

Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/

Research Article

Turk J Math (2021) 45: 1495 – 1505 © TÜBİTAK doi:10.3906/mat-2011-52

On *b*-generalized skew derivations in Banach algebras

Abdul Nadim KHAN^{*}

Department of Mathematics, Faculty of Science & Arts, King Abdulaziz University, Rabigh, Saudi Arabia

Received: 15.11.2020 • Accepted/Published Online: 23.03.2021	•	Final Version: 27.07.2021
--	---	----------------------------------

Abstract: Let \mathscr{A} be a Banach algebra over \mathbb{R} or \mathbb{C} . In this paper, we describe the behavior of recently defined *b*-generalized skew derivations which satisfy certain differential identities on some specific subsets of \mathscr{A} .

Key words: Banach algebra, b- generalized skew derivation

1. Introduction

In this paper, unless otherwise mentioned, \mathscr{A} always denotes an unital prime Banach algebra over \mathbb{R} or \mathbb{C} . A linear map $\delta: \mathscr{A} \to \mathscr{A}$ is said to be a derivation if $\delta(xy) = \delta(x)y + x\delta(y)$ for all $x, y \in \mathscr{A}$. A linear map $\mathscr{F}:\mathscr{A}\to\mathscr{A}$ is called a generalized derivation if there exists a derivation δ of \mathscr{A} such that $\mathscr{F}(xy) = \mathscr{F}(x)y + x\delta(y)$ for all $x, y \in \mathscr{A}$. Let \mathscr{A} be an associative ring and α be an automorphism of \mathscr{A} . A linear mapping $\delta: \mathscr{A} \to \mathscr{A}$ is said to be a skew derivation of \mathscr{A} if $\delta(xy) = \delta(x)y + \alpha(x)\delta(y)$ for all $x, y \in \mathscr{A}$. The derivation δ is uniquely determined by \mathscr{F} , which is called an associated derivation of \mathscr{F} . The definition of generalized skew derivation is a unified notion of skew derivation and generalized derivation, which are considered as classical linear mappings of noncommutative algebras. Let \mathscr{A} be an associative algebra and α be an automorphism of \mathscr{A} . A linear mapping $\mathscr{F}: \mathscr{A} \to \mathscr{A}$ is said to be a generalized skew derivation of \mathscr{A} if $\mathscr{F}(xy) = \mathscr{F}(x)y + \alpha(x)\delta(y)$ for all $x, y \in \mathscr{A}$. In this case, δ is called an associated skew derivation of \mathscr{F} and α is called an associated automorphism of \mathscr{F} . In a recent paper [10], Koşan and Lee proposed that an additive map $\mathscr{F}: \mathscr{R} \to \mathscr{Q}$ is called a left b-generalized derivation, with associated additive mapping δ from \mathscr{R} to \mathscr{Q} , if $\mathscr{F}(xy) = \mathscr{F}(x)y + bx\delta(y)$ for all $x, y \in \mathscr{R}$ and $b \in \mathscr{Q}$, where \mathscr{R} is a prime ring and \mathscr{Q} is the right Martindale quotient ring of \mathscr{R} . In the same paper, it is proved that, if \mathscr{R} is a prime ring, then δ is a derivation of \mathscr{R} . For simplicity of notation, this mapping \mathscr{F} will be called a *b*-generalized derivation with associated pair (b, δ) . Clearly, any generalized derivation with associated derivation δ is a b-generalized derivation with associated pair $(1, \delta)$. Similarly, the mapping $x \to ax + b[x, c]$, for $a, b, c \in \mathcal{Q}$, is a b-generalized derivation with associated pair (b, ad(c)), where ad(c)(x) = [x, c] denotes the inner derivation of \mathscr{R} induced by the element c. More generally, the mapping $x \to ax + qxc$, for $a, c, q \in \mathcal{Q}$, is a b-generalized derivation with associated pair (q, ad(c)). This mapping is called inner *b*-generalized derivation. Moreover, if $\alpha \in Aut(\mathscr{R})$, with $\alpha(x) = qxq^{-1}$ for q an invertible element of \mathcal{Q} , and \mathcal{F} is the inner generalized skew derivation with associated automorphism α , then \mathscr{F} is a *b*-generalized derivation with associated pair $(q, ad(q^{-1}b))$, for a suitable element $b \in \mathscr{Q}$.

²⁰¹⁰ AMS Mathematics Subject Classification: 16W25, 46J10

^{*}Correspondence: abdulnadimkhan@gmail.com

Motivated by the aforementioned definitions, recently the author and his team proved the following result in [9] for skew generalized derivations:

Theorem 1.1 Let \mathscr{A} be a unital prime Banach algebra with centre $\mathscr{Z}(\mathscr{A})$ and Θ_1, Θ_2 be open subsets of $\mathscr{A}, \ \mathscr{F} : \mathscr{A} \to \mathscr{A}$ be a continuous linear generalized skew derivation, and $\mathscr{G} : \mathscr{A} \to \mathscr{A}$ be a continuous linear map. If, for each $x \in \Theta_1, y \in \Theta_2$, there exists an integer m = m(x, y) > 1 such that either $\mathscr{F}((xy)^m) - \mathscr{G}(x^m y^m) \in \mathscr{Z}(\mathscr{A})$ or $\mathscr{F}((xy)^m) - \mathscr{G}(y^m x^m) \in \mathscr{Z}(\mathscr{A})$, then \mathscr{A} is commutative.

Theorem 1.2 Let \mathscr{A} be a unital prime Banach algebra with centre $\mathscr{Z}(\mathscr{A})$ and Θ_1, Θ_2 be open subsets of $\mathscr{A}, \mathscr{F} : \mathscr{A} \to \mathscr{A}$ be a continuous linear generalized skew derivation, and $\mathscr{G} : \mathscr{A} \to \mathscr{A}$ be a continuous linear map. If, for each $x \in \Theta_1, y \in \Theta_2$, there exists an integer m = m(x, y) > 1 such that either $\mathscr{F}((xy)^m) + \mathscr{G}(x^m y^m) \in \mathscr{Z}(\mathscr{A})$ or $\mathscr{F}((xy)^m) - \mathscr{G}(y^m x^m) \in \mathscr{Z}(\mathscr{A})$, then \mathscr{A} is commutative.

In 2018, De Filippis and Wei [5] extended the notion of *b*-generalized derivation to *b*-generalized skew derivation as follows. Let \mathscr{R} be a prime ring, $b \in \mathscr{Q}$, the right Martindale quotient ring of \mathscr{R} , $\delta : \mathscr{R} \to \mathscr{R}$ a linear mapping and α be an automorphism of \mathscr{R} . An additive mapping $\mathscr{F} : \mathscr{R} \to \mathscr{R}$ is called a *b*-generalized skew derivation of \mathscr{R} , with an associated term (b, α, d) if $\mathscr{F}(xy) = \mathscr{F}(x)y + b\alpha(x)\delta(y)$ for all $x, y \in \mathscr{R}$. Moreover, they proved that the linear map δ is a skew derivation with associated automorphism α .

According to the definition of b-generalized skew derivation, we can conclude that general results about b-generalized skew derivations may give useful and powerful corollaries about derivations, generalized derivations, skew derivations, and generalized skew derivations. The definition of b-generalized skew derivations is a unified notion of skew derivation and b-generalized derivation, which are considered as classical linear mappings of associative algebras. Interestingly, every b-generalized skew derivation neither b-generalized derivation nor generalized skew derivation (for example see [4, Section 4]). In light of these interesting facts, we shall establish the following results:

Theorem 1.3 Let \mathscr{A} be a unital noncommutative prime Banach algebra with centre $\mathscr{Z}(\mathscr{A})$ and Θ_1, Θ_2 be open subsets of $\mathscr{A}, \ \mathscr{F} : \mathscr{A} \to \mathscr{A}$ be a continuous linear b-generalized skew derivation, and $\mathscr{G} : \mathscr{A} \to \mathscr{A}$ be a continuous linear map. If, for each $x \in \Theta_1, y \in \Theta_2$, there exists an integer m = m(x, y) > 1 such that either $\mathscr{F}((xy)^m) - \mathscr{G}(x^m y^m) \in \mathscr{Z}(\mathscr{A})$ or $\mathscr{F}((xy)^m) - \mathscr{G}(y^m x^m) \in \mathscr{Z}(\mathscr{A})$, then \mathscr{A} satisfies $s_4(x_1, ..., x_4)$, the standard identity of degree four.

Theorem 1.4 Let \mathscr{A} be a unital noncommutative prime Banach algebra with centre $\mathscr{Z}(\mathscr{A})$ and Θ_1, Θ_2 be open subsets of $\mathscr{A}, \ \mathscr{F} : \mathscr{A} \to \mathscr{A}$ be a continuous linear b-generalized skew derivation, and $\mathscr{G} : \mathscr{A} \to \mathscr{A}$ be a continuous linear map. If, for each $x \in \Theta_1, y \in \Theta_2$, there exists an integer m = m(x, y) > 1 such that either $\mathscr{F}((xy)^m) + \mathscr{G}(x^my^m) \in \mathscr{Z}(\mathscr{A})$ or $\mathscr{F}((xy)^m) - \mathscr{G}(y^mx^m) \in \mathscr{Z}(\mathscr{A})$, then \mathscr{A} satisfies $s_4(x_1, ..., x_4)$, the standard identity of degree four.

2. Preliminaries results

En route to establishing the above mentioned theorems, we recall some well known facts without proof:

Fact 1 ([1]) Let $p(t) = \sum_{r=0}^{n} b_r t^r$ be a polynomial in real variable t for infinite values of t and each $b_r \in \mathscr{A}$. If $p(t) \in \mathscr{M}$ for infinite real values t, then each b_r lies in \mathscr{M} .

Fact 2 ([2]) It is well known that automorphisms, derivations and skew derivations of a prime ring \mathscr{A} can be extended to the right Martindale quotient ring of \mathscr{A} , \mathscr{Q}_r .

Fact 3 ([5], **Remark 1.9**) Every b-generalized skew derivation \mathscr{F} with associated term (b, α, δ) can be extended to \mathscr{Q} and assumes of the form $\mathscr{F}(x) = ax + b\delta(x)$, where $a, b \in \mathscr{Q}$.

We begin our discussion with the following key result, which have been proved in [9]. Nevertheless, for the sake of completeness, here, we would like to provide the proof:

Proposition 2.1 Let \mathscr{A} be a unital prime Banach algebra and Θ_1, Θ_2 be open subsets of $\mathscr{A}, \mathscr{F} : \mathscr{A} \to \mathscr{A}$ and $\mathscr{G} : \mathscr{A} \to \mathscr{A}$ be two continuous linear maps. If, for each $x \in \Theta_1, y \in \Theta_2$, there exists an integer m = m(x, y) > 1 such that either $\mathscr{F}((xy)^m) - \mathscr{G}(x^m y^m) \in \mathscr{M}$ or $\mathscr{F}((xy)^m) - \mathscr{G}(y^m x^m) \in \mathscr{M}$, then the following facts hold simultaneously:

- 1. $\mathscr{F}(x) \mathscr{G}(x) \in \mathscr{M}$ for all $x \in \mathscr{A}$;
- 2. $\mathscr{F}([x,y]) \in \mathscr{M}$ and $\mathscr{G}([x,y]) \in \mathscr{M}$ for all $x, y \in \mathscr{A}$;
- 3. there exists a fixed integer m > 1 such that for all $x, y \in \mathscr{A}$, both $\mathscr{F}((xy)^m x^m y^m) \in \mathscr{M}$ and $\mathscr{F}((xy)^m y^m x^m) \in \mathscr{M}$.

In the proof of above proposition, we adapt the arguments from the proof of [[12], Theorem 1]. However, we omit the details of arguments for brevity.

Proof Fix any $x \in \Theta_1$. For each n > 1 we define the set $U_n = \{y \in \mathscr{A} \mid \mathscr{F}((xy)^n) - \mathscr{G}(x^ny^n) \notin \mathscr{M}$ and $\mathscr{F}((xy)^n) - \mathscr{G}(y^nx^n) \notin \mathscr{M}\}$. It is easy to prove that U_n is open. Thus, by the Baire category theorem, if every U_n is dense then their intersection is also dense, which contradicts the existence of Θ_2 . Hence, there exists a positive integer r such that U_r is not dense. Therefore, there exists a nonempty open set Θ_3 in the complement of U_r such that for all $y \in \Theta_3$ either $\mathscr{F}((xy)^r) - \mathscr{G}(x^ry^r) \in \mathscr{M}$ or $\mathscr{F}((xy)^r) - \mathscr{G}(y^rx^r) \in \mathscr{M}$. Let $e_0 \in \Theta_3$ and $z \in \mathscr{A}$. Then $e_0 + tz \in \Theta_3$ for all sufficiently small real t. Thus, for each such t, we have

$$\mathscr{F}((x(e_0+tz))^r) - \mathscr{G}(x^r(e_0+tz)^r) \in \mathscr{M}$$

$$\tag{2.1}$$

or

$$\mathscr{F}((x(e_0+tz))^r) - \mathscr{G}((e_0+tz)^r x^r) \in \mathscr{M}.$$
(2.2)

Thus at least one of (2.1) and (2.2) is valid for infinitely many t. Suppose (2.1) holds for these t. Then the expression $\mathscr{F}((x(e_0 + tz))^r) - \mathscr{G}(x^r(e_0 + tz)^r)$ can be written as

$$\begin{aligned} \mathscr{F}(\Upsilon_{r,0}(x,e_{0},z)) &- \mathscr{G}(x^{r}\Upsilon_{r,0}'(e_{0},z)) \\ &+ \mathscr{F}(\Upsilon_{r-1,1}(x,e_{0},z))t - \mathscr{G}(x^{r}\Upsilon_{r-1,1}'(e_{0},z))t \\ &+ \dots \\ &+ \mathscr{F}(\Upsilon_{1,r-1}(x,e_{0},z))t^{r-1} - \mathscr{G}(x^{r}\Upsilon_{1,r-1}'(e_{0},z))t^{r-1} \\ &+ \mathscr{F}(\Upsilon_{0,r}(x,e_{0},z))t^{r} - \mathscr{G}(x^{r}\Upsilon_{0,r}'(e_{0},z))t^{r}, \end{aligned}$$

where $\Upsilon_{i,j}(x, e_0, z)$ denotes the sum of all terms in which xe_0 appears exactly *i* times and xz appears exactly *j* times in the expansion of $(x(e_0 + tz))^r$ where *i* and *j* are nonnegative integers such that i + j = r. Similarly, $\Upsilon'_{i,j}(e_0, z)$ is sum of all terms in which e_0 appears exactly *i* times and *z* appears exactly *j* times in the expansion of $(e_0 + tz)^r$, where *i* and *j* are nonnegative integers such that i + j = r. The above expression is a polynomial in *t* and the coefficient of t^r in this polynomial is $\mathscr{F}((xz)^r) - \mathscr{G}(x^r z^r)$. Therefore in view of Fact 1, we have $\mathscr{F}((xz)^r) - \mathscr{G}(x^r z^r) \in \mathscr{M}$. On the other hand, if (2.2) holds for infinitely many *t*, then $\mathscr{F}((xz)^r) - \mathscr{G}(z^r x^r) \in \mathscr{M}$. Thus, given $x \in \Theta_1$ and for all $z \in \mathscr{A}$, there is a positive integer r > 1 depending on *x* such that either $\mathscr{F}((xz)^r) - \mathscr{G}(x^r z^r) \in \mathscr{M}$ or $\mathscr{F}((xz)^r) - \mathscr{G}(z^r x^r) \in \mathscr{M}$. Next, fix $y \in \mathscr{A}$ and for each positive integer *k*, set $V_k = \{e \in \mathscr{A} \mid \mathscr{F}((ey)^k) - \mathscr{G}(e^k y^k) \notin \mathscr{M}$ and $\mathscr{F}((ey)^k) - \mathscr{G}(y^k e^k) \notin \mathscr{M}\}$. Each V_k is open (X). If each V_k is dense, then by the Baire category theorem, their intersection is also dense; which contradicts the existence of the open set Θ_1 . Thus, there is an integer m = m(y) > 1 and a nonempty open subset Θ_4 in the complement of V_m . If $x_0 \in \Theta_4$ and $u \in \mathscr{A}$, then $x_0 + tu \in \Theta_4$ for all sufficiently small real *t*. Hence for positive integer m > 1 either

$$\mathscr{F}\left(((x_0+tu)y)^m\right) - \mathscr{G}\left((x_0+tu)^m y^m\right) \in \mathscr{M}$$

or

$$\mathscr{F}\left(((x_0+tu)y)^m\right) - \mathscr{G}\left(y^m(x_0+tu)^m\right) \in \mathscr{M}$$

for each $u \in \mathscr{A}$ and $x_0 \in \Theta_4$. Arguing as above we see that, for any $y \in \mathscr{A}$ there exists m = m(y) > 1 such that, for any $u \in \mathscr{A}$, either

$$\mathscr{F}((uy)^m) - \mathscr{G}(u^m y^m) \in \mathscr{M}$$

$$\tag{2.3}$$

or

$$\mathscr{F}((uy)^m) - \mathscr{G}(y^m u^m) \in \mathscr{M}.$$
(2.4)

Let S_k , k > 1 be the set of $y \in \mathscr{A}$ such that for each $z \in \mathscr{A}$ either $\mathscr{F}((zy)^k) - \mathscr{G}(z^k y^k) \in \mathscr{M}$ or $\mathscr{F}((zy)^k) - \mathscr{G}(y^k z^k) \in \mathscr{M}$, then the union of S_k will be \mathscr{A} . It can be easily proved that each S_k is closed. Hence again by Baire category theorem some S_n , n > 1 must have a nonempty open subset Θ_5 . Let $y_0 \in \Theta_5$, for all sufficiently small real t and each $v, z \in \mathscr{A}$ either

$$\mathscr{F}\left((z(y_0+tv))^n\right) - \mathscr{G}\left(z^n(y_0+tv)^n\right) \in \mathscr{M}$$

or

$$\mathscr{F}\left((z(y_0+tv))^n\right) - \mathscr{G}\left((y_0+tv)^n z^n\right) \in \mathscr{M}.$$

By the same above argument, we have for each
$$v, z \in \mathscr{A}$$
 either

$$\mathscr{F}((zv)^n) - \mathscr{G}(z^n v^n) \in \mathscr{M}$$

$$\tag{2.5}$$

or

$$\mathscr{F}((zv)^n) - \mathscr{G}(v^n z^n) \in \mathscr{M}.$$
(2.6)

Let e be the unity of \mathscr{A} . Hence, for all real t and for any $x, y \in \mathscr{A}$, either

$$\mathscr{F}\left(((e+tx)y)^n\right) - \mathscr{G}\left((e+tx)^ny^n\right) \in \mathscr{M}$$

or

$$\mathscr{F}\left(((e+tx)y)^n\right) - \mathscr{G}\left(y^n(e+tx)^n\right) \in \mathscr{M}.$$

By the computation of the coefficient of t in the expansion of the above equations and using Fact 1, it follows that, for all $x, y \in \mathscr{A}$, either

$$\mathscr{F}(xy^n + \sum_{k=1}^{n-1} y^k x y^{n-k}) - n\mathscr{G}(xy^n) \in \mathscr{M}$$
(2.7)

or

$$\mathscr{F}(xy^n + \sum_{k=1}^{n-1} y^k x y^{n-k}) - n\mathscr{G}(y^n x) \in \mathscr{M}.$$
(2.8)

Now, taking $\mathscr{F}([(y(e+tx))^n])$ in place of $\mathscr{G}([((e+tx)y)^n])$, we have that, for all $x, y \in \mathscr{A}$, either

$$\mathscr{F}(y^n x + \sum_{k=1}^{n-1} y^k x y^{n-k}) - n\mathscr{G}(x y^n) \in \mathscr{M}$$
(2.9)

or

$$\mathscr{F}(y^n x + \sum_{k=1}^{n-1} y^k x y^{n-k}) - n \mathscr{G}(y^n x) \in \mathscr{M}.$$
(2.10)

Then, at least one of pairs of equations $\{(2.7), (2.9)\}, \{(2.7), (2.10)\}, \{(2.8), (2.9)\}$ and $\{(2.8), (2.10)\}$ must hold.

Firstly, we notice that, for y = e in any one of the equations (2.7) to (2.10), one has that $n\mathscr{F}(x) - n\mathscr{G}(x) \in \mathscr{M}$, that is $\mathscr{F}(x) - \mathscr{G}(x) \in \mathscr{M}$, for any $x \in \mathscr{A}$.

On the other hand, by combining the equations in the pairs $\{(2.7), (2.9)\}$, $\{(2.7), (2.10)\}$, $\{(2.8), (2.9)\}$ and $\{(2.8), (2.10)\}$, we have that, for any $x, y \in \mathscr{A}$, one of the following relation holds:

$$\mathscr{F}([x, y^n]) \in \mathscr{M} \tag{2.11}$$

$$\mathscr{F}([x, y^n]) + n\mathscr{G}([x, y^n]) \in \mathscr{M}$$
(2.12)

$$\mathscr{F}([x,y^n]) - n\mathscr{G}([x,y^n]) \in \mathscr{M}.$$
(2.13)

Replacing y by e + ty in (2.11, 2.12 and 2.13), and using same above arguments, it follows that, for any $x, y \in \mathscr{A}$, one of the following holds:

$$\mathscr{F}([x,y]) \in \mathscr{M} \tag{2.14}$$

$$\mathscr{F}([x,y]) + n\mathscr{G}([x,y]) \in \mathscr{M}$$
(2.15)

$$\mathscr{F}([x,y]) - n\mathscr{G}([x,y]) \in \mathscr{M}.$$
(2.16)

In any case, since n > 1 and $\mathscr{F}(x) - \mathscr{G}(x) \in \mathscr{M}$, for all $x \in \mathscr{A}$, it follows that both $\mathscr{F}([x,y]) \in \mathscr{M}$ and $\mathscr{G}([x,y]) \in \mathscr{M}$, for any $x, y \in \mathscr{A}$. Since $\mathscr{F}(xy) - \mathscr{G}(yx) \in \mathscr{M}$, for any $x, y \in \mathscr{A}$, the relations (2.5) and (2.6) are equivalent. Moreover, since (2.5) and (2.6) hold simultaneously and $\mathscr{F}(x) - \mathscr{G}(x) \in \mathscr{M}$, for all $x \in \mathscr{A}$, then there exists a fixed integer n > 1 such that,

$$\mathscr{F}\left((xy)^n - y^n x^n\right) \in \mathscr{M} \text{ for all } x \in \mathscr{A},$$

and also

$$\mathscr{F}\left((xy)^n - x^n y^n\right) \in \mathscr{M} \text{ for all } x \in \mathscr{A},$$

as required. This completes the proof.

Proof of Theorem 1.3. Since the centre $\mathscr{Z}(\mathscr{A})$ of \mathscr{A} , is also a closed linear subspace of \mathscr{A} , so we can replace $\mathscr{Z}(\mathscr{A})$ by \mathscr{M} . Thus, by Proposition 2.1, we have the following relations:

$$\mathscr{F}(x) - \mathscr{G}(x) \in \mathscr{Z}(\mathscr{A}), \text{ for all } x \in \mathscr{A},$$

$$(2.17)$$

$$\mathscr{F}([x,y]) \in \mathscr{Z}(\mathscr{A}) \text{ for all } x \in \mathscr{A},$$

$$(2.18)$$

$$\mathscr{G}([x,y]) \in \mathscr{Z}(\mathscr{A}), \text{ for all } x, y \in \mathscr{A}.$$
 (2.19)

Moreover there exists a fixed integer m > 1, such that, for any $x, y \in \mathscr{A}$

$$\mathscr{F}((xy)^m - y^m x^m) \in \mathscr{Z}(\mathscr{A}).$$
(2.20)

Suppose, for that sake of a contradiction $[x, y] \notin \mathscr{Z}(\mathscr{A})$, for some $x, y \in \mathscr{A}$. In particular, since \mathscr{A} is prime, by [7, Theorem 1.1.8] there is a commutator which does not commute with [x, y]. Consequently, $\Lambda = [\mathscr{A}, \mathscr{A}]$ is a noncommutative Lie ideal of \mathscr{A} . Since $\mathscr{F}([x, y]) \in \mathscr{Z}(\mathscr{A})$, for any $x, y \in \mathscr{A}$, it follows that $[\mathscr{F}(z), z] = 0$, for any $z \in \Lambda$. Thus Theorem 1.5 in [5] for a = e applies. If the first case holds, that is, if $\mathscr{F}(x) = \lambda x$ for each $x \in \mathscr{A}$, where $\lambda \in \mathscr{C}$ is fixed, then $\mathscr{F} \neq 0$ and the primeness of \mathscr{A} yields $[x, y] \in \mathscr{Z}(\mathscr{A})$, a contradiction. Hence, the second case must hold for \mathscr{F} , that is \mathscr{A} satisfies $s_4(x_1, ..., x_4)$, the standard identity of degree four and there exist $b \in \mathscr{Q}_r$ and $\lambda \in \mathscr{C}$ such that $\mathscr{F}(x) = bx + xb + \lambda x$, for any $x \in \mathscr{A}$. If $b \in \mathscr{C}$, then this case reduces to the first one. Hence, we may assume that $b \notin \mathscr{C}$. From (2.20) it follows that for any $\alpha, \beta, \gamma \in \mathscr{A}$,

$$\left[\alpha, (b+\lambda)\left((\beta\gamma)^m - \gamma^m\beta^m\right) + \left((\beta\gamma)^m - \gamma^m\beta^m\right)b\right] = 0.$$
(2.21)

Consequently, \mathscr{A} satisfies a generalized polynomial identity. Thus, by [3] \mathscr{Q}_r also satisfies the same identity. In case \mathscr{C} is infinite, we obtain that $\mathscr{Q}_r \bigotimes_{\mathscr{C}} \overline{\mathscr{C}}$ satisfies (2.21), where $\overline{\mathscr{C}}$ is the algebraic closure of \mathscr{C} . Since

both \mathscr{Q}_r and $\mathscr{Q}_r \bigotimes_{\mathscr{C}} \overline{\mathscr{C}}$ are centrally closed (Theorems 2.5 and 3.5 in [6]), we may replace \mathscr{Q}_r by either \mathscr{Q}_r or $\mathscr{Q}_r \bigotimes_{\mathscr{C}} \overline{\mathscr{C}}$ depending whether \mathscr{C} is finite or infinite. Thus, we may assume that \mathscr{Q}_r is centrally closed over \mathscr{C} which is either finite or algebraically closed. By Martindale's theorem [11], \mathscr{Q}_r is a primitive ring having a nonzero socle with \mathscr{C} as the associated division ring. In light of Jacobson's theorem ([8], p. 75) \mathscr{A} is isomorphic to a dense ring of linear transformations on some vector space \mathscr{V} over \mathscr{C} .

Since $b \notin \mathscr{C}$, there exists $v \in \mathscr{V}$ such that v, bv are linearly \mathscr{C} -independent. By the Jacobson density theorem there exist $\alpha_0, \beta_0, \gamma_0 \in \mathscr{Q}_r$ such that

$$\alpha_0 v=0, \quad \alpha_0(bv)=v, \quad \beta_0 v=bv, \quad \beta_0(bv)=0, \quad \gamma_0 v=0, \quad \gamma_0(bv)=v.$$

However, then

$$\left[\gamma_0, (b+\lambda)\left((\alpha_0\beta_0)^n - \beta_0^n\alpha_0^n\right) + \left((\alpha_0\beta_0)^n - \beta_0^n\alpha_0^n\right)b\right]v = v \neq 0.$$

From this contradiction, it therefore follows that $[x, y] \in \mathscr{Z}(\mathscr{A})$ for all $x, y \in \mathscr{A}$. Thus \mathscr{A} is commutative by [7, Theorem 1.1.8], a contradiction. This complete the proof.

Proof of Theorem 1.4. By using the same techniques as in Proposition 2.1, we deduce that, for any $x \in \mathscr{A}$, either $\mathscr{F}(x) - \mathscr{G}(x) \in \mathscr{Z}(\mathscr{A})$ or $\mathscr{F}(x) + \mathscr{G}(x) \in \mathscr{Z}(\mathscr{A})$. Moreover, there is a positive integer n > 1 such that, for any $x, y \in \mathscr{A}$, either

$$\mathscr{F}((xy)^n) + \mathscr{G}(x^n y^n) \in \mathscr{Z}(\mathscr{A})$$
(2.22)

or

$$\mathscr{F}((xy)^n) - \mathscr{G}(y^n x^n) \in \mathscr{Z}(\mathscr{A}).$$
(2.23)

Suppose there exists $x \in \mathscr{A}$ such that $\mathscr{F}(x) - \mathscr{G}(x) \in \mathscr{Z}(\mathscr{A})$ and $\mathscr{F}(x) + \mathscr{G}(x) \notin \mathscr{Z}(\mathscr{A})$. Let $y \in \mathscr{A}$ such that $\mathscr{F}(x+y) - \mathscr{G}(x+y) \in \mathscr{Z}(\mathscr{A})$. Then, also $\mathscr{F}(y) - \mathscr{G}(y) \in \mathscr{Z}(\mathscr{A})$ holds. On the other hand, if $\mathscr{F}(x+y) + \mathscr{G}(x+y) \in \mathscr{Z}(\mathscr{A})$, and since $\mathscr{F}(x) + \mathscr{G}(x) \notin \mathscr{Z}(\mathscr{A})$, then also $\mathscr{F}(y) + \mathscr{G}(y) \notin \mathscr{Z}(\mathscr{A})$. Therefore $\mathscr{F}(y) - \mathscr{G}(y) \in \mathscr{Z}(\mathscr{A})$, for any $y \in \mathscr{A}$.

By using a similar argument, one may prove that if there exists $x \in \mathscr{A}$, such that $\mathscr{F}(x) + \mathscr{G}(x) \in \mathscr{Z}(\mathscr{A})$ and $\mathscr{F}(x) - \mathscr{G}(x) \notin \mathscr{Z}(\mathscr{A})$, then $\mathscr{F}(y) + \mathscr{G}(y) \in \mathscr{Z}(\mathscr{A})$, for any $y \in \mathscr{A}$. In other words, either

$$\mathscr{F}(y) - \mathscr{G}(y) \in \mathscr{Z}(\mathscr{A}), \text{ for all } y \in \mathscr{A}$$
 (2.24)

or

$$\mathscr{F}(y) + \mathscr{G}(y) \in \mathscr{Z}(\mathscr{A}), \text{ for all } y \in \mathscr{A}.$$
 (2.25)

For infinitely many real t, by relations (2.22)–(2.23), and for any $x, y \in \mathscr{A}$ we have that either

$$\mathscr{F}\bigg(((e+tx)y)^n\bigg) + \mathscr{G}\bigg((e+tx)^ny^n\bigg) \in \mathscr{Z}(\mathscr{A})$$

or

$$\mathscr{F}\left(((e+tx)y)^n\right) - \mathscr{G}\left(y^n(e+tx)^n\right) \in \mathscr{Z}(\mathscr{A}).$$

Hence, taking coefficient of t in the expansion of above equations and using Fact 1, it follows that for any $x, y \in \mathscr{A}$, either

$$\mathscr{F}(xy^n + \sum_{k=1}^{n-1} y^k x y^{n-k}) + n\mathscr{G}(xy^n) \in \mathscr{Z}(\mathscr{A})$$
(2.26)

or

$$\mathscr{F}(xy^n + \sum_{k=1}^{n-1} y^k x y^{n-k}) - n\mathscr{G}(y^n x) \in \mathscr{Z}(\mathscr{A}).$$
(2.27)

Now, taking $\mathscr{F}((y(e'+tx))^n)$ in place of $\mathscr{G}(((e'+tx)y)^n)$, we see that for any $x, y \in \mathscr{A}$, either

$$\mathscr{F}(y^n x + \sum_{k=1}^{n-1} y^k x y^{n-k}) + n \mathscr{G}(x y^n) \in \mathscr{Z}(\mathscr{A})$$
(2.28)

or

$$\mathscr{F}(y^n x + \sum_{k=1}^{n-1} y^k x y^{n-k}) - n \mathscr{G}(y^n x) \in \mathscr{Z}(\mathscr{A}).$$
(2.29)

Then, at least one of pairs of equations $\{(2.26), (2.28)\}$, $\{(2.26), (2.29)\}$, $\{(2.27), (2.28)\}$ and $\{(2.27), (2.29)\}$ must hold. By comparing the equations in these expressions, it follows that, for any $x, y \in \mathscr{A}$, one of the following holds:

$$\mathscr{F}([x, y^n]) \in \mathscr{Z}(\mathscr{A}) \tag{2.30}$$

$$\mathscr{F}([x, y^n]) + \mathscr{G}(nxy^n + ny^n x) \in \mathscr{Z}(\mathscr{A})$$

$$(2.31)$$

$$\mathscr{F}([x,y^n]) - \mathscr{G}(nxy^n + ny^n x) \in \mathscr{Z}(\mathscr{A}).$$
(2.32)

By proceeding as in Proposition 2.1, and as a consequence of relations (2.30, 2.31 and 2.32) one has that, for any $x, y \in \mathscr{A}$, one of the following holds:

$$\mathscr{F}([x,y]) \in \mathscr{Z}(\mathscr{A}) \tag{2.33}$$

$$\mathscr{F}([x,y]) + \mathscr{G}(nxy + nyx) \in \mathscr{Z}(\mathscr{A})$$
(2.34)

$$\mathscr{F}([x,y]) - \mathscr{G}(nxy + nyx) \in \mathscr{Z}(\mathscr{A}).$$
(2.35)

By the fact that (2.24) or (2.25) holds true, we deduce that for any $x, y \in \mathscr{A}$, one of the following holds:

$$\mathscr{F}([x,y]) \in \mathscr{Z}(\mathscr{A}) \tag{2.36}$$

$$\mathscr{F}([x,y] + nxy + nyx) \in \mathscr{Z}(\mathscr{A})$$
(2.37)

$$\mathscr{G}([x,y] - nxy - nyx) \in \mathscr{Z}(\mathscr{A}).$$
(2.38)

Our aim is to prove that $\mathscr{F}([x,y]) \in \mathscr{Z}(\mathscr{A})$, for any $x, y \in \mathscr{A}$. To do this, we assume there exist $x_0, y_0 \in \mathscr{A}$ such that $\mathscr{F}([x_0,y_0]) \notin \mathscr{Z}(\mathscr{A})$. In this case, since $\mathscr{F}([x_0,y_0+e']) = \mathscr{F}([x_0,y_0]) \notin \mathscr{Z}(\mathscr{A})$ and by the above relations, we have that either

$$\mathscr{F}([x_0, y_0 + e'] + nx_0(y_0 + e') + n(y_0 + e')x_0) \in \mathscr{Z}(\mathscr{A})$$

or

$$\mathscr{F}([x_0, y_0 + e'] - nx_0(y_0 + e') - n(y_0 + e')x_0) \in \mathscr{Z}(\mathscr{A})$$

that is, either

$$\mathscr{F}([x_0, y_0] + nx_0y_0 + ny_0x_0 + 2nx_0) \in \mathscr{Z}(\mathscr{A})$$
(2.39)

or

$$\mathscr{F}([x_0, y_0] - nx_0y_0 - ny_0x_0 - 2nx_0) \in \mathscr{Z}(\mathscr{A}).$$

$$(2.40)$$

Moreover, since $\mathscr{F}([tx_0, e+ty_0]) \notin \mathscr{Z}(\mathscr{A})$, for any real element t, then, by relations (2.39) and (2.40), it follows that either

$$\mathscr{F}\left([tx_0, e+ty_0] + n(tx_0)(e+ty_0) + n(e+ty_0)(tx_0) + 2n(tx_0)\right) \in \mathscr{Z}(\mathscr{A})$$
(2.41)

or

$$\mathscr{F}\left([tx_0, e+ty_0] - n(tx_0)(e+ty_0) - n(e'+ty_0)(tx_0) - 2n(tx_0)\right) \in \mathscr{Z}(\mathscr{A}).$$
(2.42)

By the computation of the coefficient of t and by Fact 1, we get in any case $\mathscr{F}(x_0) \in \mathscr{Z}(\mathscr{A})$.

On the other hand, let $x_1 \in \mathscr{A}$ such that $\mathscr{F}([x_1, y_0]) \in \mathscr{Z}(\mathscr{A})$. Since $\mathscr{F}([x_1 + x_0, y_0]) \notin \mathscr{Z}(\mathscr{A})$, then $\mathscr{F}(x_1 + x_0) \in \mathscr{Z}(\mathscr{A})$ by the above argument, that is $\mathscr{F}(x_1) \in \mathscr{Z}(\mathscr{A})$.

Hence, it is shown that either $\mathscr{F}([\mathscr{A},\mathscr{A}]) \subseteq \mathscr{Z}(\mathscr{A})$ or $\mathscr{F}(\mathscr{A}) \subseteq \mathscr{Z}(\mathscr{A})$. In any case, we may assume that $\mathscr{F}([x,y]) \in \mathscr{Z}(\mathscr{A})$, for any $x, y \in \mathscr{A}$. Moreover, since $\mathscr{F}([x^n, y^n]) \in \mathscr{Z}(\mathscr{A})$, by relations (2.22), (2.23), (2.24) and (2.25), it follows, for any $x, y \in \mathscr{A}$, that either

$$\mathscr{F}((xy)^n) + \mathscr{F}(y^n x^n) \in \mathscr{Z}(\mathscr{A}), \tag{2.43}$$

or

$$\mathscr{F}((xy)^n) - \mathscr{F}(y^n x^n) \in \mathscr{Z}(\mathscr{A}).$$
(2.44)

Starting from (2.43) and (2.44), here we follow the same argument used in the proof of Theorem 1.3, so we omit some details for brevity. Suppose, by contradiction, \mathscr{A} is not commutative, that is $[x,y] \notin \mathscr{Z}(\mathscr{A})$, for some $x, y \in \mathscr{A}$. Therefore, there is a commutator which does not commute with [x,y], so that $\Lambda = [\mathscr{A}, \mathscr{A}]$ is a noncommutative Lie ideal of \mathscr{A} . Since $\mathscr{F}([x,y]) \in \mathscr{Z}(\mathscr{A})$, for any $x, y \in \mathscr{A}$, it follows that $[\mathscr{F}(z), z] = 0$, for any $z \in \Lambda$. Thus by Theorem 1.5 in [5] (for a = e) either $\mathscr{F}(x) = \mu x$, where $\mu \in \mathscr{Z}(\mathscr{A})$ or \mathscr{A} satisfies $s_4(x_1, ..., x_4)$, the standard identity of degree four and there exist $b \in \mathscr{Q}_r$ and $\lambda \in \mathscr{C}$ such that $\mathscr{F}(x) = bx + xb + \lambda x$ for all $x \in \mathscr{A}$.

If the first case occurs, since $\mathscr{F} \neq 0$, so the primeness of \mathscr{A} yields $[x, y] \in \mathscr{Z}(\mathscr{A})$, a contradiction. Hence, the second case must hold and we may assume that $b \notin \mathscr{C}$. By relations (2.43) and (2.44), it follows for any $\alpha, \beta, \gamma \in \mathscr{A}$ that either

$$\left[\alpha, (b+\lambda)\left((\beta\gamma)^n + \gamma^n\beta^n\right) + \left((\beta\gamma)^n + \gamma^n\beta^n\right)b\right] = 0, \qquad (2.45)$$

or

$$\left[\alpha, (b+\lambda)\left((\beta\gamma)^n - \gamma^n\beta^n\right) + \left((\beta\gamma)^n - \gamma^n\beta^n\right)b\right] = 0.$$
(2.46)

In any case, \mathscr{A} satisfies a generalized polynomial identity. As in the proof of Theorem 1.3, we may assume that \mathscr{Q}_r is centrally closed over \mathscr{C} which is either finite or algebraically closed. Moreover, \mathscr{Q}_r is a primitive ring having a nonzero socle with \mathscr{C} as the associated division ring. In light of Jacobson's theorem ([8], p. 75) \mathscr{A} is isomorphic to a dense ring of linear transformations on some vector space \mathscr{V} over \mathscr{C} .

Since $b \notin \mathscr{C}$, there exists $v \in \mathscr{V}$ such that v, bv are linearly \mathscr{C} -independent. By the Jacobson density theorem there exist $\alpha, \beta, \gamma \in \mathscr{Q}_r$ such that

$$\alpha v = 0, \quad \alpha(bv) = v, \quad \beta v = bv, \quad \beta(bv) = 0, \quad \gamma v = 0, \quad \gamma(bv) = v$$

However, both

$$\left[\gamma, (b+\lambda)\left((\alpha\beta)^n + \beta^n\alpha^n\right) + \left((\alpha\beta)^n + \beta^n\alpha^n\right)b\right]v = v \neq 0$$

and

$$\left[\gamma, (b+\lambda)\left((\alpha\beta)^n - \beta^n\alpha^n\right) + \left((\alpha\beta)^n - \beta^n\alpha^n\right)b\right]v = v \neq 0.$$

These last two relations contradict the fact that one of (2.45) and (2.46) must hold. From this contradiction it follows that $[x, y] \in \mathscr{Z}(\mathscr{A})$ for all $x, y \in \mathscr{A}$, this leads to a contradiction again. Thus \mathscr{A} satisfies $s_4(x_1, ..., x_4)$, the standard identity of degree four.

We conclude our paper with following open questions:

Open Questions. Let \mathscr{A} be a semisimple Banach algebra (unital or not) with centre $\mathscr{Z}(\mathscr{A})$, Θ_1, Θ_2 be open subsets of \mathscr{A} . Suppose $\mathscr{F} : \mathscr{A} \to \mathscr{A}$ and $\mathscr{G} : \mathscr{A} \to \mathscr{A}$ two continuous linear *b*-generalized skew derivations of \mathscr{A} . What can be said about the structure of \mathscr{A} and the form of \mathscr{F} and \mathscr{G} in the following cases:

- 1. For each $x \in \Theta_1, y \in \Theta_2$, there exists an integer m = m(x, y) > 1 such that $\mathscr{F}((xy)^m) \mathscr{G}(x^m y^m) \in \mathscr{Z}(\mathscr{A})$ or $\mathscr{F}((xy)^m) \mathscr{G}(y^m x^m) \in \mathscr{Z}(\mathscr{A})$.
- 2. For each $x \in \Theta_1, y \in \Theta_2$, there exists an integer m = m(x, y) > 1 such that $\mathscr{F}((xy)^m) + \mathscr{G}(x^m y^m) \in \mathscr{Z}(\mathscr{A})$ or $\mathscr{F}((xy)^m) \mathscr{G}(y^m x^m) \in \mathscr{Z}(\mathscr{A})$.

References

- [1] Bonsall FF, Duncan J. Complete Normed Algebras. Berlin, Germany: Springer-Verlag, 1973.
- [2] Chang JC. On the identity h(x) = af(x) + g(x)b. Taiwanese Journal of Mathathematics 2003; 7: 103-113. doi: 10.11650/twjm/1500407520
- [3] Chuang CL. GPIs having coefficients in Utumi quotient rings. Proceedings of American Mathematical Society 1988; 103: 723-728. doi: 10.1090/S0002-9939-1988-0947646-4
- [4] De Filippis V. Annihilators and power values of generalized skew derivations on Lie ideals. Canadian Mathematical Bulletin 2016; 59: 258-270. doi: 10.4153/CMB-2015-077-x
- [5] De Filippis V, Wei F. b-generalized skew derivations on Lie ideals. Mediterrenian Journal of Mathematics 2018; 15: 65. doi: 10.1007/s0009-018-1103-2
- [6] Erickson TS, Martindale III WS, Osborn JM. Prime nonassociative algebras. Pacific Journal of Mathematics 1975;
 60: 49-63. doi: 10.2140/pjm.1975.60.49
- [7] Herstein IN. Rings With Involution (Chicago Lectures in Mathematics). Chicago, IL, USA: University of Chicago, 1976.
- [8] Jacobson N. Structure of Rings. Providence, RI, USA: American Mathematical Society, 1964.
- Khan AK, Ali S, Alhazmi H, De Filippis V. On skew derivations and generalized skew derivations in Banach algebras. Quaestiones Mathematicae 2020; 43: 1259-1272. doi: 10.2989/16073606.2019.1607604
- [10] Koşan MT, Lee TK. b-Generalized derivations of semiprime rings having nilpotent values. Journal of Australian Mathematical Society 2014; 96: 326-337. doi: 10.1017/S1446788713000670
- [11] Martindale III WS. Prime rings satisfying a generalized polynomial identity. Journal of Algebra 1969; 12: 576-584. doi: 10.1016/0021-8693(69)90029-5
- Yood B. On commutativity of unital Banach algebras. Bulletin of London Mathematical Society 1991; 23: 278-280. doi: 10.1112/blms/23.3.278