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1. Introduction
In this paper, unless otherwise mentioned, A always denotes an unital prime Banach algebra over R or
C . A linear map δ : A → A is said to be a derivation if δ(xy) = δ(x)y + xδ(y) for all x, y ∈ A . A
linear map F : A → A is called a generalized derivation if there exists a derivation δ of A such that
F (xy) = F (x)y + xδ(y) for all x, y ∈ A . Let A be an associative ring and α be an automorphism of
A . A linear mapping δ : A → A is said to be a skew derivation of A if δ(xy) = δ(x)y + α(x)δ(y) for all
x, y ∈ A . The derivation δ is uniquely determined by F , which is called an associated derivation of F . The
definition of generalized skew derivation is a unified notion of skew derivation and generalized derivation, which
are considered as classical linear mappings of noncommutative algebras. Let A be an associative algebra and
α be an automorphism of A . A linear mapping F : A → A is said to be a generalized skew derivation of
A if F (xy) = F (x)y + α(x)δ(y) for all x, y ∈ A . In this case, δ is called an associated skew derivation of
F and α is called an associated automorphism of F . In a recent paper [10], Koşan and Lee proposed that an
additive map F : R → Q is called a left b -generalized derivation, with associated additive mapping δ from R

to Q , if F (xy) = F (x)y + bxδ(y) for all x, y ∈ R and b ∈ Q , where R is a prime ring and Q is the right
Martindale quotient ring of R . In the same paper, it is proved that, if R is a prime ring, then δ is a derivation
of R . For simplicity of notation, this mapping F will be called a b -generalized derivation with associated
pair (b, δ) . Clearly, any generalized derivation with associated derivation δ is a b -generalized derivation with
associated pair (1, δ) . Similarly, the mapping x → ax+b[x, c] , for a, b, c ∈ Q , is a b -generalized derivation with
associated pair (b, ad(c)) , where ad(c)(x) = [x, c] denotes the inner derivation of R induced by the element c .
More generally, the mapping x → ax + qxc , for a, c, q ∈ Q , is a b -generalized derivation with associated pair
(q, ad(c)) . This mapping is called inner b -generalized derivation. Moreover, if α ∈ Aut(R) , with α(x) = qxq−1

for q an invertible element of Q , and F is the inner generalized skew derivation with associated automorphism
α , then F is a b -generalized derivation with associated pair (q, ad(q−1b)) , for a suitable element b ∈ Q .
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Motivated by the aforementioned definitions, recently the author and his team proved the following result
in [9] for skew generalized derivations:

Theorem 1.1 Let A be a unital prime Banach algebra with centre Z (A ) and Θ1,Θ2 be open subsets of
A , F : A → A be a continuous linear generalized skew derivation, and G : A → A be a continuous
linear map. If, for each x ∈ Θ1, y ∈ Θ2 , there exists an integer m = m(x, y) > 1 such that either
F ((xy)m)− G (xmym) ∈ Z (A ) or F ((xy)m)− G (ymxm) ∈ Z (A ) , then A is commutative.

Theorem 1.2 Let A be a unital prime Banach algebra with centre Z (A ) and Θ1,Θ2 be open subsets of
A , F : A → A be a continuous linear generalized skew derivation, and G : A → A be a continuous
linear map. If, for each x ∈ Θ1, y ∈ Θ2 , there exists an integer m = m(x, y) > 1 such that either
F ((xy)m) + G (xmym) ∈ Z (A ) or F ((xy)m)− G (ymxm) ∈ Z (A ) , then A is commutative.

In 2018, De Filippis and Wei [5] extended the notion of b -generalized derivation to b -generalized skew
derivation as follows. Let R be a prime ring, b ∈ Q , the right Martindale quotient ring of R , δ : R → R a
linear mapping and α be an automorphism of R . An additive mapping F : R → R is called a b -generalized
skew derivation of R , with an associated term (b, α, d) if F (xy) = F (x)y + bα(x)δ(y) for all x, y ∈ R .
Moreover, they proved that the linear map δ is a skew derivation with associated automorphism α .

According to the definition of b -generalized skew derivation, we can conclude that general results about
b -generalized skew derivations may give useful and powerful corollaries about derivations, generalized deriva-
tions, skew derivations, and generalized skew derivations. The definition of b -generalized skew derivations is a
unified notion of skew derivation and b -generalized derivation, which are considered as classical linear mappings
of associative algebras. Interestingly, every b -generalized skew derivation neither b -generalized derivation nor
generalized skew derivation (for example see [4, Section 4]). In light of these interesting facts, we shall establish
the following results:

Theorem 1.3 Let A be a unital noncommutative prime Banach algebra with centre Z (A ) and Θ1,Θ2 be
open subsets of A , F : A → A be a continuous linear b-generalized skew derivation, and G : A → A be
a continuous linear map. If, for each x ∈ Θ1, y ∈ Θ2 , there exists an integer m = m(x, y) > 1 such that
either F ((xy)m)− G (xmym) ∈ Z (A ) or F ((xy)m)− G (ymxm) ∈ Z (A ) , then A satisfies s4(x1, ..., x4) , the
standard identity of degree four.

Theorem 1.4 Let A be a unital noncommutative prime Banach algebra with centre Z (A ) and Θ1,Θ2 be
open subsets of A , F : A → A be a continuous linear b-generalized skew derivation, and G : A → A be
a continuous linear map. If, for each x ∈ Θ1, y ∈ Θ2 , there exists an integer m = m(x, y) > 1 such that
either F ((xy)m) + G (xmym) ∈ Z (A ) or F ((xy)m)− G (ymxm) ∈ Z (A ) , then A satisfies s4(x1, ..., x4) , the
standard identity of degree four.

2. Preliminaries results
En route to establishing the above mentioned theorems, we recall some well known facts without proof:
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Fact 1 ([1]) Let p(t) =
n∑

r=0
brt

r be a polynomial in real variable t for infinite values of t and each br ∈ A . If

p(t) ∈ M for infinite real values t , then each br lies in M .

Fact 2 ([2]) It is well known that automorphisms, derivations and skew derivations of a prime ring A can be
extended to the right Martindale quotient ring of A , Qr .

Fact 3 ([5], Remark 1.9) Every b-generalized skew derivation F with associated term (b, α, δ) can be ex-
tended to Q and assumes of the form F (x) = ax+ bδ(x) , where a, b ∈ Q .

We begin our discussion with the following key result, which have been proved in [9]. Nevertheless, for the sake
of completeness, here, we would like to provide the proof:

Proposition 2.1 Let A be a unital prime Banach algebra and Θ1,Θ2 be open subsets of A , F : A → A and
G : A → A be two continuous linear maps. If, for each x ∈ Θ1, y ∈ Θ2 , there exists an integer m = m(x, y) > 1

such that either F ((xy)m) − G (xmym) ∈ M or F ((xy)m) − G (ymxm) ∈ M , then the following facts hold
simultaneously:

1. F (x)− G (x) ∈ M for all x ∈ A ;

2. F ([x, y]) ∈ M and G ([x, y]) ∈ M for all x, y ∈ A ;

3. there exists a fixed integer m > 1 such that for all x, y ∈ A , both F
(
(xy)m − xmym

)
∈ M and

F
(
(xy)m − ymxm

)
∈ M .

In the proof of above proposition, we adapt the arguments from the proof of [[12], Theorem 1]. However, we
omit the details of arguments for brevity.

Proof Fix any x ∈ Θ1 . For each n > 1 we define the set Un ={y ∈ A | F ((xy)n) − G (xnyn) ̸∈ M and
F ((xy)n) − G (ynxn) ̸∈ M }. It is easy to prove that Un is open. Thus, by the Baire category theorem, if
every Un is dense then their intersection is also dense, which contradicts the existence of Θ2 . Hence, there
exists a positive integer r such that Ur is not dense. Therefore, there exists a nonempty open set Θ3 in the
complement of Ur such that for all y ∈ Θ3 either F ((xy)r) − G (xryr) ∈ M or F ((xy)r) − G (yrxr) ∈ M .
Let e0 ∈ Θ3 and z ∈ A . Then e0 + tz ∈ Θ3 for all sufficiently small real t . Thus, for each such t , we have

F ((x(e0 + tz))r)− G (xr(e0 + tz)r) ∈ M (2.1)

or

F ((x(e0 + tz))r)− G ((e0 + tz)rxr) ∈ M . (2.2)

Thus at least one of (2.1) and (2.2) is valid for infinitely many t . Suppose (2.1) holds for these t . Then the
expression F ((x(e0 + tz))r)− G (xr(e0 + tz)r) can be written as

F
(
Υr,0(x, e0, z)

)
− G

(
xrΥ′

r,0(e0, z)
)

+F
(
Υr−1,1(x, e0, z)

)
t− G

(
xrΥ′

r−1,1(e0, z)
)
t

+ . . .
+F

(
Υ1,r−1(x, e0, z)

)
tr−1 − G

(
xrΥ′

1,r−1(e0, z)
)
tr−1

+F
(
Υ0,r(x, e0, z)

)
tr − G

(
xrΥ′

0,r(e0, z)
)
tr,
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where Υi,j(x, e0, z) denotes the sum of all terms in which xe0 appears exactly i times and xz appears exactly
j times in the expansion of (x(e0+ tz))r where i and j are nonnegative integers such that i+ j = r . Similarly,
Υ′

i,j(e0, z) is sum of all terms in which e0 appears exactly i times and z appears exactly j times in the
expansion of (e0 + tz)r, where i and j are nonnegative integers such that i + j = r . The above expression
is a polynomial in t and the coefficient of tr in this polynomial is F ((xz)r) − G (xrzr) . Therefore in view
of Fact 1, we have F ((xz)r) − G (xrzr) ∈ M . On the other hand, if (2.2) holds for infinitely many t , then
F ((xz)r)− G (zrxr) ∈ M . Thus, given x ∈ Θ1 and for all z ∈ A , there is a positive integer r > 1 depending
on x such that either F ((xz)r)− G (xrzr) ∈ M or F ((xz)r)− G (zrxr) ∈ M . Next, fix y ∈ A and for each
positive integer k , set Vk ={e ∈ A | F ((ey)k) − G (ekyk) ̸∈ M and F ((ey)k) − G (ykek) ̸∈ M }. Each Vk

is open (X). If each Vk is dense, then by the Baire category theorem, their intersection is also dense; which
contradicts the existence of the open set Θ1 . Thus, there is an integer m = m(y) > 1 and a nonempty open
subset Θ4 in the complement of Vm . If x0 ∈ Θ4 and u ∈ A , then x0 + tu ∈ Θ4 for all sufficiently small real
t . Hence for positive integer m > 1 either

F

(
((x0 + tu)y)m

)
− G

(
(x0 + tu)mym

)
∈ M

or

F

(
((x0 + tu)y)m

)
− G

(
ym(x0 + tu)m

)
∈ M

for each u ∈ A and x0 ∈ Θ4 . Arguing as above we see that, for any y ∈ A there exists m = m(y) > 1 such
that, for any u ∈ A , either

F ((uy)m)− G (umym) ∈ M (2.3)

or

F ((uy)m)− G (ymum) ∈ M . (2.4)

Let Sk , k > 1 be the set of y ∈ A such that for each z ∈ A either F ((zy)k) − G (zkyk) ∈ M or
F ((zy)k) − G (ykzk) ∈ M , then the union of Sk will be A . It can be easily proved that each Sk is closed.
Hence again by Baire category theorem some Sn , n > 1 must have a nonempty open subset Θ5 . Let y0 ∈ Θ5 ,
for all sufficiently small real t and each v, z ∈ A either

F

(
(z(y0 + tv))n

)
− G

(
zn(y0 + tv)n

)
∈ M

or

F

(
(z(y0 + tv))n

)
− G

(
(y0 + tv)nzn

)
∈ M .

By the same above argument, we have for each v, z ∈ A either

F ((zv)n)− G (znvn) ∈ M (2.5)

or
F ((zv)n)− G (vnzn) ∈ M . (2.6)
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Let e be the unity of A . Hence, for all real t and for any x, y ∈ A , either

F

(
((e+ tx)y)n

)
− G

(
(e+ tx)nyn

)
∈ M

or

F

(
((e+ tx)y)n

)
− G

(
yn(e+ tx)n

)
∈ M .

By the computation of the coefficient of t in the expansion of the above equations and using Fact 1, it follows
that, for all x, y ∈ A , either

F (xyn +

n−1∑
k=1

ykxyn−k)− nG (xyn) ∈ M (2.7)

or

F (xyn +

n−1∑
k=1

ykxyn−k)− nG (ynx) ∈ M . (2.8)

Now, taking F ([(y(e+ tx))n]) in place of G ([((e+ tx)y)n]) , we have that, for all x, y ∈ A , either

F (ynx+

n−1∑
k=1

ykxyn−k)− nG (xyn) ∈ M (2.9)

or

F (ynx+

n−1∑
k=1

ykxyn−k)− nG (ynx) ∈ M . (2.10)

Then, at least one of pairs of equations {(2.7), (2.9)}, {(2.7), (2.10)}, {(2.8), (2.9)} and {(2.8), (2.10)} must
hold.
Firstly, we notice that, for y = e in any one of the equations (2.7) to (2.10), one has that nF (x)−nG (x) ∈ M ,
that is F (x)− G (x) ∈ M , for any x ∈ A .
On the other hand, by combining the equations in the pairs {(2.7), (2.9)}, {(2.7), (2.10)}, {(2.8), (2.9)} and
{(2.8), (2.10)}, we have that, for any x, y ∈ A , one of the following relation holds:

F ([x, yn]) ∈ M (2.11)

F ([x, yn]) + nG ([x, yn]) ∈ M (2.12)

F ([x, yn])− nG ([x, yn]) ∈ M . (2.13)

Replacing y by e + ty in (2.11, 2.12 and 2.13), and using same above arguments, it follows that, for any
x, y ∈ A , one of the following holds:

F ([x, y]) ∈ M (2.14)
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F ([x, y]) + nG ([x, y]) ∈ M (2.15)

F ([x, y])− nG ([x, y]) ∈ M . (2.16)

In any case, since n > 1 and F (x) − G (x) ∈ M , for all x ∈ A , it follows that both F ([x, y]) ∈ M and
G ([x, y]) ∈ M , for any x, y ∈ A . Since F (xy) − G (yx) ∈ M , for any x, y ∈ A , the relations (2.5) and (2.6)
are equivalent. Moreover, since (2.5) and (2.6) hold simultaneously and F (x)−G (x) ∈ M , for all x ∈ A , then
there exists a fixed integer n > 1 such that,

F

(
(xy)n − ynxn

)
∈ M for all x ∈ A ,

and also

F

(
(xy)n − xnyn

)
∈ M for all x ∈ A ,

as required. This completes the proof. 2

Proof of Theorem 1.3. Since the centre Z (A ) of A , is also a closed linear subspace of A , so we can replace
Z (A ) by M . Thus, by Proposition 2.1, we have the following relations:

F (x)− G (x) ∈ Z (A ), for all x ∈ A , (2.17)

F ([x, y]) ∈ Z (A ) for all x ∈ A , (2.18)

G ([x, y]) ∈ Z (A ), for all x, y ∈ A . (2.19)

Moreover there exists a fixed integer m > 1 , such that, for any x, y ∈ A

F ((xy)m − ymxm) ∈ Z (A ). (2.20)

Suppose, for that sake of a contradiction [x, y] /∈ Z (A ) , for some x, y ∈ A . In particular, since A is prime,
by [7, Theorem 1.1.8] there is a commutator which does not commute with [x, y] . Consequently, Λ = [A ,A ]

is a noncommutative Lie ideal of A . Since F ([x, y]) ∈ Z (A ) , for any x, y ∈ A , it follows that [F (z), z] = 0 ,
for any z ∈ Λ . Thus Theorem 1.5 in [5] for a = e applies. If the first case holds, that is, if F (x) = λx for each
x ∈ A , where λ ∈ C is fixed, then F ̸= 0 and the primeness of A yields [x, y] ∈ Z (A ) , a contradiction.
Hence, the second case must hold for F , that is A satisfies s4(x1, ..., x4) , the standard identity of degree four
and there exist b ∈ Qr and λ ∈ C such that F (x) = bx + xb + λx , for any x ∈ A . If b ∈ C , then this case
reduces to the first one. Hence, we may assume that b /∈ C . From (2.20) it follows that for any α, β, γ ∈ A ,[

α, (b+ λ)

(
(βγ)m − γmβm

)
+

(
(βγ)m − γmβm

)
b

]
= 0. (2.21)

Consequently, A satisfies a generalized polynomial identity. Thus, by [3] Qr also satisfies the same identity.
In case C is infinite, we obtain that Qr

⊗
C C satisfies (2.21), where C is the algebraic closure of C . Since
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both Qr and Qr

⊗
C C are centrally closed (Theorems 2.5 and 3.5 in [6]), we may replace Qr by either Qr

or Qr

⊗
C C depending whether C is finite or infinite. Thus, we may assume that Qr is centrally closed over

C which is either finite or algebraically closed. By Martindale’s theorem [11], Qr is a primitive ring having a
nonzero socle with C as the associated division ring. In light of Jacobson’s theorem ([8], p. 75) A is isomorphic
to a dense ring of linear transformations on some vector space V over C .
Since b /∈ C , there exists v ∈ V such that v, bv are linearly C -independent. By the Jacobson density theorem
there exist α0, β0, γ0 ∈ Qr such that

α0v = 0, α0(bv) = v, β0v = bv, β0(bv) = 0, γ0v = 0, γ0(bv) = v.

However, then [
γ0, (b+ λ)

(
(α0β0)

n − βn
0 α

n
0

)
+

(
(α0β0)

n − βn
0 α

n
0

)
b

]
v = v ̸= 0.

From this contradiction, it therefore follows that [x, y] ∈ Z (A ) for all x, y ∈ A . Thus A is commutative by
[7, Theorem 1.1.8], a contradiction. This complete the proof.
Proof of Theorem 1.4. By using the same techniques as in Proposition 2.1, we deduce that, for any x ∈ A ,
either F (x)− G (x) ∈ Z (A ) or F (x) + G (x) ∈ Z (A ) . Moreover, there is a positive integer n > 1 such that,
for any x, y ∈ A , either

F ((xy)n) + G (xnyn) ∈ Z (A ) (2.22)

or
F ((xy)n)− G (ynxn) ∈ Z (A ). (2.23)

Suppose there exists x ∈ A such that F (x) − G (x) ∈ Z (A ) and F (x) + G (x) /∈ Z (A ) . Let y ∈ A

such that F (x + y) − G (x + y) ∈ Z (A ) . Then, also F (y) − G (y) ∈ Z (A ) holds. On the other hand, if
F (x+ y) + G (x+ y) ∈ Z (A ) , and since F (x) + G (x) /∈ Z (A ) , then also F (y) + G (y) /∈ Z (A ) . Therefore
F (y)− G (y) ∈ Z (A ) , for any y ∈ A .
By using a similar argument, one may prove that if there exists x ∈ A , such that F (x) + G (x) ∈ Z (A ) and
F (x)− G (x) /∈ Z (A ) , then F (y) + G (y) ∈ Z (A ) , for any y ∈ A .
In other words, either

F (y)− G (y) ∈ Z (A ), for all y ∈ A (2.24)

or

F (y) + G (y) ∈ Z (A ), for all y ∈ A . (2.25)

For infinitely many real t , by relations (2.22)–(2.23), and for any x, y ∈ A we have that either

F

(
((e+ tx)y)n

)
+ G

(
(e+ tx)nyn

)
∈ Z (A )

or

F

(
((e+ tx)y)n

)
− G

(
yn(e+ tx)n

)
∈ Z (A ).
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Hence, taking coefficient of t in the expansion of above equations and using Fact 1, it follows that for any
x, y ∈ A , either

F (xyn +

n−1∑
k=1

ykxyn−k) + nG (xyn) ∈ Z (A ) (2.26)

or

F (xyn +

n−1∑
k=1

ykxyn−k)− nG (ynx) ∈ Z (A ). (2.27)

Now, taking F ((y(e′ + tx))n) in place of G (((e′ + tx)y)n) , we see that for any x, y ∈ A , either

F (ynx+

n−1∑
k=1

ykxyn−k) + nG (xyn) ∈ Z (A ) (2.28)

or

F (ynx+

n−1∑
k=1

ykxyn−k)− nG (ynx) ∈ Z (A ). (2.29)

Then, at least one of pairs of equations {(2.26), (2.28)}, {(2.26), (2.29)}, {(2.27), (2.28)} and {(2.27), (2.29)}
must hold. By comparing the equations in these expressions, it follows that, for any x, y ∈ A , one of the
following holds:

F ([x, yn]) ∈ Z (A ) (2.30)

F ([x, yn]) + G (nxyn + nynx) ∈ Z (A ) (2.31)

F ([x, yn])− G (nxyn + nynx) ∈ Z (A ). (2.32)

By proceeding as in Proposition 2.1, and as a consequence of relations (2.30, 2.31 and 2.32) one has that, for
any x, y ∈ A , one of the following holds:

F ([x, y]) ∈ Z (A ) (2.33)

F ([x, y]) + G (nxy + nyx) ∈ Z (A ) (2.34)

F ([x, y])− G (nxy + nyx) ∈ Z (A ). (2.35)
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By the fact that (2.24) or (2.25) holds true, we deduce that for any x, y ∈ A , one of the following holds:

F ([x, y]) ∈ Z (A ) (2.36)

F ([x, y] + nxy + nyx) ∈ Z (A ) (2.37)

G ([x, y]− nxy − nyx) ∈ Z (A ). (2.38)

Our aim is to prove that F ([x, y]) ∈ Z (A ) , for any x, y ∈ A . To do this, we assume there exist x0, y0 ∈ A

such that F ([x0, y0]) /∈ Z (A ) . In this case, since F ([x0, y0 + e′]) = F ([x0, y0]) /∈ Z (A ) and by the above
relations, we have that either

F ([x0, y0 + e′] + nx0(y0 + e′) + n(y0 + e′)x0) ∈ Z (A )

or
F ([x0, y0 + e′]− nx0(y0 + e′)− n(y0 + e′)x0) ∈ Z (A )

that is, either

F ([x0, y0] + nx0y0 + ny0x0 + 2nx0) ∈ Z (A ) (2.39)

or

F ([x0, y0]− nx0y0 − ny0x0 − 2nx0) ∈ Z (A ). (2.40)

Moreover, since F ([tx0, e+ty0]) /∈ Z (A ) , for any real element t , then, by relations (2.39) and (2.40), it follows
that either

F

(
[tx0, e+ ty0] + n(tx0)(e+ ty0) + n(e+ ty0)(tx0) + 2n(tx0)

)
∈ Z (A ) (2.41)

or

F

(
[tx0, e+ ty0]− n(tx0)(e+ ty0)− n(e′ + ty0)(tx0)− 2n(tx0)

)
∈ Z (A ). (2.42)

By the computation of the coefficient of t and by Fact 1, we get in any case F (x0) ∈ Z (A ) .
On the other hand, let x1 ∈ A such that F ([x1, y0]) ∈ Z (A ) . Since F ([x1 + x0, y0]) /∈ Z (A ) , then
F (x1 + x0) ∈ Z (A ) by the above argument, that is F (x1) ∈ Z (A ) .
Hence, it is shown that either F ([A ,A ]) ⊆ Z (A ) or F (A ) ⊆ Z (A ) . In any case, we may assume that
F ([x, y]) ∈ Z (A ) , for any x, y ∈ A . Moreover, since F ([xn, yn]) ∈ Z (A ) , by relations (2.22), (2.23), (2.24)
and (2.25), it follows, for any x, y ∈ A , that either

F ((xy)n) + F (ynxn) ∈ Z (A ), (2.43)

or
F ((xy)n)− F (ynxn) ∈ Z (A ). (2.44)
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Starting from (2.43) and (2.44), here we follow the same argument used in the proof of Theorem 1.3, so we
omit some details for brevity. Suppose, by contradiction, A is not commutative, that is [x, y] /∈ Z (A ) , for
some x, y ∈ A . Therefore, there is a commutator which does not commute with [x, y] , so that Λ = [A ,A ] is
a noncommutative Lie ideal of A . Since F ([x, y]) ∈ Z (A ) , for any x, y ∈ A , it follows that [F (z), z] = 0 ,
for any z ∈ Λ . Thus by Theorem 1.5 in [5] (for a = e ) either F (x) = µx , where µ ∈ Z (A ) or A

satisfies s4(x1, ..., x4) , the standard identity of degree four and there exist b ∈ Qr and λ ∈ C such that
F (x) = bx+ xb+ λx for all x ∈ A .
If the first case occurs, since F ̸= 0 , so the primeness of A yields [x, y] ∈ Z (A ) , a contradiction. Hence,
the second case must hold and we may assume that b /∈ C . By relations (2.43) and (2.44), it follows for any
α, β, γ ∈ A that either [

α, (b+ λ)

(
(βγ)n + γnβn

)
+

(
(βγ)n + γnβn

)
b

]
= 0, (2.45)

or [
α, (b+ λ)

(
(βγ)n − γnβn

)
+

(
(βγ)n − γnβn

)
b

]
= 0. (2.46)

In any case, A satisfies a generalized polynomial identity. As in the proof of Theorem 1.3, we may assume that
Qr is centrally closed over C which is either finite or algebraically closed. Moreover, Qr is a primitive ring
having a nonzero socle with C as the associated division ring. In light of Jacobson’s theorem ([8], p. 75) A is
isomorphic to a dense ring of linear transformations on some vector space V over C .
Since b /∈ C , there exists v ∈ V such that v, bv are linearly C -independent. By the Jacobson density theorem
there exist α, β, γ ∈ Qr such that

αv = 0, α(bv) = v, βv = bv, β(bv) = 0, γv = 0, γ(bv) = v.

However, both [
γ, (b+ λ)

(
(αβ)n + βnαn

)
+

(
(αβ)n + βnαn

)
b

]
v = v ̸= 0

and [
γ, (b+ λ)

(
(αβ)n − βnαn

)
+

(
(αβ)n − βnαn

)
b

]
v = v ̸= 0.

These last two relations contradict the fact that one of (2.45) and (2.46) must hold. From this contradiction it
follows that [x, y] ∈ Z (A ) for all x, y ∈ A , this leads to a contradiction again. Thus A satisfies s4(x1, ..., x4) ,
the standard identity of degree four.
We conclude our paper with following open questions:

Open Questions. Let A be a semisimple Banach algebra (unital or not) with centre Z (A ), Θ1,Θ2 be open
subsets of A . Suppose F : A → A and G : A → A two continuous linear b -generalized skew derivations of
A . What can be said about the structure of A and the form of F and G in the following cases:

1. For each x ∈ Θ1, y ∈ Θ2 , there exists an integer m = m(x, y) > 1 such that F ((xy)m) − G (xmym) ∈
Z (A ) or F ((xy)m)− G (ymxm) ∈ Z (A ) .

2. For each x ∈ Θ1, y ∈ Θ2 , there exists an integer m = m(x, y) > 1 such that F ((xy)m) + G (xmym) ∈
Z (A ) or F ((xy)m)− G (ymxm) ∈ Z (A ) .
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