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Abstract: In this work, we first give a more general form of the binomial, Fibonomial, and balance-binomial graphs that
is called generalized Fibonomial graph. We also argue the spectra of generalized Fibonomial graph. Next, we introduce a
new type of graph on Jacobsthal numbers that is called Jacobsthal-binomial graph and denoted by JBn . We obtain the
adjacency, Laplacian and signless Laplacian characteristic polynomials of JBn , respectively. We lastly give inequalities
for the adjacency, Laplacian and signless Laplacian energies of JBn .
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1. Introduction
A graph G consists of a vertex set V (G) = {v1, . . . , vn} and an edge set E(G) , and it is denoted by
G = (V (G), E(G)) . The order of G is the number of vertices in G , that is |V (G)| , and the size of G is
the number of edges in G that is |E(G)| . The degree of a vertex vi ∈ V (G) is the number of vertices in V (G)

which are adjacent to vi , and it is denoted by deg(vi) . If a vertex in G is adjacent to itself, then there occurs
a loop. If a graph has order n ∈ Z+ and size 0 , then it is called a null graph with n vertices. Also, if all of the
vertices of a graph with order n are adjacent to each other (except itself), then it is called a complete graph
and denoted by Kn . Adjacency matrix of a graph G is A(G) = [aij ]n×n such that

aij =

{
1, (vi, vj) ∈ E(G);
0, (vi, vj) ̸∈ E(G).

Degree matrix of a graph G is the diagonal matrix D(G) = diag(deg(v1), . . . , deg(vn)) . Laplacian matrix of
a graph G is L(G) = D(G) − A(G) and the signless Laplacian matrix of G is Q(G) = D(G) + A(G) . For
a graph matrix M(G) , the M-spectrum of G is the set of the eigenvalues of M(G) . For more information
about spectral graph theory, we refer to [2]. Energy of a graph was first given by Gutman [6]. This concept
has recently had great attention by the researchers such as [5, 7, 8, 12]. For a given graph G = (V (G), E(G)) ,
let M(G) be the adjacency matrix, Laplacian matrix, or signless Laplacian matrix of G , and λ1 ≥ . . . ≥ λn

consists of the spectrum of M(G) . Then we compute the energy as follows:

ε(M(G)) =

{ ∑n
i=1 |λi|, if G is simple;∑n
i=1 |λi − trace(M(G))

|Vn| |, otherwise. (1.1)
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Binomial graphs were first introduced in 1997 by Christopher and Kennedy [4]. For 0 ≤ n ∈ Z , a binomial

graph Bn = (Vn, En) is defined with Vn = {vj : j = 0, . . . , 2n − 1} and En = {(vi, vj) :
[

i+ j
j

]
≡ 1(mod 2)} .

Adjacency spectrum of Bn is obtained, and closed walks in Bn are also investigated. Similar to this concept,
in 2014, Akbulak et al. [1] introduced a new type of graph called Fibonomial graph. They used Fibonomial
coefficents instead of binomial coefficents. Spectral properties and energy of Fibonomial graphs were investigated
in the same paper. Next, balance-binomial graphs were introduced in [9] whose entries are dependent on the
balancing numbers. Balance-binomial coefficents were used instead of Fibonomial coefficents in [9]. However,
actually, balance-binomial graphs are exactly the same with binomial graphs. This could be easily seen by
comparing [4] and [9]. By the motivation of these results, in this work, we first examine the situation for the
generalized Fibonacci numbers and so define the generalized Fibonomial graphs with a more general perspective.
Also, we define the Jacobsthal-binomial graphs by using Jacobsthal binomial coefficents. We investigate the
spectra and energy of Jacobsthal-binomial graphs according to the adjacency, Laplacian, and signless Laplacian
matrices, respectively. Characteristic polynomials and inequalities for the energies of these matrices are obtained
here.

2. Generalized Fibonomial graphs
The well-known Fibonacci sequence is defined as:

F0 = 0, F1 = 1, Fn = Fn−1 + Fn−2 for n ≥ 2 (2.1)

where Fn denotes the nth Fibonacci number. Similar to the binomial coefficents, Fibonomial coefficents are
defined as: [

n
k

]
F

=
Fn · . . . · Fn−k+1

Fk · . . . · F1
(2.2)

where n ≥ k ≥ 1 ,
[

n
0

]
F

= 1 and
[

n
k

]
F

= 0 for n < k .

For 0 ≤ n ∈ Z , a Fibonomial graph Gn = (Vn, En) is defined by Akbulak et al. [1] with the vertex set

Vn = {vt : t = 0, 1, . . . , 3 · 2n − 1} and the edge set En = {(vi, vj) :
[

i+ j
j

]
F

≡ 1(mod 2)} . Chen and Sagan

[3] examined the fractal nature of the Fibonomial triangle. As a result of this investigation, adjacency matrix
of a Fibonomial graph could be written in terms of Kronecker product, that is given in [1] as follows:

An =

[
n⊗

i=1

B

]⊗
A0 where B =

[
1 1
1 0

]
and A0 =

 1 1 1
1 1 0
1 0 0

 . (2.3)

The balancing numbers are defined by the recursion formulae

Bn = 6Bn−1 −Bn−2 with initial values B1 = 1 and B2 = 6 (2.4)

. By using this sequence, a balance-binomial graph G′
n = (V ′

n, E
′
n) on 2n vertices, with vertex set Vn = {vt :

t = 0, 1, . . . , 2n − 1} and the edge set En = {(vi, vj) :

[
i+ j
j

]
B

≡ 1(mod 2)} is given in [9] such that the
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balance-binomial coefficents are defined as:[
n
k

]
B

=
Bn · . . . ·Bn−k+1

Bk · . . . ·B1
(2.5)

for n ≥ k ≥ 1 with
[

n
0

]
B

= 1 and
[

n
k

]
B

= 0 for n < k . Similar to the Fibonomial graphs, adjacency

matrix of a balance-binomial graph is obtained by using Kronecker product as follows:

A′
n =

[
n⊗

i=1

B

]⊗
A′

0 where A′
0 =

[
1 1
1 0

]
= B. (2.6)

The generalized Fibonacci sequence is defined as:

GFn = pGFn−1 + qGFn−2 for n ≥ 2, p, q ∈ Z+ with GF0 = 0 and GF1 = 1. (2.7)

Generalized Fibonomial coefficents are similarly defined as:[
n
k

]
GF

=
GFn · . . . ·GFn−k+1

GFk · . . . ·GF1
(2.8)

for n ≥ k ≥ 1 with
[

n
0

]
GF

= 1 and
[

n
k

]
GF

= 0 for n < k .

Here we define the generalized Fibonomial graphs GFn = (VGFn
, EGFn

) with the vertex set VGFn
and the edge

set

EGFn
= {(vi, vj) :

[
i+ j
j

]
GF

≡ 1(mod 2) such that vi, vj ∈ VGFn
}.

All of the situations of the generalized Fibonomial coefficents according to the modulo 2 are explained in [3] by
Chen and Sagan. Thus, we obtain four kinds of adjacency matrices for the generalized Fibonomial graphs. If
p, q are both odd, then we obtain the Fibonomial graph with 3 · 2n vertices. If p is even and q is odd, then
we have the balance-binomial graph with 2n vertices (actually, this graph could also be easily obtained from
Pascal’s triangle). If p is odd and q is even, then we obtain that the adjacency matrix is the all one matrix
Jn . If p, q are both even, then we get that the adjacency matrix is the all zero matrix 0n . Hence, we have
four kinds of generalized Fibonomial graphs. These are Fibonomial graphs, balance-binomial graphs (or shortly
binomial graphs), the graph obtained from a complete graph by adding loop to all vertices, and the null graph,
respectively.
Thus, if we talk about the spectra of the generalized Fibonomial graphs, there are four kinds of the adjacency
spectrum according to the p and q . Adjacency spectrum of the Fibonomial graphs and balance-binomial graphs
are given in [1] and [4, 9], respectively. Clearly Jn has eigenvalues 0n−1, n and 0n has eigenvalues 0n . Based
on these results, in the next section, we define a new graph on the Jacobsthal numbers that is different from
generalized Fibonomial graphs, and we also obtain the spectral properties of this graph.

3. Jacobsthal-binomial graphs
3.1. Jacobsthal numbers
The Jacobsthal numbers are given by the following recursion formula:

J0 = 0, J1 = 1, Jn = Jn−1 + 2Jn−2 for n ≥ 2 (3.1)
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where Jn denotes the nth Jacobsthal number. Here we give some properties of Jacobsthal numbers that are
used in the next sections. The following table for the remainders of Jacobsthal numbers is obtained in [17].

Lemma 3.1 [10] Let n be an integer. The well-known Binet-like formula of the Jacobsthal numbers is:

Jn =
2n − (−1)n

3
. (3.2)

Theorem 3.2 [10] For all n, k ∈ Z+ , Jn | Jkn .

3.2. Construction of Jacobsthal-binomial graphs
Similar to the binomial coefficents, here we define the Jacobsthal-binomial coefficents for n ≥ k ≥ 1 :[

n
k

]
J

=
Jn · . . . · Jn−k+1

Jk · . . . · J1
(3.3)

with
[

n
0

]
J

= 1 and
[

n
k

]
J

= 0 for n < k . From Theorem 3.2, one can easily see that
[

n
k

]
J

always

takes integer values. Thus, we define the Jacobsthal-binomial graph JBn = (VJBn
, EJBn

) with the vertex set
VJBn

= {vj : j = 0, 1, . . . , 2n} and the edge set

EJBn = {(vi, vj) :
[

i+ j
j

]
J

≡ 1( mod 4)}.

In this way, we obtain that the adjacency matrix of the Jacobsthal-binomial graph A(JBn) = [aij ]m×m such
that m = 2n+ 1 and

aij =


0, if

[
i+ j
j

]
J

≡ 3( mod 4) ;

1, if
[

i+ j
j

]
J

≡ 1( mod 4).

From the definition of the Jacobsthal-binomial graph, the first row and the first column of A(JBn) are all-one
vectors. In addition, we can easily obtain the second row and the second column of A(JBn) from Figure 1.
Now, we find other rows and columns of A(JBn) by the following theorem.

Theorem 3.3 For i, j ∈ {1, 2, . . . , 2n} , let
[

i+ j
j

]
J

= s . If i, j are both odd, then s ≡ 1(mod 4) . Otherwise,

s ≡ 3(mod 4) .

Proof We give the proof of the statement by induction on j in two cases. Assume that the statement holds
for j . Then, we need to show that the equality holds for j + 2 .
Case 1: Let j be an odd integer. For j = 1 ,[

i+ 1
1

]
J

=
Ji+1

J1
=

Ji+1

1
= Ji+1

From Figure 1, it can easily be seen that if i is odd then Ji+1 ≡ 1( mod 4) ; otherwise, Ji+1 ≡ 3( mod 4) . Now,
we check whether the statement holds for j + 2 . Let us consider the situation in two subcases.
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Subcase 1: Suppose that i is odd. Then,[
i+ j + 2
j + 2

]
J

=
Ji+j+2 · Ji+j+1 · . . . · Ji+1

Jj+2 · Jj+1 · . . . · J1

Since the statement holds for j , if
[

i+ j
j

]
J

= m then we have m ≡ 1(mod 4) . Also, by using the Binet-like

formula (3.2) of the Jacobsthal numbers, we get

Ji+j+2 · Ji+j+1

Jj+2 · Jj+1
=

(2i+j+2 − 1)(2i+j+1 + 1)

(2j+2 + 1)(2j+1 − 1)
=

22i+2j+3 + 2i+j+1 − 1

22j+3 − 2j+1 − 1
.

If 22i+2j+3+2i+j+1−1
22j+3−2j+1−1 = k , then we can see easily that k ≡ 1(mod 4) . Hence, we get

[
i+ j + 2
j + 2

]
J

≡ 1(mod 4)

when i and j are both odd.

Subcase 2: Let i is even. Thus, we have
[

i+ j
j

]
J

= m ≡ 3(mod 4) . Therefore,

[
i+ j + 2
j + 2

]
J

=
Ji+j+2 · Ji+j+1

Jj+2 · Jj+1
·m =

22i+2j+3 − 2i+j+1 − 1

22j+3 − 2j+1 − 1
·m

Thus, we get
[

i+ j + 2
j + 2

]
J

≡ 3(mod 4) .

Case 2: Let j be even. For j = 2 , we get[
i+ 2
2

]
J

=
Ji+2 · Ji+1

J2 · J1
= Ji+2 · Ji+1 ≡ 3(mod 4).

We assume again that the statement holds for j and check for j + 2 . Thus,
[

i+ j
j

]
J

= m ≡ 3(mod 4) . We

will consider the situation in two subcases.
Subcase 1: Suppose that i is even. Then, we have[

i+ j + 2
j + 2

]
J

=
Ji+j+2 · Ji+j+1

Jj+2 · Jj+1
·m =

22i+2j+3 + 2i+j+1 − 1

22j+3 + 2j+1 − 1
·m

Thus, we get
[

i+ j + 2
j + 2

]
J

≡ 3(mod 4) .

Subcase 2: Suppose that i is odd. Thus, we get[
i+ j + 2
j + 2

]
J

=
22i+2j+3 − 2i+j+1 − 1

22j+3 + 2j+1 − 1
·m ≡ 3(mod 4)

Consequently, we obtain that if i and j are both odd, then
[

i+ j
j

]
J

≡ 1(mod 4) ; otherwise,
[

i+ j
j

]
J

≡

3(mod 4) .
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2

By the help of the Theorem 3.3 , we get A(JBn) with 2n+ 1 vertices in the following form.

A(JBn) =



1 1 1 1 1 . . . 1 1
1 1 0 1 0 . . . 1 0
1 0 0 0 0 . . . 0 0
...

...
...

...
... . . . ...

...
1 1 0 1 0 . . . 1 0
1 0 0 0 0 . . . 0 0


(3.4)

Remark 3.4 For all vi ∈ VJBn
,

deg(vi) =

 2n+ 2, if i=0;
n+ 2, if i is odd;
1, if i is even.

and |EJBn | = n2 + 5n+ 2 .

Figure 1. First four Jacobsthal-binomial graphs.

The pineapple graph Kq
p is obtained by appending q pendant edges to a vertex of a complete graph Kp

(q ≥ 1, p ≥ 3)[14, 15]. From (3.4) and Figure 2, we can see easily that JBn could also be obtained from a
pineapple graph Kn

n+1 by adding loop to the all of vertices of its maximum clique Kn+1 .

Lemma 3.5 The characteristic polynomial of the adjacency matrix of Jacobsthal-binomial graph with 2n+1
vertices is as follows:

A(JBn)(x) = x2n−2(−x3 + (n+ 1)x2 + nx− n2) (3.5)

Proof Let 1 denote the all-one vector, Jn denote the all-one n× n matrix, and 0 denote the all-zero n× n

matrix. It is clear that A(JBn) could be written in the following form.

A(JBn) =

 1 1T 1T

1 Jn 0
1 0 0


(2n+1)×(2n+1)
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Figure 2. Sets of the remainder of Jacobsthal numbers for modulo m.

One can easily see that the rank of A(JBn) could be equal to at most 3. Hence, x2n−2 is a factor of the
A(JBn)(x) . Also, an equitable partition of A(JBn) is as follows:

Pn =

 1 n n
1 n 0
1 0 0


3×3

The characteristic polynomial of Pn is equal to Pn(x) = −x3 + (n+ 1)x2 + nx− n2 . Since Pn(x) is a divisor
of A(JBn)(x) , we get that

A(JBn)(x) = x2n−2(−x3 + (n+ 1)x2 + nx− n2)

2

Lemma 3.6 The Laplacian characteristic polynomial of the Jacobsthal-binomial graph with 2n+1 vertices is
given below.

L(JBn)(x) = (x− (n+ 2))n−1(x− 1)n−1(−x3 + (2n+ 4)x2 − (4n+ 5)x+ n+ 2) (3.6)

Proof Let In denote the n × n identity matrix. Since L(JBn) − In and L(JBn) − (n + 2)In contains n

identical rows, (x− 1)n−1 and (x− (n+2))n−1 are factors of L(JBn)(x) , respectively. Clearly, L(JBn) could
be written in the following form:

L(JBn) =

 2n+ 1 -1T -1T

-1 (n+ 2)In − Jn 0
-1 0 In


(2n+1)×(2n+1)

Hence, an equatible partition of L(JBn) is as follows:

P ′
n =

 2n+ 1 −n −n
−1 2 0
−1 0 1


3×3

The characteristic polynomial of P ′
n is equal to P ′

n(x) = −x3+(2n+4)x2− (4n+5)x+n+2 . Thus, we obtain
that

L(JBn)(x) = (x− (n+ 2))n−1(x− 1)n−1(−x3 + (2n+ 4)x2 − (4n+ 5)x+ n+ 2)
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2

Lemma 3.7 The signless Laplacian characteristic polynomial of the Jacobsthal-binomial graph with 2n+1
vertices is in the following form:

Q(JBn)(x) = (x− (n+ 2))n−1(x− 1)n−1

(−x3 + (4n+ 6)x2 − (4n2 + 12n+ 11)x+ 2n2 + 7n+ 6) (3.7)

Proof Q(JBn) − In and Q(JBn) − (n + 2)In have n identical rows, respectively. Hence, (x − 1)n−1 and
(x− (n+ 2))n−1 are factors of Q(JBn)(x) . Also, Q(JBn) could be written as below:

Q(JBn) =

 2n+ 3 1T 1T

1 (n+ 2)In + Jn 0
1 0 In


(2n+1)×(2n+1)

Thus, we can obtain an equatible partition of Q(JBn) as follows:

P ′′
n =

 2n+ 3 n n
1 2n+ 2 0
1 0 1


3×3

Hereby the characteristic polynomial of P ′′
n is equal to P ′′

n (x) = −x3+(4n+6)x2−(4n2+12n+11)x+2n2+7n+6 .
Thus, we conclude that

Q(JBn)(x) = (x− (n+ 2))n−1(x− 1)n−1

(−x3 + (4n+ 6)x2 − (4n2 + 12n+ 11)x+ 2n2 + 7n+ 6)

2

3.3. Energies of Jacobsthal-binomial graph

Theorem 3.8 Let ε(JBn) , εL(JBn) , and εQ(JBn) denote the energy, Laplacian energy, and signless Lapla-
cian energy of the Jacobsthal-binomial graph with 2n+1 vertices, respectively. Then, the following inequalities
hold:

(i) 2n+ 2 < ε(JBn) < 2n+ 3

(ii) n2 + 5n
2 − 5

4 < εL(JBn) < n2 + 5n
2 + 3

4

(iii) n2 + 7n
2 + 23

4 < εQ(JBn) < n2 + 7n
2 + 31

4

Proof (i) Let us denote the eigenvalues of A(JBn) with λ1 ≥ . . . ≥ λ2n+1 . Then, from (3.5) we have
λ1 = n+ 1 + α , λ2 = 1 + β , λ3 = . . . = λ2n = 0 , λ2n+1 = −1− α− β such that 0 < α, β < 1 . We know that
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ε(JBn) =
∑2n+1

1 |λi − s
2n+1 | where s = tr(A(JBn)) = n+ 1 . Hence,

ε(JBn) =

2∑
i=1

(λi −
n+ 1

2n+ 1
) + (

n+ 1

2n+ 1
− λ2n+1) + (2n− 2)(

n+ 1

2n+ 1
)

= n+ 3 + 2(α+ β) + (2n− 3)
n+ 1

2n+ 1

= n+ 3 + 2(α+ β) + n− 1− 2

2n+ 1

= 2n+ 2 + 2(α+ β)− 2

2n+ 1

= 2n+ 2 + γ

where 0 < γ = 2(α+ β)− 2
2n+1 < 1 . Thus, we get 2n+ 2 < ε(JBn) < 2n+ 3 .

(ii) If we denote the eigenvalues of the L(JBn) with µ1 ≥ . . . ≥ µ2n+1 , then from (3.6) we get µ1 = 2n+1+α1 ,
µ2 = . . . = µn = n+ 2 , µn+1 = 1 + β1 , µn+2 = . . . = µ2n = 1 , µ2n+1 = 2− α1 − β1 such that 0 < α1, β1 < 1 .
Also, sL = tr(L(JBn)) = 2n+1+n(n+1)+n = n2+4n+1 . Thus, we calculate the Laplacian energy of JBn

as follows:

ε(L(JBn)) =

2n+1∑
i=1

|µi −
sL

2n+ 1
|

=

2n+1∑
i=1

|µi −
n2 + 4n+ 1

2n+ 1
|

= |2n+ 1 + α1 −
n2 + 4n+ 1

2n+ 1
|+ (n− 1)|n+ 2− n2 + 4n+ 1

2n+ 1
|

+ |1 + β1 −
n2 + 4n+ 1

2n+ 1
|+ (n− 1)|1− n2 + 4n+ 1

2n+ 1
|

+ |2− α1 − β1 −
n2 + 4n+ 1

2n+ 1
|

= 2n− 2 + 2α1 +
n2 + 4n+ 1

2n+ 1
+ (n− 1)(n+ 1)

= n2 +
5n

2
− 5

4
+ 2α1 +

1

8n+ 4

Hence, we get n2 + 5n
2 − 5

4 < εL(JBn) < n2 + 5n
2 + 3

4 .
(iii) We denote the eigenvalues of Q(JBn) with q1 ≥ . . . ≥ q2n+1 . From (3.7), we obtain that q1 = 2n + a ,
q2 = 2n + b , q3 = . . . = qn+1 = n + 2 , qn+2 = . . . = q2n = 1 , q2n+1 = α2 = 6 − a − b , and 0 < α2 < 1 . Also,
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sQ = tr(Q(JBn)) = n2 + 6n+ 3 . Hence, we may calculate εQ(JBn) as below:

ε(Q(JBn)) =

2n+1∑
i=1

|qi −
sQ

2n+ 1
|

=

2n+1∑
i=1

|qi −
n2 + 6n+ 3

2n+ 1
|

= |q1 −
n2 + 6n+ 3

2n+ 1
|+ |q2 −

n2 + 6n+ 3

2n+ 1
|

+ (n− 1)|n+ 2− n2 + 6n+ 3

2n+ 1
|

+ (n− 1)|1− n2 + 6n+ 3

2n+ 1
|+ |q2n+1 −

n2 + 6n+ 3

2n+ 1
|

= q1 + q2 − q2n+1 −
n2 + 6n+ 3

2n+ 1
+ (n− 1)(n+ 1)

= 4n+ 2(a+ b)− 6 + n2 − n

2
+

7

4
− 1

8n+ 4

= n2 +
7n

2
+ 2(a+ b)− 17

4
− 1

8n+ 4

Since 0 < α2 < 1 , we get n2 + 7n
2 + 23

4 < εQ(JBn) < n2 + 7n
2 + 31

4 .
2
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