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Abstract: In this paper, the Bergström inequality is studied, and a refinement of this inequality is obtained by
performing the optimality conditions based on abstract concavity. Some numerical experiments are given to illustrate
the efficacy of the refinement.
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1. Introduction
The refinements or extensions of inequalities take place widely in inequality theory. There are many approaches
or techniques to obtain new versions of inequalities and studies on the equivalences of inequalities (See [3,
8, 10, 12]). Some of these approaches are based on the convexity of functions as in Jensen type, Hermite-
Hadamard type inequalities. In recent years, new convexity types have been developed (See [4, 15, 19]).
Many new inequalities and their versions, such as integral, fractional integral, and Hermite-Hadamard type
inequalities, have been obtained for the function classes of various convexity types by different authors in
[2, 5, 6, 11, 13, 15, 18, 20, 23–27]. Also, sharper versions of the well-known discrete inequalities have been
derived by means of the results of abstract convexity in [1, 16, 20–22]. In [1] and [20], the sharper versions
for weighted arithmetic, geometric, and harmonic mean inequalities and Hölder inequality are derived with the
help of the results in [16]. In this study, we give a refinement of the Bergström inequality.

In [15], A.M. Rubinov gives the definition of abstract concave function as follows:
Let H be the class of functions on Ω ⊂ Rn . If there exists a function h ∈ H such that h ≥ f , it is said

that f : Ω → R ∪ {−∞} is majorized by H .

Definition 1.1 A function f : Ω → R ∪ {−∞} majorized by H is called abstract concave with respect to H

(or H − concave) if there exists a set U ⊂ H such that

f(x) = inf
h∈U

h(x)

for all x ∈ Ω .
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In [16], the optimality conditions for the function f that is abstract concave function with respect to H

where

H =
{
h : X → R

∣∣∣a > 0, l ∈ X, c ∈ R, h(x) = a ‖x‖2 + 〈l, x〉+ c
}

are considered and the following result is obtained:

Theorem 1.2 [16] Let ‖.‖ and ‖.‖◦ be two norms on Rn . Let Ω be the subset of Rn with nonempty interior
and let f ∈ C1 (Ω) . Suppose that x 7−→ ∇f(x) is a Lipschitz mapping on Ω and

K := sup
x,y∈Ω
x ̸=y

‖∇f(x)−∇f(y)‖
‖x− y‖

< ∞.

Let f have global minimum at x∗ ∈ int Ω . Consider the ball

B◦(x
∗, r) = {x : ‖x− x∗‖◦ ≤ r} ⊂ intΩ

and
M := max {‖∇f(x)‖◦ : x ∈ B◦(x

∗, r)} .

Let q be a positive number such that B◦(x
∗, r + q) ⊂ Ω and let a ≥ max

(
K,

M

2q

)
. Then

1

4a
‖∇f(x)‖2 ≤ f(x)− f(x∗), x ∈ B◦(x

∗, r).

Theorem 1.2 can be used to obtain sharper versions of well-known inequalities in such a way that each
inequality can be written in the form of f(x) ≥ 0 , also if the points satisfying the equation f(x) = 0 are known,
which are also global minimum points of f , then the theorem can be applied to suitable inequalities. In this
paper, we will apply the theorem to obtain a refinement of the Bergström inequality. This inequality is given
as follows:

For xk ∈ R and ak > 0, k ∈ {1, 2, ..., n} ,

x2
1

a1
+

x2
2

a2
+ · · ·+ x2

n

an
≥ (x1 + x2 + · · ·+ xn)

2

a1 + a2 + · · ·+ an

holds. Equality occurs if and only if xk = λak for k ∈ {1, 2, ..., n} and λ ∈ R .
Bergström inequality has stimulated several mathematicians’ interest, and various extensions, refine-

ments, and proofs of the inequality have been provided. We refer to [7, 9, 14, 17, 28, 29] and the references
given therein.

In this paper, a refinement of this inequality for real numbers xk is obtained.

2. Main results
Theorem 1.2 has been used to obtain the refinements of some inequalities in [1, 20]. Likewise, by means of the
same theorem, the refined version of the Bergström inequality under certain conditions is given below.
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Theorem 2.1 If xk ∈ R and ak > 0, k ∈ {1, 2, ..., n} , then

n∑
i=1

x2
i

ai
≥

(
n∑

i=1

xi

)2

n∑
i=1

ai

+
1

2

 n∑
k=1

a−2
k − 2

(
n∑

i=1

ai

)−1 n∑
k=1

a−1
k + n2

(
n∑

i=1

ai

)−2
− 1

2 n∑
k=1

xk

ak
−

n∑
i=1

xi

n∑
i=1

ai


2

.

Proof Let a1, ..., an and λ be positive numbers. Consider the function f on Rn such that

f(x) =

n∑
i=1

x2
i

ai
−

(
n∑

i=1

xi

)2

n∑
i=1

ai

.

The function f has the global minimum at the points x such that xi = λai . Taking into account Theorem 1.2
for f(x) , we can sharpen the Bergström inequality. Some elementary calculations imply that

∇f(x) = 2

x1

a1
−

n∑
i=1

xi

n∑
i=1

ai

,
x2

a2
−

n∑
i=1

xi

n∑
i=1

ai

, · · · , xn

an
−

n∑
i=1

xi

n∑
i=1

ai


whence

‖∇f(x)‖2 = 4

n∑
k=1

xk

ak
−

n∑
i=1

xi

n∑
i=1

ai


2

.

Assume ‖.‖◦ as maximum norm ‖.‖∞ , consider the set

Vλ,d = B∞(λa,d) = {x ∈ Rn : ‖x− λa‖∞ ≤ d}

= {x ∈ Rn : λai − d ≤ xi ≤ ayi + d, i = 1, ..., n}

where a = (a1, a2, . . . , an). Let us define ρk(x) =
xk

ak
−

n∑
i=1

xi

n∑
i=1

ai

and estimate ‖∇ρk(x)‖ for x ∈ Vλ,d to show that

∇f(x) is Lipschitz mapping on Vλ,d .

∂ρk
∂xk

(x) =
1

ak
− 1

n∑
i=1

ai

,

∂ρk
∂xj

(x) = − 1
n∑

i=1

ai

(k 6= j)

so

‖∇ρk(x)‖ =

 1

a2k
− 2

ak
n∑

i=1

ai

+ n

(
n∑

i=1

ai

)−2


1
2

. (2.1)
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Assume that x, z ∈ Vλ,d . By means of the mean value theorem and Cauchy-Schwarz inequality, it can be
concluded that there exist numbers θi ∈ (0, 1) for i = 1, 2, ..., n such that

‖∇f(x)−∇f(z)‖ = 2 ‖[ρ1(x)− ρ1(z)] , [ρ2(x)− ρ2(z)] , ..., [ρn(z)− ρn(z)]‖

= 2

(
n∑

k=1

[ρk(x)− ρk(z)]
2

) 1
2

= 2

(
n∑

k=1

[∇ρk(x+ θk(z − x))(x− z)]
2

) 1
2

≤ 2

(
n∑

k=1

‖∇ρk(x+ θk(z − x))‖2
) 1

2

‖x− z‖

= 2

 n∑
k=1

 1

a2k
− 2

ak
n∑

i=1

ai

+ n

(
n∑

i=1

ai

)−2




1
2

‖x− z‖

= 2

 n∑
k=1

1

a2k
− 2

n∑
i=1

ai

n∑
k=1

1

ak
+ n2

(
n∑

i=1

ai

)−2


1
2

‖x− z‖ .

Now we have
‖∇f(x)−∇f(z)‖ ≤ A ‖x− z‖ , x, z ∈ Vλ,d

where

A = 2

 n∑
k=1

a−2
k − 2

(
n∑

i=1

ai

)−1 n∑
k=1

a−1
k + n2

(
n∑

i=1

ai

)−2
 1

2

.

In conclusion, the mapping x → ∇f(x) is Lipschitz with the constant K ≤ A.

Let r ∈ (0, d) and q = d− r . We can estimate M = max {‖∇f(x)‖∞ : x ∈ Vλ,r} as follows:

M = max
x∈Vλ,r

{‖∇f(x)‖∞} = 2 max
x∈Vλ,r

 max
1≤k≤n

∣∣∣∣∣∣∣∣
xk

ak
−

n∑
i=1

xi

n∑
i=1

ai

∣∣∣∣∣∣∣∣


≤ 2r max
1≤k≤n


1

ak
+

n
n∑

i=1

ai


≡ 2r


1

min
1≤k≤n

ak
+

n
n∑

i=1

ai

 = M0.
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Now we can determine the number a such that a ≥ max

(
K,

M

2q

)
. Since lim

d→r+

M0

2(d− r)
= +∞ and the

function d 7−→ M0

2(d− r)
is continuous on (r, λ) , we can set the number a in Theorem 1.2 as

a = min
r<d<λ

max

{
A,

M0

2(d− r)

}
= A.

Applying Theorem 1.2, we conclude that

n∑
i=1

x2
i

ai
≥

(
n∑

i=1

xi

)2

n∑
i=1

ai

+
1

A

n∑
k=1

xk

ak
−

n∑
i=1

xi

n∑
i=1

ai


2

for x ∈ Vλ,r. (2.2)

It is seen that (2.1) is independent of the values of x, whence A is independent of x. On the other hand, M0

changes with respect to r , but it does not affect the determination of a since M0

2(d− r)
→ ∞ as d → r+ . Thus,

we can deduce that (2.2) is valid for all x ∈ R . 2

Remark 2.2 Assuming λ = 1 and r = max
k

|xk − ak|+ c for positive numbers ak, c and real numbers xk , one

can determine the appropriate region Ω to which theorem is applied.

3. Numerical examples
In this section, we present some numerical examples to see the numerical efficacy of sharper version of the
Bergström inequality. Let f be a function as denoted in the proof and let

u(x) =
1

2

 n∑
k=1

a−2
k − 2

(
n∑

i=1

ai

)−1 n∑
k=1

a−1
k + n2

(
n∑

i=1

ai

)−2
− 1

2 n∑
k=1

xk

ak
−

n∑
i=1

xi

n∑
i=1

ai


2

.

Since the amount of u(x) can increase with respect to ak values and n , we present u(x)
f(x) as relative

sharpening ratio to see the efficacy of the proposed inequality.
In Table 1, we choose ai and xk as positive numbers in increasing order for different n values.

Table 1. ai = i, xi = i3

n ≈ f(x) ≈ u(x) ≈ u(x)
f(x) (%)

5 1.050× 103 2.0141× 102 19.14

10 5.445× 104 5.445× 103 10

20 3.072× 106 1.593× 105 5.18

40 1.836× 108 4.870× 106 2.65

50 6.903× 108 1.473× 107 2.12
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In Table 2, we choose ai in increasing order as in Table 1 and xk with alternating sign.

Table 2. ai = i, xi = (−1)ii3

n ≈ f(x) ≈ u(x) ≈ u(x)
f(x) (%)

5 3.988× 103 4.271× 102 10.71

10 2.148× 105 1.040× 104 4.84

20 1.224× 107 2.882× 105 2.35

40 7.336× 108 8.577× 106 1.16

50 2.760× 109 2.580× 107 0.93

In Table 3, we choose ai and xi nonmonotonic.

Table 3. ai = 100 |sin i| , xi = i3 sin i

n ≈ f(x) ≈ u(x) ≈ u(x)
f(x) (%)

5 1.147× 102 1.165× 101 10.01

10 1.120× 104 1.130× 103 10

20 1.402× 106 8.762× 104 6.25

40 5.208× 107 3.493× 105 0.67

50 7.675× 107 4.679× 105 0.61

According to the numerical examples, one can empirically deduce that when n increases, the sharpening
ratio decreases. One reason for this may be the place of n in u(x) . The more n increases, the more u(x)

decreases, so does sharpening ratio.
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