т $̈$ вітак

Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/

Turk J Math
(2021) 45: 1660 - 1667
© TÜBİTAK

Decompositions of complete symmetric directed graphs into the oriented heptagons

Uğur ODABAŞI* ${ }^{\text {© }}$
Department of Engineering Sciences, Istanbul University-Cerrahpaşa, İstanbul, Turkey

Received: 14.07.2020 • Accepted/Published Online: 09.05.2021 • Final Version: 27.07 .2021

Abstract

The complete symmetric directed graph of order v, denoted by K_{v}^{*}, is the directed graph on v vertices that contains both arcs (x, y) and (y, x) for each pair of distinct vertices x and y. For a given directed graph D, the set of all v for which K_{v}^{*} admits a D-decomposition is called the spectrum of D-decomposition. There are 10 nonisomorphic orientations of a 7 -cycle (heptagon). In this paper, we completely settled the spectrum problem for each of the oriented heptagons.

Key words: Decomposition, directed graph, orientations of a heptagon

1. Introduction

For a graph (or directed graph) D, we use $V(D)$ and $E(D)$ to denote the vertex set of D and the edge set (or arc set) of D, respectively. For a simple graph G, we use G^{*} to denote the symmetric directed graph with vertex set $V\left(G^{*}\right)=V(G)$ and arc set $E\left(G^{*}\right)=\bigcup_{\{x, y\} \in E(G)}\{(x, y),(y, x)\}$. Hence, K_{v}^{*} is the complete symmetric directed graph of order v. We use $K_{r \times s}$ to denote the complete simple multipartite graph with r parts of size s. Also, if a and b are integers with $a \leq b$, we let $[a, b]$ denote the set $\{a, a+1, \ldots, b\}$.

A decomposition of a directed graph K is a set $\Delta=\left\{D_{1}, D_{2}, \ldots, D_{t}\right\}$ of subgraphs of K such that each directed edge, or arc, of K appears in exactly one directed graph $D_{i} \in \Delta$. If each D_{i} in Δ is isomorphic to a given directed graph D, the decomposition is called a D-decomposition of K. A $\{G, H\}$-decomposition of K is defined similarly. A D-decomposition of K is also known as a (K, D)-design. The set of all v for which K_{v}^{*} admits a D-decomposition is called the spectrum of D.

The reverse orientation of D, denoted $\operatorname{Rev}(D)$, is the directed graph with vertex set $V(D)$ and arc set $\{(v, u):(u, v) \in E(D)\}$. We note that the existence of a D-decomposition of K necessarily implies the existence of a $\operatorname{Rev}(D)$-decomposition of $\operatorname{Rev}(K)$. Since K_{v}^{*} is its own reverse orientation, we note that the spectrum of D is equal to the spectrum of $\operatorname{Rev}(D)$.

A decomposition of K_{v}^{*} into copies of a directed graph D requires the number of edges in K_{v}^{*}, namely $v(v-1)$ is divisible by the number of the edges in D. Moreover, both gcd $\{$ outdegree $(x): x \in V(D)\}$ and $\operatorname{gcd}\{\operatorname{indegree}(x): x \in V(D)\}$ divide $v-1$, which is both indegree and outdegree of every vertex in K_{v}^{*}. Thus, the necessary conditions for a directed graph D to decompose K_{v}^{*} are

[^0](a) $|V(D)| \leq v$,
(b) $|E(D)|$ divides $v(v-1)$, and
(c) $\operatorname{gcd}\{$ outdegree $(x): x \in V(D)\}$ and $\operatorname{gcd}\{$ indegree $(x): x \in V(D)\}$ both divide $(v-1)$.

The spectrum problem for certain subgraphs (both bipartite and nonbipartite) of K_{4}^{*} has already been studied $[6,9,10,13,14]$. There are two nonisomorphic orientations of K_{3}, namely, cyclic and transitive orientations. When D is a cyclic orientation of K_{3}, then a $\left(K_{v}^{*}, D\right)$-design is known as a Mendelsohn triple system. The spectrum for Mendelsohn triple systems was found independently by Mendelsohn [13] and Bermond [6]. When D is a transitive orientation of K_{3}, then a $\left(K_{v}^{*}, D\right)$-design is known as a transitive triple system. The spectrum for transitive triple systems was found by Hung and Mendelsohn [10]. There are exactly four orientations of a quadrilateral (i.e. a 4 -cycle). It was shown in [14] that if D is a cyclic orientation of a quadrilateral, then a $\left(K_{v}^{*}, D\right)$-design exists if and only if $v \equiv 0 \operatorname{or} 1(\bmod 4)$ and $v \neq 4$. The spectrum problem for the remaining three orientations of a quadrilateral were settled in [9]. In [5], Alspach et al. showed that K_{v}^{*} can be decomposed into each of the four orientations of a pentagon (i.e. a 5 -cycle) if and only if $v \equiv 0$ or $1(\bmod 5)$. In [4], it is shown that for positive integers m and v with $2 \leq m \leq v$ the directed graph K_{v}^{*} can be decomposed into directed cycles (i.e. with all the edges being oriented in the same direction) of length m if and only if m divides the number of arcs in K_{v}^{*} and $(v, m) \notin\{(4,4),(6,3),(6,6)\}$. Also [2], Adams et al. has recently settled the λ-fold spectrum problem for all possible orientations of a 6 -cycle.

There are ten nonisomorphic orientations of a heptagon (see Figure 1). The spectrum problem was settled for the directed heptagon (D_{10} in Figure 1) in [4].

Theorem 1.1 ([4]) For integers $v \geq 7$, there exists a D_{10}-decomposition of K_{v}^{*} if and only if $v(v-1) \equiv 0$ $(\bmod 7)$.

In this work, we completely settle the spectrum problem for the remaining nine nonisomorphic oriented heptagons (i.e. D_{i} for $i \in[1,9]$ as seen in Figure 1).

If D is an oriented heptagon and if there exists a $\left(K_{v}^{*}, D\right)$-design, then we must have $7 \mid v(v-1)$. Moreover, if D is an oriented odd cycle, then $\operatorname{gcd}\{\operatorname{outdegree}(x): x \in V(D)\}=\operatorname{gcd}\{\operatorname{indegree}(x): x \in V(D)\}=$ 1. Thus, from the necessary conditions established above, we have the following.

Lemma 1.2 Let $D \in\left\{D_{1}, D_{2}, \ldots, D_{9}\right\}$ and let $v \geq 7$ be a positive integer. There exists a D-decomposition of K_{v}^{*} only if $v(v-1) \equiv 0(\bmod 7)$.

The remainder of this paper is dedicated to showing the existence of the decompositions in question in order to establish sufficiency of these necessary conditions. Henceforth, each of the graphs D_{i} with $i \in[1,9]$ in Figure 1, with vertices labeled as in the figure, will be represented by $D_{i}\left[v_{0}, v_{1}, \ldots, v_{6}\right]$. For example, $D_{3}\left[v_{0}, v_{1}, \ldots, v_{6}\right]$ is the graph with vertex set $\left\{v_{0}, v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}\right\}$ and $\operatorname{arc} \operatorname{set}\left\{\left(v_{1}, v_{0}\right),\left(v_{1}, v_{2}\right),\left(v_{3}, v_{2}\right),\left(v_{3}, v_{4}\right),\left(v_{4}, v_{5}\right),\left(v_{5}, v_{6}\right)\right.$, $\left.\left(v_{6}, v_{0}\right)\right\}$.

The following result of Alspach and Gavlas proves the existence of 7 -cycle decompositions of complete graphs.

Theorem 1.3 ([3]) Let $v \geq 7$ be an integer. There exists a C_{7}-decomposition of K_{v} if and only if $v \equiv 1$ or $7(\bmod 14)$.

Figure. The ten oriented heptagons.

In $[11,12]$, Liu constructs cycle decompositions of complete equipartite graphs. Even though Liu's result focuses on resolvable decompositions, we will only make use of the following particular instances of his result.

Proposition $1.4([11,12])$ Let $n \geq 3$ be an odd integer. There exists a C_{7}-decomposition of $K_{n \times 7}$.
Since each of the oriented 7 -cycles D_{i} is isomorphic to its own reverse for $i=1,2,3,4,5,6$, and 7 (see Figure 1), we have the following result.

Lemma 1.5 If a graph G has a C_{7}-decomposition, then G^{*} has a D_{i}-decomposition for $i \in[1,7]$.
Theorem 1.3 together with Lemma 1.5 give the following result.

Corollary 1.6 If $v \equiv 1$ or $7(\bmod 14)$, then K_{v}^{*} has a D_{i}-decomposition for $i \in[1,7]$.
Similarly, Proposition 1.4 together with Lemma 1.5 give the following result.

Corollary 1.7 For all odd integers $n \geq 3$, there exists a D_{i}-decomposition of $K_{n \times 7}^{*}$ for $i \in[1,7]$.
We also make use of the following results in the next section. All of these results can be found in Handbook of Combinatorial Designs [7] (see [1] and [8]).

Theorem 1.8 Let $v \geq 3$ be an odd integer. There exists a $\left\{K_{3}, K_{5}\right\}$-decomposition of K_{v}.

Theorem 1.9 Let $v \geq 6$ be an even integer. There exists a $\left\{K_{3}, K_{5}\right\}$-decomposition of $K_{v}-I$ where I is a 1 -factor of K_{v}.

2. Small designs

We first present several D_{i}-decompositions of various graphs for $i \in[1,8]$. Beyond establishing the existence of necessary base cases, these decompositions are used extensively in the general constructions seen in Section 3.

For given integers $v_{0}, v_{1}, \ldots, v_{6}$ and some $i \in \mathbb{Z}_{n}$, we define $D\left[v_{0}, v_{1}, \ldots, v_{6}\right]+i$ to indicate $D\left[v_{0}+i, v_{1}+\right.$ $\left.i, \ldots, v_{6}+i\right]$ where all addition is performed in \mathbb{Z}_{n}. By convention, we define $\infty+i=\infty$.

Example 2.1 Let $V\left(K_{7}^{*}\right)=\mathbb{Z}_{6} \cup\{\infty\}$ and let

$$
\begin{equation*}
\Delta_{8}=D_{8}[0,1,3,4,2,5, \infty]+i: i \in \mathbb{Z}_{6} \tag{2.1}
\end{equation*}
$$

Then Δ_{8} is a D_{8}-decomposition of K_{7}^{*}.

Example 2.2 Let $V\left(K_{8}^{*}\right)=\mathbb{Z}_{8}$ and let

$$
\begin{aligned}
& \Delta_{1}=\left\{D_{1}[0,2,3,7,4,6,5]+i: i \in \mathbb{Z}_{8}\right\} \\
& \Delta_{2}=\left\{D_{2}[0,5,6,3,1,2,4]+i: i \in \mathbb{Z}_{8}\right\} \\
& \Delta_{3}=\left\{D_{3}[0,2,3,7,4,6,1]+i: i \in \mathbb{Z}_{8}\right\} \\
& \Delta_{4}=\left\{D_{4}[0,1,3,7,4,5,2]+i: i \in \mathbb{Z}_{8}\right\} \\
& \Delta_{5}=\left\{D_{5}[0,1,3,2,5,7,4]+i: i \in \mathbb{Z}_{8}\right\} \\
& \Delta_{6}=\left\{D_{6}[0,1,3,4,7,2,6]+i: i \in \mathbb{Z}_{8}\right\} \\
& \Delta_{7}=\left\{D_{7}[0,1,2,4,7,3,6]+i: i \in \mathbb{Z}_{8}\right\} \\
& \Delta_{8}=\left\{D_{8}[0,1,3,7,2,4,5]+i: i \in \mathbb{Z}_{8}\right\}
\end{aligned}
$$

Then Δ_{i} is a D_{i}-decomposition of K_{8}^{*} for $i \in[1,8]$.
Example 2.3 Let $V\left(K_{14}^{*}\right)=\mathbb{Z}_{13} \cup\{\infty\}$ and let

$$
\begin{aligned}
& \Delta_{1}=\left\{\left\{D_{1}[0,1,12,2,11,3,9] \cup D_{1}[0,3,4,12,1,8, \infty]\right\}+i: i \in \mathbb{Z}_{13}\right\} \\
& \Delta_{2}=\left\{\left\{D_{2}[0,1,12,2,11,3,9] \cup D_{2}[0,2,5,6,1,8, \infty]\right\}+i: i \in \mathbb{Z}_{13}\right\} \\
& \Delta_{3}=\left\{\left\{D_{3}[0,1,12,2,11,3,9] \cup D_{3}[0,5,6,4,7,1, \infty]\right\}+i: i \in \mathbb{Z}_{13}\right\} \\
& \Delta_{4}=\left\{\left\{D_{4}[0,1,12,2,11,3,5] \cup D_{4}[0,3,4,10,1,8, \infty]\right\}+i: i \in \mathbb{Z}_{13}\right\} \\
& \Delta_{5}=\left\{\left\{D_{5}[0,1,12,2,11,3,9] \cup D_{5}[0,2,1,6,9,3, \infty]\right\}+i: i \in \mathbb{Z}_{13}\right\} \\
& \Delta_{6}=\left\{\left\{D_{6}[0,1,12,2,11,3,9] \cup D_{6}[0,2,5,6,11,4, \infty]\right\}+i: i \in \mathbb{Z}_{13}\right\} \\
& \Delta_{7}=\left\{\left\{D_{7}[0,1,12,2,11,3,9] \cup D_{7}[0,5,6, \infty, 7,1,11]\right\}+i: i \in \mathbb{Z}_{13}\right\} \\
& \Delta_{8}=\left\{\left\{D_{8}[0,1,12,2,11,3,4] \cup D_{8}[0,2,5,11,3,10, \infty]\right\}+i: i \in \mathbb{Z}_{13}\right\}
\end{aligned}
$$

Then Δ_{i} is a D_{i}-decomposition of K_{14}^{*} for $i \in[1,8]$.

Example 2.4 Let $V\left(K_{15}^{*}\right)=\mathbb{Z}_{15}$ and let

$$
\left.\Delta_{8}=\left\{D_{8}[0,1,3,5,2,14,4] \cup D_{8}[0,14,10,1,6,13,7]\right\}+i: i \in \mathbb{Z}_{15}\right\}
$$

Then Δ_{8} is a D_{8}-decomposition of K_{15}^{*}.
Example 2.5 Let $V\left(K_{28}^{*}\right)=\mathbb{Z}_{27} \cup\{\infty\}$ and let

$$
\begin{aligned}
& \Delta_{1}=\left\{\left\{D_{1}[0,1,26,2,25,3,23] \cup D_{1}[0,3,25,4,23,5,26] \cup\right.\right. \\
& \left.\left.D_{1}[0,9,16,6,14,3,13] \cup D_{1}[0,12,14,26,10,23, \infty]\right\}+i: i \in \mathbb{Z}_{27}\right\}, \\
& \Delta_{2}=\left\{\left\{D_{2}[0,1,26,2,25,3,23] \cup D_{2}[0,3,19,4,23,5,26] \cup\right.\right. \\
& \left.\left.D_{2}[0,5,16,6,14,3,13] \cup D_{2}[0,2,14,20,6,13, \infty]\right\}+i: i \in \mathbb{Z}_{27}\right\}, \\
& \Delta_{3}=\left\{\left\{D_{3}[0,1,26,2,25,3,23] \cup D_{3}[0,16,19,4,23,5,26] \cup\right.\right. \\
& \left.\left.D_{3}[0,5,12,6,14,3,13] \cup D_{3}[0,9,11,21,6,19, \infty]\right\}+i: i \in \mathbb{Z}_{27}\right\}, \\
& \Delta_{4}=\left\{\left\{D_{4}[0,1,26,2,24,3,25] \cup D_{4}[0,3,23,4,22,5,20] \cup\right.\right. \\
& \left.\left.D_{4}[0,9,5,16,4,17,10] \cup D_{4}[0,8,9,13,26,15, \infty]\right\}+i: i \in \mathbb{Z}_{27}\right\}, \\
& \Delta_{5}=\left\{\left\{D_{5}[0,1,26,2,25,3,23] \cup D_{5}[0,2,14,4,23,5,26] \cup\right.\right. \\
& \left.\left.D_{5}[0,5,16,26,7,10,21] \cup D_{5}[0,11,4,17,3,15, \infty]\right\}+i: i \in \mathbb{Z}_{27}\right\}, \\
& \Delta_{6}=\left\{\left\{D_{6}[0,1,26,2,25,3,23] \cup D_{6}[0,2,5,26,18,1,11] \cup\right.\right. \\
& \left.\left.D_{6}[0,9,21,26,5,18,19] \cup D_{6}[0,14,2,13,22,15, \infty]\right\}+i: i \in \mathbb{Z}_{27}\right\}, \\
& \Delta_{7}=\left\{\left\{D_{7}[0,1,26,2,25,3,24] \cup D_{7}[0,5,26,6,25,16,15]\right.\right. \text {, } \\
& \left.\left.D_{7}[0,10,26,11,18,1,14] \cup D_{7}[0,16,18,9, \infty, 23,19]\right\}+i: i \in \mathbb{Z}_{27}\right\}, \\
& \Delta_{8}=\left\{\left\{D_{8}[0,1,26,2,25,3,21] \cup D_{8}[0,2,5,26,3,25,18]\right.\right. \text {, } \\
& \left.\left.D_{8}[0,8,18,7,19,2,16] \cup D_{8}[0,15,2,3,23,4, \infty]\right\}+i: i \in \mathbb{Z}_{27}\right\} .
\end{aligned}
$$

Then Δ_{i} is a D_{i}-decomposition of K_{28}^{*} for $i \in[1,8]$.

Example 2.6 Let $V\left(K_{29}^{*}\right)=\mathbb{Z}_{29}$ and let

$$
\begin{aligned}
\Delta_{8}= & \left\{\left\{D_{8}[0,3,21,4,20,5,28] \cup D_{8}[0,27,5,26,16,25,21],\right.\right. \\
& \left.\left.D_{8}[0,26,9,27,8,28,23] \cup D_{8}[0,22,23,21,5,20,24]\right\}+i: i \in \mathbb{Z}_{29}\right\}
\end{aligned}
$$

Then Δ_{8} is a D_{8}-decomposition of K_{29}^{*}.
Example 2.7 Let $V\left(K_{3 \times 7}^{*}\right)=\mathbb{Z}_{21}$ with vertex partition $\left\{V_{i}: i \in \mathbb{Z}_{3}\right\}$, where $V_{i}=\left\{j \in \mathbb{Z}_{21}: j \equiv i(\bmod 3)\right\}$. Let

$$
\Delta_{8}=\left\{\left\{D_{8}[0,1,5,12,4,17,10] \cup D_{8}[0,2,7,12,8,18,20]\right\}+i: i \in \mathbb{Z}_{21}\right\}
$$

Then Δ_{8} is a D_{8}-decomposition of $K_{3 \times 7}^{*}$.

1664

Example 2.8 Let $V\left(K_{5 \times 7}^{*}\right)=\mathbb{Z}_{35}$ with vertex partition $\left\{V_{i}: i \in \mathbb{Z}_{5}\right\}$, where $V_{i}=\left\{j \in \mathbb{Z}_{35}: j \equiv i(\bmod 5)\right\}$. Let

$$
\begin{aligned}
\Delta_{8}=\{ & \left\{D_{8}[0,1,3,19,2,16,17] \cup D_{8}[0,3,7,18,6,8,16] \cup\right. \\
& \left.\left.D_{8}[0,6,13,19,12,1,14] \cup D_{8}[0,8,17,20,16,4,13]\right\}+i: i \in \mathbb{Z}_{35}\right\} .
\end{aligned}
$$

Then Δ_{8} is a D_{8}-decomposition of $K_{5 \times 7}^{*}$.

3. General constructions

For two edge-disjoint graphs (or directed graphs) G and H, we use $G \cup H$ to denote the graph (or directed graph) with vertex set $V(G) \cup V(H)$ and edge (or arc) set $E(G) \cup E(H)$. Furthermore, given a positive integer x, we use $x G$ to denote the vertex-disjoint union of x copies of G.

We now give our constructions for decompositions of K_{v}^{*} in Lemmas 3.2, 3.3, 3.5, and 3.6 which cover values of v working modulo 14 . The main result is summarized in Theorem 3.7.

Lemma 3.1 For every integer $x \geq 3$ and each $i \in[1,8]$, there exists a D_{i}-decomposition of $K_{(2 x) \times 7}^{*}-x K_{7,7}^{*}$.
Proof By Theorem 1.9, there exists a $\left\{K_{3}^{*}, K_{5}^{*}\right\}$-decomposition of $K_{2 x}^{*}-I^{*}$. Replacing each vertex of $K_{2 x}^{*}$ by a set of 7 vertices and each edge of $K_{2 x}^{*}-I^{*}$ by a copy of $K_{7,7}^{*}$ gives a $\left\{K_{3 \times 7}^{*}, K_{5 \times 7}^{*}\right\}$-decomposition of $K_{(2 x) \times 7}^{*}-x K_{7,7}^{*}$. By Proposition 1.4, there exists a D_{i}-decomposition of $K_{3 \times 7}^{*}$ and $K_{5 \times 7}^{*}$ for $i \in[1,7]$. Also by Examples 2.7 and 2.8 , there exist D_{8}-decompositions of $K_{3 \times 7}^{*}$ and $K_{5 \times 7}^{*}$, respectively. Thus, the result now follows.

Lemma 3.2 Let $D \in\left\{D_{1}, D_{2}, \ldots, D_{8}\right\}$. There exists a D-decomposition of K_{v}^{*} for all $v \equiv 0(\bmod 14)$.
Proof Let $D \in\left\{D_{1}, D_{2}, \ldots, D_{8}\right\}$ and let $v=14 x$ for some positive integer x. For $v=14$ and $v=28$, the results follow from Example 2.3 and 2.5, respectively, so we now consider when $x \geq 3$.

Let $K_{14 x}^{*}$ have vertex partition $\left\{H_{j}: 1 \leq j \leq 2 x\right\}$, where $\left|H_{j}\right|=7$ for each $j \in[1,2 x]$. For each $j \in[1, x], H_{2 j-1} \cup H_{2 j}$ induces a K_{14}^{*}, and let B_{j} be this induced subgraph $K_{14 x}^{*}\left[H_{2 j-1} \cup H_{2 j}\right]$. It is simple to see that $K_{14 x}^{*}-\bigcup_{j=1}^{x} B_{j}=K_{(2 x) \times 7}^{*}-x K_{7,7}^{*}$. Thus, we have a decomposition of $K_{14 x}^{*}$ into x copies of K_{14}^{*} and one copy of $K_{(2 x) \times 7}^{*}-x K_{7,7}^{*}$. Since both K_{14}^{*} and $K_{(2 x) \times 7}^{*}-x K_{7,7}^{*}$ have a D-decomposition by Example 2.3 and Lemma 3.1, respectively, we have our desired decomposition of K_{v}^{*}.

Lemma 3.3 Let $D \in\left\{D_{1}, D_{2}, \ldots, D_{8}\right\}$. There exists a D-decomposition of K_{v}^{*} for all $v \equiv 1(\bmod 14)$.
Proof For $D \in\left\{D_{1}, D_{2}, \ldots, D_{7}\right\}$, the result follows from Corollary 1.6. Thus, it remains to prove the lemma for $D=D_{8}$.

Let $D=D_{8}$. In the case $v=15$ and $v=29$, the results follow from Examples 2.4 and 2.6 , respectively. Now, we let $v=14 x+1$ for some integer $x \geq 3$.

Let $K_{14 x+1}^{*}$ have vertex partition $\left\{H_{j}: 1 \leq j \leq 2 x\right\} \cup\{\infty\}$, where $\left|H_{j}\right|=7$ for each $j \in[1,2 x]$. For each $j \in[1, x], H_{2 j-1} \cup H_{2 j}$ along with the vertex ∞ induces a K_{15}^{*}, and let B_{j} be the induced subgraph $K_{14 x+1}^{*}\left[H_{2 j-1} \cup H_{2 j} \cup\{\infty\}\right]$. Removing union of B_{j} 's from $K_{14 x+1}^{*}$ results in $K_{(2 x) \times 7}^{*}-x K_{7,7}^{*}$. Thus, $K_{14 x+1}^{*}$
decomposes into x copies of K_{15}^{*} and one copy of $K_{(2 x) \times 7}^{*}-x K_{7,7}^{*}$. Since both K_{15}^{*} and $K_{(2 x) \times 7}^{*}-x K_{7,7}^{*}$ have a D-decomposition by Example 2.4 and Lemma 3.1, respectively, we have our desired decomposition of K_{v}^{*}.

Lemma 3.4 For every integer $x \geq 1$ and each $i \in[1,8]$, there exists a D_{i}-decomposition of $K_{(2 x+1) \times 7}^{*}$.
Proof By Theorem 1.8, there exists a $\left\{K_{3}^{*}, K_{5}^{*}\right\}$-decomposition of $K_{2 x+1}^{*}$. Replacing each vertex of $K_{2 x+1}^{*}$ by a set of 7 vertices and each edge of $K_{2 x+1}^{*}$ by a copy of $K_{7,7}^{*}$ gives a $\left\{K_{3 \times 7}^{*}, K_{5 \times 7}^{*}\right\}$-decomposition of $K_{(2 x+1) \times 7}^{*}$. By Proposition 1.4, there exists a D_{i}-decomposition of $K_{3 \times 7}^{*}$ and $K_{5 \times 7}^{*}$ for $i \in[1,7]$. Also by Examples 2.7 and 2.8 , there exist D_{8}-decompositions of $K_{3 \times 7}^{*}$ and $K_{5 \times 7}^{*}$, respectively. The result then follows.

Lemma 3.5 Let $D \in\left\{D_{1}, D_{2}, \ldots, D_{8}\right\}$. There exists a D-decomposition of K_{v}^{*} for all $v \equiv 7(\bmod 14)$.
Proof By Corollary 1.6, we have the result for $D \in\left\{D_{1}, D_{2}, \ldots, D_{7}\right\}$. Thus, it remains to prove the lemma for $D=D_{8}$.

Let $D=D_{8}$. When v is 7 the result follows from Example 2.1. Now, we let $v=14 x+7$ for some integer $x \geq 1$.

Let $H_{1}, H_{2}, \ldots, H_{2 x+1}$ be disjoint sets of 7 vertices each, and let $K_{(2 x+1) \times 7}^{*}$ have vertex partition $\left\{H_{j}: 1 \leq j \leq 2 x+1\right\}$. Now consider $K_{14 x+7}^{*}$ to have vertex set $\bigcup_{j=1}^{2 x+1} H_{j}$ where each H_{j} induces a K_{7}^{*}. Thus, $K_{14 x+7}^{*}$ decomposes into copies of K_{7}^{*} and one copy of $K_{(2 x+1) \times 7}^{*}$. Since both K_{7}^{*} and $K_{(2 x+1) \times 7}^{*}$ have a D-decomposition by Example 2.1 and Lemma 3.4, respectively, we have our desired decomposition of K_{v}^{*}.

Lemma 3.6 Let $D \in\left\{D_{1}, D_{2}, \ldots, D_{8}\right\}$. There exists a D-decomposition of K_{v}^{*} for all $v \equiv 8(\bmod 14)$.
Proof Let $D \in\left\{D_{1}, D_{2}, \ldots, D_{8}\right\}$. For $v=8$, the result follows from Example 2.2. Now, we let $v=14 x+8$ for some integer $x \geq 1$.

Here we can consider $V\left(K_{14 x+8}^{*}\right)=\left(\bigcup_{j=1}^{2 x+1} H_{j}\right) \cup\{\infty\}$, where each H_{j} is defined as in the proof of Lemma 3.5 with the modification that each $H_{j} \cup\{\infty\}$ induces a K_{8}^{*}. Similar to the proof of Lemma 3.5, the desired D-decomposition of $K_{14 x+8}^{*}$ can be constructed using D-decompositions of K_{8}^{*} and $K_{(2 x+1) \times 7}^{*}$, which exist by Example 2.2 and Lemma 3.4, respectively.

Since D_{9} is the reverse orientation of D_{8}, existence of a $\left(K_{v}^{*}, D_{9}\right)$-design is equivalent to the existence of a $\left(K_{v}^{*}, D_{8}\right)$-design. Thus, combining the previous results from Lemmas 3.2, 3.3, 3.5, and 3.6, we obtain the following necessary and sufficient conditions for the existence of a decomposition of K_{v}^{*} into the oriented heptagons.

Theorem 3.7 Let D be an oriented heptagon. There exists a D-decomposition of K_{v}^{*} if and only if $v \equiv 0$ or $1(\bmod 7)$.

4. Conclusion and future work

In this article, we considered the spectrum problem for each of the ten nonisomorphic orientations of a heptagon. The necessary condition for such a decomposition is that $v(v-1) \equiv 0(\bmod 7)$. We have shown that this necessary condition is also sufficient.

For future work, it would be interesting to consider a generalization of our problem for the λ-fold complete symmetric directed graphs.

Acknowledgment

The author wishes to thank Saad El-Zanati for helpful suggestions during the course of this work.

References

[1] Abel RJ, Bennett FE, Greig M. PBD-Closure. In: Colbourn CJ, Dinitz JH (editors). Handbook of Combinatorial Designs. Boca Raton, FL, USA: Chapman and Hall/CRC Press, 2007, pp. 246-254.
[2] Adams P, Bunge RC, Dulowski J, El-Zanati SI et al. The λ-fold spectrum problem for the orientations of the 6 -cycle. preprint.
[3] Alspach B, Gavlas H. Cycle decompositions of K_{n} and $K_{n}-I$. Journal of Combinatorial Theory, Series B 2001; 81 (1): 77-99.
[4] Alspach B, Gavlas H, Šajna M, Verrall H. Cycle decompositions IV: complete directed graphs and fixed length directed cycles. Journal of Combinatorial Theory, Series A 2003; 103 (1): 165-208.
[5] Alspach B, Heinrich K, Varma BN. Decompositions of complete symmetric digraphs into the oriented pentagons. Journal of the Australian Mathematical Society 1979; 28 (3): 353-361.
[6] Bermond JC. An application of the solution of Kirkman's schoolgirl problem: the decomposition of the symmetric oriented complete graph into 3-circuits. Discrete Mathematics 1974; 8 (4): 301-304.
[7] Colbourn CJ, Dinitz JH. Handbook of Combinatorial Designs. Boca Raton, FL, USA: Chapman/CRC Press, 2007.
[8] Ge G. Group divisible designs. In: Colbourn CJ, Dinitz JH (editors). Handbook of Combinatorial Designs. Boca Raton, FL, USA: Chapman and Hall/CRC Press, 2007, pp. 255-260.
[9] Harary F, Wallis WD, Heinrich K. Decomposition of complete symmetric digraph into the four oriented quadrilaterals. In: Holton DA, Seberry J (editors). Lecture Notes in Mathematics, Vol. 686. Berlin, Germany: Springer-Verlag, 1978, pp. 165-173.
[10] Hung SH, Mendelsohn NS. Directed triple systems. Journal of Combinatorial Theory, Series B 1973; 14 (3): 310-318.
[11] Liu J. A generalization of the Oberwolfach problem and C_{t}-factorizations of complete equipartite graphs. Journal of Combinatorial Designs 2000; 8 (1): 42-49.
[12] Liu J. The equipartite Oberwolfach Problem with uniform tables. Journal of Combinatorial Theory, Series A 2003; 101 (1): 20-34.
[13] Mendelsohn NS. A generalisation of Steiner triple systems. In: Atkin AO, Birch BJ (editors). Computers in number theory. New York, USA: Academic Press, 1971, pp. 323-339.
[14] Schönheim J. Partition of the edges of the directed complete graph into 4-cycles. Discrete Mathematics 1975; 11 (1): 67-70.

[^0]: *Correspondence: ugur.odabasi@iuc.edu.tr
 2010 AMS Mathematics Subject Classification: 05C20, 05C51.

