Let D be the open unit disc D = {z ∈ C : |z| < 1} and A be the class of functions analytic in D , satisfying
the conditions f(0) = 0 and f ′(0) = 1.

Then each functions f in A has the following Taylor expansion

f (z) = z +

∞∑
n=2

anz
n. (1.1)

Furthermore, by S we shall denote the class of all functions A that are univalent in D .
Let f and g be analytic functions in D. We define that the function f is subordinate to g in D and

denoted by
f(z) ≺ g(z) (z ∈ D) ,
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if there exists a Schwarz function ω, which is analytic in D with ω(0) = 0 and |ω(z)| < 1 (z ∈ D) such that

f(z) = g (ω(z)) (z ∈ D) . (1.2)

If g is a univalent function in D , then

f(z) ≺ g(z) ⇔ f(0) = g(0) and f(D) ⊂ g(D).

A function f ∈ A maps D onto a starlike domain with respect to w0 = 0 if and only if

zf ′ (z)

f (z)
≺ 1− z

1 + z
(z ∈ D) . (1.3)

A function f ∈ A maps D onto a convex domain if and only if

1 +
zf ′′ (z)

f ′ (z)
≺ 1− z

1 + z
(z ∈ D) . (1.4)

It is well known that if a function f ∈ S satisfies (1.3) and (1.4), then f is starlike and convex in D , respectively.
Let β ∈ [0, 1) . A function f ∈ A is said to be starlike of order β and convex of order β, respectively, if

zf ′ (z)

f (z)
≺ 1− (1− 2β) z

1 + z
(z ∈ D)

and

1 +
zf ′′ (z)

f ′ (z)
≺ 1− (1− 2β) z

1 + z
(z ∈ D) (1.5)

are satisfied.
The aritmetic means of some functions and expressions is very frequently used in mathematics, specially in

geometric functions theory. Making use of the arithmetic means Mocanu [14] introduced the class of α−convex
(0 ≤ α ≤ 1) functions as follows

Mα =

{
f ∈ A : ℜ

[
(1− α)

(
zf ′ (z)

f (z)

)
+ α

(
1 +

zf ′′ (z)

f ′ (z)

)]
> 0, z ∈ D

}
,

which, in some special cases, reduced the class of starlike and convex functions. In general, the class of α−convex
functions determines the arithmetic bridge between starlikeness and convexity.

Using the geometric means, Lewandowski et al. [12] defined the class of µ−starlike functions (0 ≤ µ ≤ 1)

consisting of the functions f ∈ A that satisfy the inequality to

ℜ

[(
zf ′ (z)

f (z)

)µ(
1 +

zf ′′ (z)

f ′ (z)

)1−µ
]
> 0 (z ∈ D) .

We note that the class µ−starlike functions constitutes the geometric bridge between starlikeness and convexity.
There is a close relationship between the above classes. For example, 0−convex (or 1−starlike) and

1−convex (or 0−starlike) functions are, respectively, starlike and convex functions.
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In 1933, Fekete and Szegö [9] obtained a sharp bound of the functional
∣∣a3 − µa22

∣∣ , with real µ (0 ≤ µ ≤ 1)

for a univalent function f . Since then, the problem of finding the sharp bounds for this functional of any compact
family of functions or f ∈ A with any complex µ is known as the classical Fekete–Szegö problem or inequality.

Chebyshev polynomials have greater importance in numerical analysis and, more generally, in applications
of mathematics. There are four kinds of Chebyshev polynomials. The majority of books and research papers
dealing with specific ortogonal polynomials of the Chebyshev family contain mainly results of Chebyshev
polynomials of the first and second kinds Tn (t) , Un (t) and their numerous uses in different applications;
see, for example, Doha [7] and Mason [13].

The Chebyshev polynomials of the first and second kinds are well known. In the case of a real variable t

on (−1, 1) , they are defined by
Tn (t) = cosnφ,

Un (t) =
sin (n+ 1)φ

sinφ

where n denotes the polynomial degree and t = cosφ. For a brief history of Chebyshev polynomials of the first
kind Tn(t), the second kind Un(t) and their applications one can refer ([1]-[5], [7], [8], [18]-[20]).

We consider that if t = cosφ
(−π

3 < φ < π
3

)
, then

H (z, t) : =
1

1− 2tz + z2
=

1

1− 2 cosφz + z2

= 1 +

∞∑
n=1

sin (n+ 1)φ

sinφ
zn (z ∈ D) .

Thus, we have
H(z, t) = 1 + 2 cosφz +

(
3 cos2 φ− sin2 φ

)
z2 + · · · (z ∈ D) .

So, according to [20], we write the Chebyshev polynomials of the second kind as following:

H(z, t) = 1 + U1(t)z + U2(t)z
2 + · · · (−1 < t < 1, z ∈ D)

where Un−1(t) =
sin(n arccos t)√

1−t2
(n ∈ N) and we have

Un(t) = 2tUn−1(t)− Un−2(t),

U0 (t) = 1,

U1 (t) = 2t,

U2 (t) = 4t2 − 1,

U3 (t) = 8t3 − 4t,

U4 (t) = 16t4 − 12t2 + 1. (1.6)

The Chebyshev polynomials Tn(t), t ∈ [−1, 1] of the first kind have the generating function of the form

∞∑
n=0

Tn(t)z
n =

1− tz

1− 2tz + z2
(z ∈ D) .
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There are the following connections by the Chebyshev polynomials of the first kind Tn(t) and the second kind
Un(t) :

dTn(t)

dt
= nUn−1(t), Tn(t) = Un(t)− tUn−1(t), 2Tn(t) = Un(t)− Un−2(t).

Now, we define a subclass of analytic functions in D with the following subordination condition:

Definition 1.1 Let 0 ≤ α ≤ 1, 1 ≤ δ ≤ 2, 0 ≤ µ ≤ 1, 0 ≤ β ≤ λ ≤ 1 and t ∈
(
1
2 , 1
]
. We say that f ∈ A of

the form (1.1) belong to f ∈ F(β,λ) (H,α, δ, µ) if

α

[
zG′ (z)

G (z)

]δ
+ (1− α)

[
zG′ (z)

G (z)

]µ [
1 +

zG′′ (z)

G′ (z)

]1−µ

≺ H (z, t) =
1

1− 2tz + z2
(1.7)

where z ∈ D and G (z) = λβz2f ′′ (z) + (λ− β) zf ′ (z) + (1− λ+ β) f (z) .

Taking α = δ = t = 1, β = λ = 0 and ω(z) = z (in (1.2)) in Definition 1.1, we obtain the following
example.

Example 1.2 The function

f(z) =
z

1− z
e

z
1−z

with the series expansion f(z) = z + 2z2 + 7
2z

3 + · · · belongs to F(0,0) (H, 1, 1, µ) .

Remark 1.3 Note that for restricted values of the parameters involved in the class F(β,λ) (H,α, δ, µ) gives the
following special subclasses:

i) A function f ∈ A is said to be in the class F(β,λ) (H, 1, 1, µ) = N (λ, β, t) , 0 ≤ β ≤ λ ≤ 1, t ∈
(
1
2 , 1
]
,

if the following subordination holds:

λβz3f ′′′ (z) + (2λβ + λ− β) z2f ′′ (z) + zf ′ (z)

λβz2f ′′ (z) + (λ− β) zf ′ (z) + (1− λ+ β) f (z)
≺ H (z, t) (z ∈ D) .

This class was introduced and studied by Çağlar et al. [5].
ii) A function f ∈ A is said to be in the class F(0,0) (H,α, δ, µ) = F (H,α, δ, µ) , 0 ≤ α ≤ 1, 1 ≤ δ ≤ 2,

0 ≤ µ ≤ 1, t ∈
(
1
2 , 1
]
, if the following subordination holds:

α

(
zf ′ (z)

f (z)

)δ

+ (1− α)

(
zf ′ (z)

f (z)

)µ(
1 +

zf ′′ (z)

f ′ (z)

)1−µ

≺ H (z, t) (z ∈ D) .

This class was introduced and studied by Szatmari and Yalçın [19].
iii) A function f ∈ A is said to be in the class F(0,0) (H, 0, δ, µ) = L (µ, t) , µ ≥ 0, t ∈

(
1
2 , 1
]
, if the

following subordination holds:

(
zf ′ (z)

f (z)

)µ(
1 +

zf ′′ (z)

f ′ (z)

)1−µ

≺ H (z, t) (z ∈ D) .
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This class was introduced and studied by Altınkaya and Yalçın [2].

iv) A function f ∈ A is said to be in the class F(0,0) (H, 1− η, 1, 0) = K(η, t), η ≥ 0, t ∈
(
1
2 , 1
]
, if the

following subordination holds:

(1− η)
zf ′ (z)

f (z)
+ η

(
1 +

zf ′′ (z)

f ′ (z)

)
≺ H (z, t) (z ∈ D) .

This class was introduced and studied by Altınkaya and Yalçın [1].

v) A function f ∈ A is said to be in the class F(0,λ) (H, 1− η, 1, 0) = Gη
λ(t), η ≥ 0, 0 ≤ λ ≤ 1, t ∈

(
1
2 , 1
]
,

if the following subordination holds:

(1− η)

(
zG′ (z)

G (z)

)
+ η

(
1 +

zG′′ (z)

G′ (z)

)
≺ H (z, t) (z ∈ D) .

where G (z) = λzf ′ (z) + (1− λ) f (z) . This class was introduced and studied by Bulut et al. [3].

vi) A function f ∈ A is said to be in the class F(0,0) (H, 0, δ, 0) = H (t) , t ∈
(
1
2 , 1
]
, if the following

subordination holds:

1 +
zf ′′ (z)

f ′ (z)
≺ H (z, t) .

This class was introduced and studied by Dziok et al. [8].

Many studies have been conducted on different classes defined by many mathematicians on different dates
and various results have been obtained ([4], [6], [10], [15]-[18]).

In this paper, we obtain initial coefficients |a2| and |a3| for subclass F(β,λ) (H,α, δ, µ) by means of
Chebyshev polynomials expansions of analytic functions in D . Also, we solve Fekete–Szegö problem for functions
in this subclass.

2. Coefficient bounds for the function class F(β,λ) (H,α, δ, µ)

We begin with the following result involving initial coefficient bounds for the function class F(β,λ) (H,α, δ, µ) .

Theorem 2.1 Let the function f(z) given by (1.1) be in the class F(β,λ) (H,α, δ, µ) . Then,

|a2| ≤
2t

[αδ + (1− α) (2− µ)] (2λβ + λ− β + 1)

and

|a3| ≤ 1

2 [αδ + (1− α) (3− 2µ)] [2 (3λβ + λ− β) + 1]

×

{
2 [αδ + (1− α) (2− µ)]

2 − αδ (δ − 3)− (1− α)
(
µ2 + 5µ− 8

)
2 [αδ + (1− α) (2− µ)]

2 4t2 − 1

}
.
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Proof Let the function f(z) given by (1.1) be in the class F(β,λ) (H,α, δ, µ) . From (1.7), we have

α

[
zG′ (z)

G (z)

]δ
+ (1− α)

[
zG′ (z)

G (z)

]µ [
1 +

zG′′ (z)

G′ (z)

]1−µ

= 1 + U1 (t) p (z) + U2 (t) p
2 (z) + · · · (2.1)

for some analytic functions
p (z) = c1z + c2z

2 + c3z
3 + · · · (z ∈ D) , (2.2)

such that p(0) = 0, |p(z)| < 1 (z ∈ D) . For such functions, it is well known that (see [11])

|cj | ≤ 1 (j ∈ N) (2.3)

and for all ν ∈ C ∣∣c2 − νc21
∣∣ ≤ max {1, |ν|} . (2.4)

Therefore from (2.1) and (2.2) we have

α

[
zG′ (z)

G (z)

]δ
+ (1− α)

[
zG′ (z)

G (z)

]µ [
1 +

zG′′ (z)

G′ (z)

]1−µ

= 1 + U1 (t) c1z +
[
U1 (t) c2 + U2 (t) c

2
1

]
z2 + · · · (2.5)

where G (z) = λβz2f ′′ (z) + (λ− β) zf ′ (z) + (1− λ+ β) f (z) . It follows from (2.5) that

[αδ + (1− α) (2− µ)] (2λβ + λ− β + 1) a2 = U1 (t) c1 (2.6)

and

1

2

[
αδ (δ − 3) + (1− α)

(
µ2 + 5µ− 8

)]
(2λβ + λ− β + 1)

2
a22

+2 [αδ + (1− α) (3− 2µ)] [2 (3λβ + λ− β) + 1] a3

= U1 (t) c2 + U2 (t) c
2
1. (2.7)

From (1.6), (2.3) and (2.6), we have

|a2| ≤
2t

{αδ + (1− α) (2− µ)} (2λβ + λ− β + 1)
. (2.8)

By using (2.6), we can rewrite the equaliy (2.7) as follows

2 [αδ + (1− α) (3− 2µ)] [2 (3λβ + λ− β) + 1] a3

= U1 (t) c2 + U2 (t) c
2
1 −

1

2

[
αδ (δ − 3) + (1− α)

(
µ2 + 5µ− 8

)]
× (2λβ + λ− β + 1)

2

[
U1 (t) c1

{αδ + (1− α) (2− µ)} (2λβ + λ− β + 1)

]2
.
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If we consider (1.6) and (2.3) in last equality, we obtain

2 [αδ + (1− α) (3− 2µ)] [2 (3λβ + λ− β) + 1] a3

= 2tc2 +

{
2 [αδ + (1− α) (2− µ)]

2 − αδ (δ − 3)− (1− α)
(
µ2 + 5µ− 8

)
2 [αδ + (1− α) (2− µ)]

2 4t2 − 1

}
c21

= 2t

{
c2 −

1

2t

(
1−

2 [αδ + (1− α) (2− µ)]
2 − αδ (δ − 3)− (1− α)

(
µ2 + 5µ− 8

)
2 [αδ + (1− α) (2− µ)]

2 4t2

)
c21

}
.

Thus, from (2.4), we have

|a3| ≤ 2t

2 [αδ + (1− α) (3− 2µ)] [2 (3λβ + λ− β) + 1]

×max

{
1,

1

2t

∣∣∣∣∣2 [αδ + (1− α) (2− µ)]
2 − αδ (δ − 3)− (1− α)

(
µ2 + 5µ− 8

)
2 [αδ + (1− α) (2− µ)]

2 4t2 − 1

∣∣∣∣∣
}
.

By using Mathematica (version 8.0), we find that

2 [αδ + (1− α) (2− µ)]
2 − αδ (δ − 3)− (1− α)

(
µ2 + 5µ− 8

)
2 [αδ + (1− α) (2− µ)]

2 ≥ 1

for 0 ≤ α ≤ 1, 1 ≤ δ ≤ 2 and 0 ≤ µ ≤ 1.

Consequently, we obtain

|a3| ≤ 1

2 [αδ + (1− α) (3− 2µ)] [2 (3λβ + λ− β) + 1]

×

{
2 [αδ + (1− α) (2− µ)]

2 − αδ (δ − 3)− (1− α)
(
µ2 + 5µ− 8

)
2 [αδ + (1− α) (2− µ)]

2 4t2 − 1

}
.

The proof of Theorem 2.1 is completed. 2

Taking λ = 0, β = 0 in Theorem 2.1, we obtain the following Corollary 2.2.

Corollary 2.2 Let the function f(z) given by (1.1) be in the class F (H,α, δ, µ) . Then,

|a2| ≤
2t

αδ + (1− α) (2− µ)

and

|a3| ≤ 1

2 [αδ + (1− α) (3− 2µ)]

×

{
2 [αδ + (1− α) (2− µ)]

2 − αδ (δ − 3)− (1− α)
(
µ2 + 5µ− 8

)
2 [αδ + (1− α) (2− µ)]

2 4t2 − 1

}
.

Remark 2.3 The estimate of |a3| which obtained in Corollary 2.2 is better than the corresponding estimate in
Szatmari and Altınkaya [19].
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Taking α = 0, λ = 0 and β = 0 in Theorem 2.1, we obtain the following Corollary 2.4.

Corollary 2.4 Let the function f(z) given by (1.1) be in the class L (µ, t) . Then,

|a2| ≤
2t

2− µ

and

|a3| ≤
(
16− 13µ+ µ2

)
t2

(3− 2µ) (2− µ)
2 − 1

2 (3− 2µ)
.

Remark 2.5 The estimate of |a3| which obtained in Corollary 2.4 is better than the corresponding estimate in
Altınkaya and Yalçın [2].

Taking α = 1− η, δ = 1, µ = 0, β = 0 in Theorem 2.1, we obtain the following Corollary 2.6.

Corollary 2.6 Let the function f(z) given by (1.1) be in the class Gη
λ(t). Then,

|a2| ≤
2t

(1 + η) (1 + λ)

and

|a3| ≤
1

2 (1 + 2η) (1 + 2λ)

[
4t2(η2 + 5η + 2)

(1 + η)2
− 1

]
.

Remark 2.7 The estimate of |a3| which obtained in Corollary 2.6 is better than the corresponding estimate in
Bulut et al. [3].

Taking α = 1− η, δ = 1, µ = 0, λ = 0, β = 0 in Theorem 2.1, we obtain the following Corollary 2.8.

Corollary 2.8 Let the function f(z) given by (1.1) be in the class K(η, t). Then,

|a2| ≤
2t

1 + η

and

|a3| ≤
1

2 (1 + 2η)

[
4t2(η2 + 5η + 2)

(1 + η)2
− 1

]
.

Remark 2.9 The estimate of |a3| which obtained in Corollary 2.8 is better than the corresponding estimate in
Altınkaya and Yalçın [1].

Taking α = 1, δ = 1 in Theorem 2.1, we obtain result of Çağlar et al. [5] the following Corollary 2.10.

Corollary 2.10 Let the function f(z) given by (1.1) be in the class N (λ, β, t) . Then

|a2| ≤
2t

2λβ + λ− β + 1

1202
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and

|a3| ≤
8t2 − 1

2 [6λβ + 2λ− 2β + 1]
.

Taking µ = 0, α = 0, λ = 0, β = 0 in Theorem 2.1, we obtain result of Dziok et al. [8] the following
Corollary 2.11.

Corollary 2.11 Let the function f(z) given by (1.1) be in the class H (t) . Then,

|a2| ≤ t

and

|a3| ≤
4t2

3
− 1

6
.

Taking α = 0, δ = 1, µ = 1, λ = 1, β = 1 in Theorem 2.1, we obtain the following Corollary 2.12.

Corollary 2.12 Let the function f(z) given by (1.1) be in the class F(1,1) (H, 0, 1, 1) . Then,

|a2| ≤
2t

3

and

|a3| ≤
4t2

7
− 1

14
.

3. Fekete–Szegö inequality for the function class F(β,λ) (H,α, δ, µ)

Now, we are ready to find the sharp bounds of Fekete–Szegö functional
∣∣a3 − ξa22

∣∣ defined for f ∈ F(β,λ) (H,α, δ, µ)

given by (1.1).

Theorem 3.1 Let the function f(z) given by (1.1) be in the class F(β,λ) (H,α, δ, µ) . Then for some ξ ∈ R,

∣∣a3 − ξa22
∣∣ ≤ { 2t

K
for ξ ∈ [ξ1, ξ2]

2t
K

∣∣∣ 4t2−1
2t − Rt

B − ξ 2tK
B(2λβ+λ−β+1)2

∣∣∣ for ξ /∈ [ξ1, ξ2]
, (3.1)

where ξ1 =
{

2(2B−R)t2−(1+2t)B
4t2K

}
(2λβ + λ− β + 1)

2
, ξ2 =

{
2(2B−R)t2−(1−2t)B

4t2K

}
(2λβ + λ− β + 1)

2 such that

B = [αδ + (1− α) (2− µ)]
2
,

K = 2 [αδ + (1− α) (3− 2µ)] [2 (3λβ + λ− β) + 1] ,

R = αδ (δ − 3) + (1− α)
(
µ2 + 5µ− 8

)
.

Proof Let f ∈ F(β,λ) (H,α, δ, µ) and

B = [αδ + (1− α) (2− µ)]
2
,

K = 2 [αδ + (1− α) (3− 2µ)] [2 (3λβ + λ− β) + 1] ,

R = αδ (δ − 3) + (1− α)
(
µ2 + 5µ− 8

)
.
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From (2.6) and (2.7) for some ξ ∈ R, we can easily see that

∣∣a3 − ξa22
∣∣ = U1 (t)

K

∣∣∣∣∣c2 +
{
U2 (t)

U1 (t)
− R

2B
U1 (t)− ξ

U1 (t)K

B (2λβ + λ− β + 1)
2

}
c21

∣∣∣∣∣ .
Then, in view of (2.4), we conclude that

∣∣a3 − ξa22
∣∣ ≤ U1 (t)

K
max

{
1,

∣∣∣∣∣U2 (t)

U1 (t)
− R

2B
U1 (t)− ξ

U1 (t)K

B (2λβ + λ− β + 1)
2

∣∣∣∣∣
}
. (3.2)

Finally, by using (1.6) in (3.2), we get

∣∣a3 − ξa22
∣∣ ≤ 2t

K
max

{
1,

∣∣∣∣∣4t2 − 1

2t
− Rt

B
− ξ

2tK

B (2λβ + λ− β + 1)
2

∣∣∣∣∣
}
.

Because t > 0, we have∣∣∣ 4t2−1
2t − Rt

B − ξ 2tK
B(2λβ+λ−β+1)2

∣∣∣ ≤ 1

⇔
{

2(2B−R)t2−(1+2t)B
4t2K

}
(2λβ + λ− β + 1)

2 ≤ ξ ≤
{

2(2B−R)t2−(1−2t)B
4t2K

}
(2λβ + λ− β + 1)

2

⇔ ξ1 ≤ ξ ≤ ξ2.

Thus, the proof of theorem is completed. 2

Taking α = 1, δ = 1 in Theorem 3.1, we obtain result of Çağlar et al. [5] the following Corollary 3.2.

Corollary 3.2 Let the function f(z) given by (1.1) be in the class N (λ, β, t) . Then for some ξ ∈ R,

∣∣a3 − ξa22
∣∣ ≤ { t

6λβ+2λ−2β+1
for ξ ∈ [ξ1, ξ2]

t
6λβ+2λ−2β+1

∣∣∣ 8t2−1
2t − ξ 4t(6λβ+2λ−2β+1)

(2λβ+λ−β+1)2

∣∣∣ for ξ /∈ [ξ1, ξ2]
,

where

ξ1 =

(
8t2 − 2t− 1

)
(2λβ + λ− β + 1)

2

8t2 (6λβ + 2λ− 2β + 1)

and

ξ2 =

(
8t2 + 2t− 1

)
(2λβ + λ− β + 1)

2

8t2 (6λβ + 2λ− 2β + 1)
.

Taking λ = 0, β = 0 in (3.2), we obtain result of Szatmari and Altınkaya [19] the following Corollary
3.3.

Corollary 3.3 Let the function f(z) given by (1.1) be in the class F (H,α, δ, µ) . Then for some ξ ∈ C,∣∣a3 − ξa22
∣∣ ≤ t

αδ+(1−α)(3−2µ)

×max

{
1,

∣∣∣∣2t( 2ξ[αδ+(1−α)(3−2µ)]

[αδ+(1−α)(2−µ)]2
− 3αδ+(1−α)(8−5µ)−α(δ2−µ2)−µ2

2[αδ+(1−α)(2−µ)]2

)
− 4t2−1

2t

∣∣∣∣}
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Taking α = 1− η, δ = 1, µ = 0, β = 0 in Theorem 3.1, we obtain result of Bulut et al. [3] the following
Corollary 3.4.

Corollary 3.4 Let the function f(z) given by (1.1) be in the class Gη
λ(t). Then for some ξ ∈ R,∣∣a3 − ξa22

∣∣
≤

{ t
(1+2η)(1+2λ)

for ξ ∈ [ξ1, ξ2]

t
(1+2η)(1+2λ)

∣∣∣ 4t2−1
2t + 2(1+3η)t

(1+η)2
− ξ 4t(1+2η)(1+2λ)

(1+η)2(1+λ)2

∣∣∣ for ξ /∈ [ξ1, ξ2]
,

where

ξ1 =

{
4
(
η2 + 5η + 2

)
t2 − (1 + 2t) (1 + η)

2

8 (1 + 2η) (1 + 2λ) t2

}
(1 + λ)

2

and

ξ2 =

{
4
(
η2 + 5η + 2

)
t2 − (1− 2t) (1 + η)

2

8 (1 + 2η) (1 + 2λ) t2

}
(1 + λ)

2
.

Taking α = 1− η, δ = 1, µ = 0, λ = 0, β = 0 in Theorem 3.1, we obtain result of Altınkaya and Yalçın
[1] the following Corollary 3.5.

Corollary 3.5 Let the function f(z) given by (1.1) be in the class K(η, t). Then for some ξ ∈ R,∣∣a3 − ξa22
∣∣

≤

{
t

1+2η
for ξ ∈ [ξ1, ξ2]

t
1+2η

∣∣∣ 4t2−1
2t + 2(1+3η)t

(1+η)2
− ξ 4t(1+2η)

(1+η)2

∣∣∣ for ξ /∈ [ξ1, ξ2]
,

where

ξ1 =
4
(
η2 + 5η + 2

)
t2 − (1 + 2t) (1 + η)

2

8 (1 + 2η) t2

and

ξ2 =
4
(
η2 + 5η + 2

)
t2 − (1− 2t) (1 + η)

2

8 (1 + 2η) t2

Taking α = 0, λ = 0 and β = 0 in Theorem 3.1, we obtain result of Altınkaya and Yalçın [2] the
following Corollary 3.6.

Corollary 3.6 Let the function f(z) given by (1.1) be in the class L (µ, t) . Then, for some ξ ∈ R,

∣∣a3 − ξa22
∣∣ ≤


t

3−2µ
for ξ ∈ [ξ1, ξ2]

t
3−2µ

∣∣∣∣ 4t2−1
2t − (µ2+5µ−8)t

(2−µ)2
− ξ 4t(3−2µ)

(2−µ)2

∣∣∣∣ for ξ /∈ [ξ1, ξ2]
,

where

ξ1 =
2
(
µ2 − 13µ+ 16

)
t2 − (2− µ)

2
(1 + 2t)

8 (3− 2µ) t2
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and

ξ2 =
2
(
µ2 − 13µ+ 16

)
t2 − (2− µ)

2
(1− 2t)

8 (3− 2µ) t2
.

Taking α = 0 in Theorem 3.1, we obtain following Corollary 3.7.

Corollary 3.7 Let the function f(z) given by (1.1) be in the class F(β,λ) (H, 0, δ, µ) . Then for some ξ ∈ R,

∣∣a3 − ξa22
∣∣

≤


t

(3−2µ)(6λβ+2λ−2β+1)
for ξ ∈ [ξ1, ξ2]

t
(3−2µ)(6λβ+2λ−2β+1)

∣∣∣∣ 4t2−1
2t − (µ2+5µ−8)t

(2−µ)2
− ξ 4t(3−2µ)(6λβ+2λ−2β+1)

(2−µ)2(2λβ+λ−β+1)2

∣∣∣∣ for ξ /∈ [ξ1, ξ2]
,

where

ξ1 =

{
2
(
µ2 − 13µ+ 16

)
t2 − (1 + 2t) (2− µ)

2

8 (3− 2µ) (6λβ + 2λ− 2β + 1) t2

}
(2λβ + λ− β + 1)

2

and

ξ2 =

{
2
(
µ2 − 13µ+ 16

)
t2 − (1− 2t) (2− µ)

2

8 (3− 2µ) (6λβ + 2λ− 2β + 1) t2

}
(2λβ + λ− β + 1)

2
.

Taking α = 0, λ = 0, β = 0 in Theorem 3.1, we obtain the following Corollary 3.8.

Corollary 3.8 Let the function f(z) given by (1.1) be in the class F (H, 0, δ, µ) . Then, for some ξ ∈ R,

∣∣a3 − ξa22
∣∣ ≤


t

3−2µ
for ξ ∈ [ξ1, ξ2]

t
(3−2µ)

∣∣∣∣ 4t2−1
2t − (µ2+5µ−8)t

(2−µ)2
− ξ 4t(3−2µ)

(2−µ)2

∣∣∣∣ for ξ /∈ [ξ1, ξ2]
,

where

ξ1 =

{
2
(
µ2 − 13µ+ 16

)
t2 − (1 + 2t) (2− µ)

2

8 (3− 2µ) t2

}

and

ξ2 =

{
2
(
µ2 − 13µ+ 16

)
t2 − (1− 2t) (2− µ)

2

8 (3− 2µ) t2

}
.

Taking µ = 0, α = 0, λ = 0, β = 0 in Theorem 3.1, we obtain result of Dziok et al. [8] the following
Corollary 3.9.

Corollary 3.9 Let the function f(z) given by (1.1) be in the class H (t) . Then for some ξ ∈ R,

∣∣a3 − ξa22
∣∣ ≤


t
3 for ξ ∈

[
8t2−2t−1

6t2 , 8t2+2t−1
6t2

]∣∣∣ 8t2−1
6 − ξt2

∣∣∣ for ξ /∈
[
8t2−2t−1

6t2 , 8t2+2t−1
6t2

] .
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