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Abstract: Let Cn be the semigroup of all order-preserving and decreasing transformations on X = {1, . . . , n} under its
natural order, and let N(Cn) be the subsemigroup of all nilpotent elements of Cn . For 1 ≤ r ≤ n− 1 , let

N(Cn,r) = {α ∈ N(Cn) : |im (α)| ≤ r},

Nr(Cn) = {α ∈ N(Cn) : α is an m-potent for any 1 ≤ m ≤ r}.

In this paper we find the cardinality and the rank of the subsemigroup N(Cn,r) of Cn . Moreover, we show that the set
Nr(Cn) is a subsemigroup of N(Cn) and then, we find a lower bound for the rank of Nr(Cn) .

Key words: Order-preserving and decreasing transformation, nilpotent subsemigroups, m -potent element, generating
set, rank

1. Introduction
Let Tn be the (full) transformation semigroup (under composition) on Xn = {1, . . . , n} under its natural order.
A transformation α ∈ Tn is called order-preserving if x ≤ y implies xα ≤ yα for all x, y ∈ Xn and decreasing
(increasing) if xα ≤ x (xα ≥ x) for all x ∈ Xn . The subsemigroup of all order-preserving transformations in
Tn is denoted by On , and the subsemigroup of all order-preserving and decreasing (increasing) transformations
in Tn is denoted by Cn (C+

n ). It is a well known fact that Cn and C+
n are isomorphic semigroups (for example,

see Remarks on [10, page 290]). There have been many applications of Cn , especially in computer science. For
example, to find the cardinality, it is given a specific connection between Cn and the set of all binary trees on
n source nodes in [10].

The index and the period of an element a of a finite semigroup are defined as the smallest values of m ≥ 1

and r ≥ 1 such that am+r = am . In particular, an element with index m and period 1 is called an m-potent
element. An element e of a semigroup S is called idempotent if e2 = e , and the set of all idempotents in S

is denoted by E(S) . An element a of a finite semigroup S with zero is called nilpotent if am = 0 for some
positive integer m , and moreover, if am−1 ̸= 0 , then a is called an m-nilpotent element of S . The set of all
nilpotent elements of S is denoted by N(S) . A semigroup S with 0 is called nilpotent if there exists m ∈ Z+

such that Sm = {0} . It is clear that the m -potent and m -nilpotent elements are equivalent in any nilpotent
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semigroup. For any non-empty subset A of a semigroup S , let ⟨A⟩ denote the subsemigroup generated by A ,
i.e. the smallest subsemigroup of S containing A . If there exists a finite subset A of S such that S = ⟨A⟩ ,
then S is called a finitely generated semigroup. The rank of a finitely generated semigroup S is defined by

rank (S) = min{ |A| : ⟨A⟩ = S}.

An element a in S \ S2 (if there exists) is called indecomposable. It is clear that every generating set must
contain all indecomposable elements. In other words, if S = ⟨A⟩ , then S \ S2 ⊆ A . Therefore, if S = ⟨S \ S2⟩ ,
then S \ S2 is the minimum generating set of S , and so rank (S) = |S \ S2| .

The image, the fix and the kernel of any transformation α in Tn are defined by

im (α) = {xα : x ∈ Xn},

fix (α) = {x ∈ Xn : xα = x} and

ker(α) = {(x, y) : xα = yα for x, y ∈ Xn},

respectively. Let ε ∈ Cn be the constant map to 1 . Then ε is the zero element of Cn , and moreover, an element
α in Cn is nilpotent if and only if fix (α) = {1} (see [11, Lemma 2.2]). It is also a well-known fact that α ∈ Tn
is an idempotent if and only if fix (α) = im (α) . A partition P = {A1, . . . , Ar} of Xn for 1 ≤ r ≤ n is called an
ordered partition, and written P = (A1 < · · · < Ar) , if x < y for all x ∈ Ai and y ∈ Ai+1 (1 ≤ i ≤ r− 1), (the
idea of ordering a family of sets appeared on page 335 of [14]). For any α ∈ N(Cn) , let im (α) = {a1, . . . , ar}
with 1 = a1 < a2 < · · · < ar , and let Ai = aiα

−1 for every 1 ≤ i ≤ r . Then the set of kernel classes of α ,
K(α) = Xn/ ker(α) = {A1, . . . , Ar} , is an ordered partition of Xn . Moreover, since α is order-preserving, each
class Ai is convex, and since α is decreasing, ai ≤ xα for all x ∈ Ai for every 1 ≤ i ≤ r . In particular, for all
x ∈ A1 , xα = 1 . For α ∈ N(Cn) , since fix (α) = {1} , it follows that ai ≨ xα for all x ∈ Ai and all 2 ≤ i ≤ r .
If we use the following tabular form:

α =

(
A1 A2 · · · Ar

1 a2 · · · ar

)
, (1.1)

then it is clear that α ∈ N(Cn) is r -potent (and equivalently r -nilpotent) for any 1 ≤ r ≤ n− 1 if and only if
ai ∈ Ai−1 for each 2 ≤ i ≤ r .

Recall that nth Catalan number Cn and Narayana number N(n, r) are defined by

Cn =
1

n+ 1

(
2n

n

)
=

1

n

(
2n

n− 1

)
for n ≥ 1, and

N(n, r) =
1

n

(
n

r

)(
n

r − 1

)
=

1

n− r + 1

(
n− 1

r − 1

)(
n

r

)
for 1 ≤ r ≤ n,

respectively. It is well known that
n∑

r=1
N(n, r) = Cn (see, [8]). Also, from [11, Theorem 2.1 and Proposition

2.3], we have that
|Cn| = |C+

n | = Cn, and |N(Cn)| = |N(C+
n )| = Cn−1.

For other terms not explained here we refer to [7, 9].
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Some important problems in combinatorial algebra are to find the cardinalities, minimum generating
sets (if there exists) and ranks of some semigroups, which play useful roles in semigroup theory. It is also
an important problem to investigate the nilpotent subsemigroups of nilpotent semigroups. Combinatorial and
rank properties of finite semigroups have been widely studied. The calculation of rank (Cn) = n − 1 and
rank (N(Cn)) = Cn−1 − Cn−2 were given in [12] and [16], respectively. For any ξ ∈ E(Cn) , the cardinality
and rank of the subsemigroup Cn(ξ) = {α ∈ Cn : αm = ξ for some m ∈ Z+ } were determined by Yağcı
and Korkmaz in [16, Theorem 3 and 5]. For any non-empty subset Y of Xn , the cardinality of the set
Cn,Y = {α ∈ Cn : fix (α) = Y } has been computed by Ayık, Ayık and Koç in [2]. The number of nilpotent
elements in Cn have been calculated by Laradji and Umar in [11]. The number of m -potent elements and
(m, r) -potent elements in STn , the subsemigroup of all singular transformations of Tn , were computed by
Ayık, Ayık, Ünlü and Howie in [3]. The combinatorial results relating the cardinalities of the subsets {α ∈ Cn :

|im (α)| = r and nα = k} and {α ∈ Cn : im (α) = r} were given by Umar in [12, Propositions 3.4 and 3.6]. The
rank of Cn,r = {α ∈ Cn : |im (α)| ≤ r} were given in [12, Proposition 4.1]. Among more recent contributions
are [1],[4],[5] and [6].

Since N(C1) = N(C2) consists of only the zero element ε , we suppose that n is an integer at least 3

throughout this paper. For 1 ≤ r ≤ n− 1 , let

N(Cn,r) = {α ∈ N(Cn) : |im (α)| ≤ r},

Nr(Cn) = {α ∈ N(Cn) : α is an m-potent for any 1 ≤ m ≤ r}.

In the second section of this paper, we find the cardinality and the rank of the nilpotent subsemigroup N(Cn,r)
of N(Cn) , and so of Cn . In the third section, we show that the set Nr(Cn) is a nilpotent subsemigroup of
N(Cn) and then, we find a lower bound for the rank of Nr(Cn) . Since N(Cn,1) = N1(Cn) consists of only the
zero element, and since N(Cn,n−1) = Nn−1(Cn) = N(Cn) and the rank of N(Cn) were given in [16, Theorem 2],
we consider the case 2 ≤ r ≤ n− 2 while we calculate the rank of N(Cn,r) and find a lower bound for the rank
of Nr(Cn) .

2. Cardinality and rank of N(Cn,r)

For 1 ≤ r ≤ n− 1 , let α and β be two elements in

N(Cn,r) = {α ∈ N(Cn) : |im (α)| ≤ r}.

Since im (αβ) ⊆ im (β) , and so |im (αβ)| ≤ r , it follows that N(Cn,r) is a nilpotent subsemigroup of both Cn
and N(Cn) with the zero element ε . For 1 ≤ r ≤ n − 1 , our main goal in this section is to find a formula for
|N(Cn,r)| . Moreover, we determine the minimum generating set, and so we find the rank of N(Cn,r) by using
this formula.

Lemma 2.1 For 1 ≤ r ≤ n− 1 ,

|N(Cn,r)| =
r∑

k=1

N(n− 1, k) =
1

n− 1

r∑
k=1

(
n− 1

k

)(
n− 1

k − 1

)
.

Proof For α ∈ Cn−1 , define α̂ : Xn → Xn by 1α̂ = 1α = 1 and iα̂ = (i−1)α for all 2 ≤ i ≤ n . Then it is clear
that α̂ ∈ N(Cn) . Moreover, consider the function φ : Cn−1 → N(Cn) defined by (α)φ = α̂ for all α ∈ Cn−1 . It
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is shown in [11, Propsition 2.3] that φ is a bijection, and so |Cn−1| = |N(Cn)| . For 1 ≤ k ≤ r ≤ n− 1 , consider
the sets

Cn(k) = {α ∈ Cn : |im (α)| = k} and

N(Cn(k)) = {α ∈ N(Cn) : |im (α)| = k}.

It is shown in [12, Theorem 3.1] that |Cn(k)| = 1
n−k+1

(
n−1
k−1

)(
n
k

)
= N(n, k) . From the bijection defined above, it

is clear that α ∈ Cn−1(k) if and only if α̂ ∈ N(Cn(k)) , and so

|N(Cn(k))| = N(n− 1, k) =
1

n− 1

(
n− 1

k

)(
n− 1

k − 1

)
.

Since N(Cn,r) is the union of disjoint sets N(Cn(k)) for 1 ≤ k ≤ r , the proof is now completed. □

For any finite semigroup S with the zero element 0 , it is a well known fact that the following conditions
are equivalent:

(i) S is nilpotent,

(ii) every element a ∈ S is nilpotent, and

(iii) the unique idempotent of S is the zero element

(see, for example [7]). Moreover, it is proved in [13, Lemma 2.0.2] that S \ S2 is the minimum generating set
of a nilpotent semigroup S , and so

rank (S) = |S| − |S2|.

Now our aim is to find the rank of N(Cn,r) . As mentioned above, since N(Cn,1) = {ε} and since rank (N(Cn,n−1)) =

rank (N(Cn)) = Cn−1 −Cn−2 were found in [16, Theorem 2], we take account of the case where 2 ≤ r ≤ n− 2 .
Moreover, since N(Cn,r) is a nilpotent subsemigroup, it is enough to find the cardinality of N(Cn,r) \N(Cn,r)2 .
For any α ∈ N(Cn) , recall that 1α = 1 , and that iα ≤ i− 1 for each i ≥ 2 .

Theorem 2.2 For 2 ≤ r ≤ n− 2 ,

rank (N(Cn,r)) =
r∑

m=1

N(n− 1,m)−
r∑

m=1

N(n− 2,m).

Proof Let 2 ≤ r ≤ n−2 . For any α, β ∈ N(Cn) , since (iα)β ≤ (i−1)β ≤ (i−2) for each 3 ≤ i ≤ n , it follows
that if γ ∈ N(Cn,r)2 , then 1γ = 2γ = 3γ = 1 and iγ ≤ i − 2 for each 3 ≤ i ≤ n . In particular, nγ ≤ n − 2 .
Then, for any γ ∈ N(Cn,r)2 , define γ̃ : Xn−1 → Xn−1 by

iγ̃ = (i+ 1)γ for 1 ≤ i ≤ n− 1.

Then it is clear that γ̃ ∈ N(Cn−1,r) . Moreover, for any λ ∈ N(Cn−1,r) , define λ̂ : Xn → Xn by

1λ̂ = 1 and iλ̂ = (i− 1)λ for 2 ≤ i ≤ n,
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as in Lemma 2.1. Now we use the tabular form given in (1.1) for the rest of the proof. If λ =

(
A1 A2 · · · As

1 a2 · · · as

)
∈

N(Cn−1,r) where 1 ≤ s ≤ r , then it follows that

λ̂ =

(
A1 ∪ {b2} (A2 \ {b2}) ∪ {b3} · · · (As \ {bs}) ∪ {n}

1 a2 · · · as

)
.

where bi = minAi for 2 ≤ i ≤ s . Since λ ∈ N(Cn−1,r) , as ≤ n − 2 , and ai ≨ xλ for all x ∈ Ai where

2 ≤ i ≤ s . Then it is clear that λ̂ ∈ N(Cn,r) . Next we consider the transformations

µ =

(
A1 ∪ {b2} (A2 \ {b2}) ∪ {b3} · · · (As \ {bs}) ∪ {n}

1 b2 · · · bs

)

and

τ =

(
A1 A2 · · · As−1 As ∪ {n}
1 a2 · · · as−1 as

)
.

Then, we see that µ , τ ∈ N(Cn,r) and µτ = λ̂ , and so λ̂ ∈ N(Cn,r)2 . Therefore, the mapping

ψ : N(Cn,r)2 → N(Cn−1,r),

defined by γψ = γ̃ for all γ ∈ N(Cn,r)2 , is a well-defined bijection. Hence, it follows from Lemma 2.1 that

|N(Cn,r)2| = |N(Cn−1,r)| =
r∑

m=1
N(n− 2,m) , and so we obtain

rank (N(Cn,r)) =
r∑

m=1

N(n− 1,m)−
r∑

m=1

N(n− 2,m),

as required. □

Notice that since
(

m
m+1

)
= 0 , and so N(m,m + 1) = 0 for any positive integer m , it follows that

n−1∑
m=1

N(n−2,m) =
n−2∑
m=1

N(n−2,m) = Cn−2 . Moreover, since
n−1∑
m=1

N(n−1,m) = Cn−1 and rank (N(Cn,n−1)) =

rank (N(Cn)) = Cn−1 − Cn−2 , the above theorem is valid for also r = n− 1 .

3. Rank of Nr(Cn)

In this section, we first show that for any 1 ≤ r ≤ n− 1 , the set

Nr(Cn) = {α ∈ N(Cn) : α is an m-potent for any 1 ≤ m ≤ r}

is a subsemigroup of Cn with the zero element ε . Then, we find the minimum generating set and a lower bound
for the rank of Nr(Cn) .

Lemma 3.1 For 1 ≤ r ≤ n− 1 , Nr(Cn) is an ideal (and so a subsemigroup) of Cn with the zero element ε .
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Proof It is clear that ε ∈ Nr(Cn) . For 1 ≤ m ≤ r , let α ∈ Nr(Cn) be an m -potent, and let β be any element
in Cn (or in N(Cn)). For k ∈ Z+ , we first show by induction on k that x(αβ)k ≤ xαk and x(βα)k ≤ xαk for
any x ∈ Xn . For k = 1 , since xα ≤ x and xβ ≤ x for any x ∈ Xn , it follows that x(αβ) = (xα)β ≤ xα and
that x(βα) = (xβ)α ≤ xα . Now suppose that x(αβ)k ≤ xαk and x(βα)k ≤ xαk for k ∈ Z+ . Then

x(αβ)k+1 = (x(αβ)k)(αβ) ≤ (xαk)(αβ) = (xαk+1)β ≤ xαk+1 and

x(βα)k+1 = (x(βα)k)(βα) ≤ (xαk)(βα) = ((xαk)β)α ≤ xαk+1,

as required. Since αm = ε , it follows that x(αβ)m, x(βα)m ≤ xαm = xε = 1 for all x ∈ Xn , and so
(αβ)m = (βα)m = ε . Therefore, both αβ and βα are elements of Nr(Cn) , as required. □

Similarly, one can prove that, for any α, β ∈ Cn and for any x ∈ Xn \ fix (α) , we have xαk ≨ x , and so
x(αβ)k ≨ x for any k ∈ Z+ . Moreover, we have the following corollary:

Corollary 3.2 For 1 ≤ r ≤ n− 1 , N(Cn,r) is a subsemigroup of Nr(Cn) .

Proof If α =

(
A1 A2 · · · As

1 a2 · · · as

)
∈ N(Cn−1,r) where 1 ≤ s ≤ r , then since ak ∈

k−1⋃
i=1

Ai for each

2 ≤ k ≤ s , it follows that αs = ε , and so αr = ε , as required. □

As noticed after the proof of [15, Theorem 2.2], there exists only one (n− 1) -potent element in N(Cn) ,

namely µ0 =

(
1 2 3 · · · n
1 1 2 · · · n− 1

)
. Since µ0 is the unique element with image of size n − 1 , and since

N(Cn,n−1) = Nn−1(Cn) = N(Cn) , it follows that

N(Cn,n−2) = Nn−2(Cn) = N(Cn) \ {µ0}.

However, we have the fact N(Cn,r) ̸= Nr(Cn) for any 2 ≤ r ≤ n− 3 . Indeed if we consider

λ0 =

(
1 2 3 4 · · · r + 2 r + 3 · · · n
1 1 1 2 · · · r r + 1 · · · r + 1

)
∈ N(Cn),

then we see that λ0 ∈ Nr(Cn) and that λ0 ̸∈ N(Cn,r) .
We need some background and notations in order to find the rank of Nr(Cn) . For m,n ∈ Z+ with

m ≤ n , let S(n,m) be the set of all positive integer solutions of the equation x1 + · · ·+ xm = n , that is

S(n,m) = { (s1, . . . , sm) : s1, . . . , sm ∈ Z+ and s1 + · · ·+ sm = n }.

It is clear that the cardinality of S(n,m) is
(
n−1
m−1

)
, and that the number of non-negative integer solutions

of the equation x1 + · · · + xm = n is
(
n+m−1
m−1

)
. It is clear that α ∈ N(Cn) is a 1 -nilpotent element if and

only if α = ε , and so the number of 1 -nilpotent elements is 1 . The number of m -potent (and equivalently,
m -nilpotent) elements in N(Cn) for 2 ≤ m ≤ n− 1 were computed in [15, Theorem 2.2] as follows.

Theorem 3.3 For 2 ≤ m ≤ n− 1 , the number of m-potent (and equivalently m-nilpotent) elements in N(Cn)
is ∑

(s1,...,sm)∈S(n−1,m)

m∏
i=2

(
si + si−1 − 1

si

)
.

□
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Now our aim is to find a lower bound for the rank of Nr(Cn) . As mentioned above, we take account of
the case where 2 ≤ r ≤ n− 2 . Moreover, since Nr(Cn) is also a nilpotent subsemigroup, it is enough to find a
lower bound for the cardinality of Nr(Cn) \Nr(Cn)2 .

Theorem 3.4 For 2 ≤ r ≤ n− 2 ,

rank (Nr(Cn)) ≥
r∑

m=2

 ∑
(s1,...,sm)∈S(n−1,m)

m∏
i=2

(
si + si−1 − 1

si

)

−
r∑

m=2

 ∑
(t1,...,tm)∈S(n−2,m)

m∏
i=2

(
ti + ti−1 − 1

ti

) .

Proof Since the numbers of m -potent elements in Nr(Cn) and N(Cn) are the same, it follows from Theorem
3.3 that the number of m -potent elements in Nr(Cn) is

∑
(s1,...,sm)∈S(n−1,m)

m∏
i=2

(
si + si−1 − 1

si

)

for 2 ≤ m ≤ r ≤ n− 2 . Then, this yields

|Nr(Cp)| = 1 +

r∑
m=2

 ∑
(s1,...,sm)∈S(p−1,m)

m∏
i=2

(
si + si−1 − 1

si

) , (3.1)

where p = n− 1, n . As it is shown in the proof of Theorem 2.2, if α is an element in Nr(Cn)2 , then α has the
following tabular form:

α =

(
1 2 3 4 5 · · · n
1 1 1 4α 5α · · · nα

)
where iα ≤ i− 2 for each i ≥ 3 and 1 ≤ 4α ≤ · · · ≤ nα ≤ n− 2 . Next, for each α in Nr(Cn)2 , consider

α̃ =

(
1 2 3 4 · · · n− 1
1 1 4α 5α · · · nα

)
,

as defined in the proof of Theorem 2.2. Similarly, it is also clear that α̃ ∈ Nr(Cn−1) . Now we consider the
function

Ψ : Nr(Cn)2 → Nr(Cn−1)

defined by the rule (α)Ψ = α̃ for all α ∈ Nr(Cn)2 . It is easy to check that Ψ is a well-defined one-to-one function.
However, Ψ is not onto in general. Therefore, the result follows from the fact that Nr(Cn) \ Nr(Cn)2 is the
minimum generating set of Nr(Cn) and that |Nr(Cn)\Nr(Cn)2| = |Nr(Cn)|−|Nr(Cn)2| ≥ |Nr(Cn)|−|Nr(Cn−1)| ,
as required. □

Finally, we give a counter example, which shows that Ψ : Nr(Cn)2 → Nr(Cn−1) is not onto in general.
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Example 3.5 Assume that

β =

(
1 2 3 4 5 6
1 1 1 1 2 3

)
∈ N2(C6)2.

Then, there are µ, τ ∈ N2(C6) such that µτ = β . Since 1τ = 2τ = 3τ = 1 , and 5µ ≤ 4 , it follows that 5µ = 4 .
Since 5β ̸= 6β , we must have 6µ ̸= 4 , and so similarly, 6µ = 5 . Thus, µ is a 3 -potent which is a contradiction.

Therefore, β /∈ N2(C6)2 . Since β̃ =

(
1 2 3 4 5
1 1 1 2 3

)
∈ N2(C5) , it follows that Ψ : N2(C6)2 → N2(C5) is not

onto.

We also have the following example:

Example 3.6 The function Ψ : N2(C5)2 → N2(C4) defined above is a bijection. Indeed,

N2(C5) =

{(
1 2 3 4 5
1 1 1 1 1

)
,

(
1 2 3 4 5
1 1 1 1 2

)
,

(
1 2 3 4 5
1 1 1 1 3

)
,(

1 2 3 4 5
1 1 1 1 4

)
,

(
1 2 3 4 5
1 1 1 2 2

)
,

(
1 2 3 4 5
1 1 1 2 3

)
,(

1 2 3 4 5
1 1 1 3 3

)
,

(
1 2 3 4 5
1 1 2 2 2

)}
,

N2(C5)2 =

{(
1 2 3 4 5
1 1 1 1 1

)
,

(
1 2 3 4 5
1 1 1 1 2

)
,

(
1 2 3 4 5
1 1 1 1 3

)
,(

1 2 3 4 5
1 1 1 2 2

)}
and

N2(C4) =

{(
1 2 3 4
1 1 1 1

)
,

(
1 2 3 4
1 1 1 2

)
,

(
1 2 3 4
1 1 1 3

)
,(

1 2 3 4
1 1 2 2

)}
,

as required. Moreover, we have rank (N2(C5)) = 4 .

Finally, one may ask if the sets

Pr(Cn) = {α ∈ Cn : α is an m-potent for some 1 ≤ m ≤ r} and

Pr(On) = {α ∈ On : α is an m-potent for some 1 ≤ m ≤ r},

where 1 ≤ r ≤ n , are subsemigroups of Cn and On , respectively. If we consider the transformations

α =

(
1 2 3 4
1 1 2 4

)
and β =

(
1 2 3 4
1 2 2 3

)
, then we see that both α and β in P2(C4) and P2(O4) ,

but αβ neither in P2(C4) nor in P2(O4) . Thus, neither Pr(Cn) nor Pr(On) is a subsemigroup.
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