

Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/

Research Article

Decompositions of complete symmetric directed graphs into the oriented heptagons

Uğur ODABAŞI*

Department of Engineering Sciences, Istanbul University-Cerrahpaşa, İstanbul, Turkey

Received: 14.07.2020 • A	Accepted/Published Online: 09.05.2021	•	Final Version: 27.07.2021
---------------------------------	---------------------------------------	---	----------------------------------

Abstract: The complete symmetric directed graph of order v, denoted by K_v^* , is the directed graph on v vertices that contains both arcs (x, y) and (y, x) for each pair of distinct vertices x and y. For a given directed graph D, the set of all v for which K_v^* admits a D-decomposition is called the spectrum of D-decomposition. There are 10 nonisomorphic orientations of a 7-cycle (heptagon). In this paper, we completely settled the spectrum problem for each of the oriented heptagons.

Key words: Decomposition, directed graph, orientations of a heptagon

1. Introduction

For a graph (or directed graph) D, we use V(D) and E(D) to denote the vertex set of D and the edge set (or arc set) of D, respectively. For a simple graph G, we use G^* to denote the symmetric directed graph with vertex set $V(G^*) = V(G)$ and arc set $E(G^*) = \bigcup_{\{x,y\}\in E(G)}\{(x,y),(y,x)\}$. Hence, K_v^* is the complete symmetric directed graph of order v. We use $K_{r\times s}$ to denote the complete simple multipartite graph with r parts of size s. Also, if a and b are integers with $a \leq b$, we let [a,b] denote the set $\{a, a + 1, \ldots, b\}$.

A decomposition of a directed graph K is a set $\Delta = \{D_1, D_2, \dots, D_t\}$ of subgraphs of K such that each directed edge, or arc, of K appears in exactly one directed graph $D_i \in \Delta$. If each D_i in Δ is isomorphic to a given directed graph D, the decomposition is called a D-decomposition of K. A $\{G, H\}$ -decomposition of K is defined similarly. A D-decomposition of K is also known as a (K, D)-design. The set of all v for which K_v^* admits a D-decomposition is called the spectrum of D.

The reverse orientation of D, denoted $\operatorname{Rev}(D)$, is the directed graph with vertex set V(D) and arc set $\{(v, u) : (u, v) \in E(D)\}$. We note that the existence of a D-decomposition of K necessarily implies the existence of a $\operatorname{Rev}(D)$ -decomposition of $\operatorname{Rev}(K)$. Since K_v^* is its own reverse orientation, we note that the spectrum of D is equal to the spectrum of $\operatorname{Rev}(D)$.

A decomposition of K_v^* into copies of a directed graph D requires the number of edges in K_v^* , namely v(v-1) is divisible by the number of the edges in D. Moreover, both $gcd\{outdegree(x) : x \in V(D)\}$ and $gcd\{indegree(x) : x \in V(D)\}$ divide v-1, which is both indegree and outdegree of every vertex in K_v^* . Thus, the necessary conditions for a directed graph D to decompose K_v^* are

^{*}Correspondence: ugur.odabasi@iuc.edu.tr

²⁰¹⁰ AMS Mathematics Subject Classification: 05C20, 05C51.

- (a) $|V(D)| \leq v$,
- (b) |E(D)| divides v(v-1), and
- (c) gcd {outdegree $(x) : x \in V(D)$ } and gcd {indegree $(x) : x \in V(D)$ } both divide (v-1).

The spectrum problem for certain subgraphs (both bipartite and nonbipartite) of K_4^* has already been studied [6, 9, 10, 13, 14]. There are two nonisomorphic orientations of K_3 , namely, cyclic and transitive orientations. When D is a cyclic orientation of K_3 , then a (K_v^*, D) -design is known as a Mendelsohn triple system. The spectrum for Mendelsohn triple systems was found independently by Mendelsohn [13] and Bermond [6]. When D is a transitive orientation of K_3 , then a (K_v^*, D) -design is known as a transitive triple system. The spectrum for transitive triple systems was found by Hung and Mendelsohn [10]. There are exactly four orientations of a quadrilateral (i.e. a 4-cycle). It was shown in [14] that if D is a cyclic orientation of a quadrilateral, then a (K_v^*, D) -design exists if and only if $v \equiv 0$ or 1 (mod 4) and $v \neq 4$. The spectrum problem for the remaining three orientations of a quadrilateral were settled in [9]. In [5], Alspach et al. showed that K_v^* can be decomposed into each of the four orientations of a pentagon (i.e. a 5-cycle) if and only if $v \equiv 0$ or 1 (mod 5). In [4], it is shown that for positive integers m and v with $2 \leq m \leq v$ the directed graph K_v^* can be decomposed into directed cycles (i.e. with all the edges being oriented in the same direction) of length m if and only if m divides the number of arcs in K_v^* and $(v, m) \notin \{(4, 4), (6, 3), (6, 6)\}$. Also [2], Adams et al. has recently settled the λ -fold spectrum problem for all possible orientations of a 6-cycle.

There are ten nonisomorphic orientations of a heptagon (see Figure 1). The spectrum problem was settled for the directed heptagon (D_{10} in Figure 1) in [4].

Theorem 1.1 ([4]) For integers $v \ge 7$, there exists a D_{10} -decomposition of K_v^* if and only if $v(v-1) \equiv 0 \pmod{7}$.

In this work, we completely settle the spectrum problem for the remaining nine nonisomorphic oriented heptagons (i.e. D_i for $i \in [1,9]$ as seen in Figure 1).

If D is an oriented heptagon and if there exists a (K_v^*, D) -design, then we must have 7|v(v-1). Moreover, if D is an oriented odd cycle, then $gcd\{outdegree(x): x \in V(D)\} = gcd\{indegree(x): x \in V(D)\} = 1$. Thus, from the necessary conditions established above, we have the following.

Lemma 1.2 Let $D \in \{D_1, D_2, \ldots, D_9\}$ and let $v \ge 7$ be a positive integer. There exists a D-decomposition of K_v^* only if $v(v-1) \equiv 0 \pmod{7}$.

The remainder of this paper is dedicated to showing the existence of the decompositions in question in order to establish sufficiency of these necessary conditions. Henceforth, each of the graphs D_i with $i \in [1,9]$ in Figure 1, with vertices labeled as in the figure, will be represented by $D_i[v_0, v_1, \ldots, v_6]$. For example, $D_3[v_0, v_1, \ldots, v_6]$ is the graph with vertex set $\{v_0, v_1, v_2, v_3, v_4, v_5, v_6\}$ and arc set $\{(v_1, v_0), (v_1, v_2), (v_3, v_2), (v_3, v_4), (v_4, v_5), (v_5, v_6), (v_6, v_0)\}$.

The following result of Alspach and Gavlas proves the existence of 7-cycle decompositions of complete graphs.

Theorem 1.3 ([3]) Let $v \ge 7$ be an integer. There exists a C_7 -decomposition of K_v if and only if $v \equiv 1$ or 7 (mod 14).

Figure. The ten oriented heptagons.

In [11, 12], Liu constructs cycle decompositions of complete equipartite graphs. Even though Liu's result focuses on resolvable decompositions, we will only make use of the following particular instances of his result.

Proposition 1.4 ([11, 12]) Let $n \ge 3$ be an odd integer. There exists a C_7 -decomposition of $K_{n \times 7}$.

Since each of the oriented 7-cycles D_i is isomorphic to its own reverse for i = 1, 2, 3, 4, 5, 6, and 7 (see Figure 1), we have the following result.

Lemma 1.5 If a graph G has a C_7 -decomposition, then G^* has a D_i -decomposition for $i \in [1,7]$.

Theorem 1.3 together with Lemma 1.5 give the following result.

Corollary 1.6 If $v \equiv 1$ or 7 (mod 14), then K_v^* has a D_i -decomposition for $i \in [1,7]$.

Similarly, Proposition 1.4 together with Lemma 1.5 give the following result.

Corollary 1.7 For all odd integers $n \ge 3$, there exists a D_i -decomposition of $K_{n\times 7}^*$ for $i \in [1,7]$.

We also make use of the following results in the next section. All of these results can be found in Handbook of Combinatorial Designs [7] (see [1] and [8]).

Theorem 1.8 Let $v \ge 3$ be an odd integer. There exists a $\{K_3, K_5\}$ -decomposition of K_v .

Theorem 1.9 Let $v \ge 6$ be an even integer. There exists a $\{K_3, K_5\}$ -decomposition of $K_v - I$ where I is a 1-factor of K_v .

2. Small designs

We first present several D_i -decompositions of various graphs for $i \in [1, 8]$. Beyond establishing the existence of necessary base cases, these decompositions are used extensively in the general constructions seen in Section 3.

For given integers v_0, v_1, \ldots, v_6 and some $i \in \mathbb{Z}_n$, we define $D[v_0, v_1, \ldots, v_6] + i$ to indicate $D[v_0+i, v_1+i, \ldots, v_6+i]$ where all addition is performed in \mathbb{Z}_n . By convention, we define $\infty + i = \infty$.

Example 2.1 Let $V(K_7^*) = \mathbb{Z}_6 \cup \{\infty\}$ and let

$$\Delta_8 = D_8[0, 1, 3, 4, 2, 5, \infty] + i : i \in \mathbb{Z}_6.$$
(2.1)

Then Δ_8 is a D_8 -decomposition of K_7^* .

Example 2.2 Let $V(K_8^*) = \mathbb{Z}_8$ and let

$$\begin{split} &\Delta_1 = \{D_1[0,2,3,7,4,6,5] + i : i \in \mathbb{Z}_8\}, \\ &\Delta_2 = \{D_2[0,5,6,3,1,2,4] + i : i \in \mathbb{Z}_8\}, \\ &\Delta_3 = \{D_3[0,2,3,7,4,6,1] + i : i \in \mathbb{Z}_8\}, \\ &\Delta_4 = \{D_4[0,1,3,7,4,5,2] + i : i \in \mathbb{Z}_8\}, \\ &\Delta_5 = \{D_5[0,1,3,2,5,7,4] + i : i \in \mathbb{Z}_8\}, \\ &\Delta_6 = \{D_6[0,1,3,4,7,2,6] + i : i \in \mathbb{Z}_8\}, \\ &\Delta_7 = \{D_7[0,1,2,4,7,3,6] + i : i \in \mathbb{Z}_8\}, \\ &\Delta_8 = \{D_8[0,1,3,7,2,4,5] + i : i \in \mathbb{Z}_8\}. \end{split}$$

Then Δ_i is a D_i -decomposition of K_8^* for $i \in [1, 8]$.

Example 2.3 Let $V(K_{14}^*) = \mathbb{Z}_{13} \cup \{\infty\}$ and let

$$\begin{split} &\Delta_1 = \{\{D_1[0,1,12,2,11,3,9] \cup D_1[0,3,4,12,1,8,\infty]\} + i : i \in \mathbb{Z}_{13}\}, \\ &\Delta_2 = \{\{D_2[0,1,12,2,11,3,9] \cup D_2[0,2,5,6,1,8,\infty]\} + i : i \in \mathbb{Z}_{13}\}, \\ &\Delta_3 = \{\{D_3[0,1,12,2,11,3,9] \cup D_3[0,5,6,4,7,1,\infty]\} + i : i \in \mathbb{Z}_{13}\}, \\ &\Delta_4 = \{\{D_4[0,1,12,2,11,3,5] \cup D_4[0,3,4,10,1,8,\infty]\} + i : i \in \mathbb{Z}_{13}\}, \\ &\Delta_5 = \{\{D_5[0,1,12,2,11,3,9] \cup D_5[0,2,1,6,9,3,\infty]\} + i : i \in \mathbb{Z}_{13}\}, \\ &\Delta_6 = \{\{D_6[0,1,12,2,11,3,9] \cup D_6[0,2,5,6,11,4,\infty]\} + i : i \in \mathbb{Z}_{13}\}, \\ &\Delta_7 = \{\{D_7[0,1,12,2,11,3,9] \cup D_7[0,5,6,\infty,7,1,11]\} + i : i \in \mathbb{Z}_{13}\}, \\ &\Delta_8 = \{\{D_8[0,1,12,2,11,3,4] \cup D_8[0,2,5,11,3,10,\infty]\} + i : i \in \mathbb{Z}_{13}\}. \end{split}$$

Then Δ_i is a D_i -decomposition of K_{14}^* for $i \in [1, 8]$.

Example 2.4 Let $V(K_{15}^*) = \mathbb{Z}_{15}$ and let

$$\Delta_8 = \{ D_8[0, 1, 3, 5, 2, 14, 4] \cup D_8[0, 14, 10, 1, 6, 13, 7] \} + i : i \in \mathbb{Z}_{15} \}$$

Then Δ_8 is a D_8 -decomposition of K_{15}^* .

Example 2.5 Let $V(K_{28}^*) = \mathbb{Z}_{27} \cup \{\infty\}$ and let

 $\Delta_1 = \{ \{ D_1[0, 1, 26, 2, 25, 3, 23] \cup D_1[0, 3, 25, 4, 23, 5, 26] \cup \}$ $D_1[0,9,16,6,14,3,13] \cup D_1[0,12,14,26,10,23,\infty]\} + i : i \in \mathbb{Z}_{27}\},$ $\Delta_2 = \{ \{ D_2[0, 1, 26, 2, 25, 3, 23] \cup D_2[0, 3, 19, 4, 23, 5, 26] \cup \}$ $D_2[0, 5, 16, 6, 14, 3, 13] \cup D_2[0, 2, 14, 20, 6, 13, \infty] \} + i : i \in \mathbb{Z}_{27} \},$ $\Delta_3 = \{ \{ D_3[0, 1, 26, 2, 25, 3, 23] \cup D_3[0, 16, 19, 4, 23, 5, 26] \cup \}$ $D_3[0,5,12,6,14,3,13] \cup D_3[0,9,11,21,6,19,\infty]\} + i : i \in \mathbb{Z}_{27}\},$ $\Delta_4 = \{ \{ D_4[0, 1, 26, 2, 24, 3, 25] \cup D_4[0, 3, 23, 4, 22, 5, 20] \cup \}$ $D_4[0, 9, 5, 16, 4, 17, 10] \cup D_4[0, 8, 9, 13, 26, 15, \infty] + i : i \in \mathbb{Z}_{27}$ $\Delta_5 = \{ \{ D_5[0, 1, 26, 2, 25, 3, 23] \cup D_5[0, 2, 14, 4, 23, 5, 26] \cup \}$ $D_5[0, 5, 16, 26, 7, 10, 21] \cup D_5[0, 11, 4, 17, 3, 15, \infty] \} + i : i \in \mathbb{Z}_{27} \},$ $\Delta_6 = \{ \{ D_6[0, 1, 26, 2, 25, 3, 23] \cup D_6[0, 2, 5, 26, 18, 1, 11] \cup \}$ $D_6[0, 9, 21, 26, 5, 18, 19] \cup D_6[0, 14, 2, 13, 22, 15, \infty] \} + i : i \in \mathbb{Z}_{27} \},$ $\Delta_7 = \{ \{ D_7[0, 1, 26, 2, 25, 3, 24] \cup D_7[0, 5, 26, 6, 25, 16, 15], \}$ $D_7[0, 10, 26, 11, 18, 1, 14] \cup D_7[0, 16, 18, 9, \infty, 23, 19] \} + i : i \in \mathbb{Z}_{27} \},$ $\Delta_8 = \{\{D_8[0, 1, 26, 2, 25, 3, 21] \cup D_8[0, 2, 5, 26, 3, 25, 18], \}$ $D_8[0, 8, 18, 7, 19, 2, 16] \cup D_8[0, 15, 2, 3, 23, 4, \infty] + i : i \in \mathbb{Z}_{27}$

Then Δ_i is a D_i -decomposition of K_{28}^* for $i \in [1, 8]$.

Example 2.6 Let $V(K_{29}^*) = \mathbb{Z}_{29}$ and let

$$\Delta_8 = \{ \{ D_8[0, 3, 21, 4, 20, 5, 28] \cup D_8[0, 27, 5, 26, 16, 25, 21], \\D_8[0, 26, 9, 27, 8, 28, 23] \cup D_8[0, 22, 23, 21, 5, 20, 24] \} + i : i \in \mathbb{Z}_{29} \}.$$

Then Δ_8 is a D_8 -decomposition of K_{29}^* .

Example 2.7 Let $V(K_{3\times7}^*) = \mathbb{Z}_{21}$ with vertex partition $\{V_i : i \in \mathbb{Z}_3\}$, where $V_i = \{j \in \mathbb{Z}_{21} : j \equiv i \pmod{3}\}$. Let

$$\Delta_8 = \{ \{ D_8[0, 1, 5, 12, 4, 17, 10] \cup D_8[0, 2, 7, 12, 8, 18, 20] \} + i : i \in \mathbb{Z}_{21} \}.$$

Then Δ_8 is a D_8 -decomposition of $K^*_{3\times 7}$.

Example 2.8 Let $V(K_{5\times7}^*) = \mathbb{Z}_{35}$ with vertex partition $\{V_i : i \in \mathbb{Z}_5\}$, where $V_i = \{j \in \mathbb{Z}_{35} : j \equiv i \pmod{5}\}$. Let

$$\Delta_8 = \{ \{ D_8[0, 1, 3, 19, 2, 16, 17] \cup D_8[0, 3, 7, 18, 6, 8, 16] \cup \\ D_8[0, 6, 13, 19, 12, 1, 14] \cup D_8[0, 8, 17, 20, 16, 4, 13] \} + i : i \in \mathbb{Z}_{35} \}$$

Then Δ_8 is a D_8 -decomposition of $K^*_{5\times 7}$.

3. General constructions

For two edge-disjoint graphs (or directed graphs) G and H, we use $G \cup H$ to denote the graph (or directed graph) with vertex set $V(G) \cup V(H)$ and edge (or arc) set $E(G) \cup E(H)$. Furthermore, given a positive integer x, we use xG to denote the vertex-disjoint union of x copies of G.

We now give our constructions for decompositions of K_v^* in Lemmas 3.2, 3.3, 3.5, and 3.6 which cover values of v working modulo 14. The main result is summarized in Theorem 3.7.

Lemma 3.1 For every integer $x \ge 3$ and each $i \in [1, 8]$, there exists a D_i -decomposition of $K^*_{(2x)\times 7} - xK^*_{7,7}$.

Proof By Theorem 1.9, there exists a $\{K_3^*, K_5^*\}$ -decomposition of $K_{2x}^* - I^*$. Replacing each vertex of K_{2x}^* by a set of 7 vertices and each edge of $K_{2x}^* - I^*$ by a copy of $K_{7,7}^*$ gives a $\{K_{3\times7}^*, K_{5\times7}^*\}$ -decomposition of $K_{(2x)\times7}^* - xK_{7,7}^*$. By Proposition 1.4, there exists a D_i -decomposition of $K_{3\times7}^*$ and $K_{5\times7}^*$ for $i \in [1,7]$. Also by Examples 2.7 and 2.8, there exist D_8 -decompositions of $K_{3\times7}^*$ and $K_{5\times7}^*$, respectively. Thus, the result now follows.

Lemma 3.2 Let $D \in \{D_1, D_2, \dots, D_8\}$. There exists a *D*-decomposition of K_v^* for all $v \equiv 0 \pmod{14}$.

Proof Let $D \in \{D_1, D_2, \dots, D_8\}$ and let v = 14x for some positive integer x. For v = 14 and v = 28, the results follow from Example 2.3 and 2.5, respectively, so we now consider when $x \ge 3$.

Let K_{14x}^* have vertex partition $\{H_j : 1 \le j \le 2x\}$, where $|H_j| = 7$ for each $j \in [1, 2x]$. For each $j \in [1, x]$, $H_{2j-1} \cup H_{2j}$ induces a K_{14}^* , and let B_j be this induced subgraph $K_{14x}^*[H_{2j-1} \cup H_{2j}]$. It is simple to see that $K_{14x}^* - \bigcup_{j=1}^x B_j = K_{(2x)\times7}^* - xK_{7,7}^*$. Thus, we have a decomposition of K_{14x}^* into x copies of K_{14}^* and one copy of $K_{(2x)\times7}^* - xK_{7,7}^*$. Since both K_{14}^* and $K_{(2x)\times7}^* - xK_{7,7}^*$ have a D-decomposition by Example 2.3 and Lemma 3.1, respectively, we have our desired decomposition of K_v^* .

Lemma 3.3 Let $D \in \{D_1, D_2, \dots, D_8\}$. There exists a *D*-decomposition of K_v^* for all $v \equiv 1 \pmod{14}$.

Proof For $D \in \{D_1, D_2, \dots, D_7\}$, the result follows from Corollary 1.6. Thus, it remains to prove the lemma for $D = D_8$.

Let $D = D_8$. In the case v = 15 and v = 29, the results follow from Examples 2.4 and 2.6, respectively. Now, we let v = 14x + 1 for some integer $x \ge 3$.

Let K_{14x+1}^* have vertex partition $\{H_j : 1 \le j \le 2x\} \cup \{\infty\}$, where $|H_j| = 7$ for each $j \in [1, 2x]$. For each $j \in [1, x]$, $H_{2j-1} \cup H_{2j}$ along with the vertex ∞ induces a K_{15}^* , and let B_j be the induced subgraph $K_{14x+1}^*[H_{2j-1} \cup H_{2j} \cup \{\infty\}]$. Removing union of B_j 's from K_{14x+1}^* results in $K_{(2x)\times7}^* - xK_{7,7}^*$. Thus, K_{14x+1}^*

decomposes into x copies of K_{15}^* and one copy of $K_{(2x)\times7}^* - xK_{7,7}^*$. Since both K_{15}^* and $K_{(2x)\times7}^* - xK_{7,7}^*$ have a D-decomposition by Example 2.4 and Lemma 3.1, respectively, we have our desired decomposition of K_v^* .

Lemma 3.4 For every integer $x \ge 1$ and each $i \in [1, 8]$, there exists a D_i -decomposition of $K^*_{(2x+1)\times 7}$.

Proof By Theorem 1.8, there exists a $\{K_3^*, K_5^*\}$ -decomposition of K_{2x+1}^* . Replacing each vertex of K_{2x+1}^* by a set of 7 vertices and each edge of K_{2x+1}^* by a copy of $K_{7,7}^*$ gives a $\{K_{3\times7}^*, K_{5\times7}^*\}$ -decomposition of $K_{(2x+1)\times7}^*$. By Proposition 1.4, there exists a D_i -decomposition of $K_{3\times7}^*$ and $K_{5\times7}^*$ for $i \in [1,7]$. Also by Examples 2.7 and 2.8, there exist D_8 -decompositions of $K_{3\times7}^*$ and $K_{5\times7}^*$, respectively. The result then follows.

Lemma 3.5 Let $D \in \{D_1, D_2, \dots, D_8\}$. There exists a *D*-decomposition of K_v^* for all $v \equiv 7 \pmod{14}$.

Proof By Corollary 1.6, we have the result for $D \in \{D_1, D_2, \ldots, D_7\}$. Thus, it remains to prove the lemma for $D = D_8$.

Let $D = D_8$. When v is 7 the result follows from Example 2.1. Now, we let v = 14x + 7 for some integer $x \ge 1$.

Let $H_1, H_2, \ldots, H_{2x+1}$ be disjoint sets of 7 vertices each, and let $K^*_{(2x+1)\times7}$ have vertex partition $\{H_j : 1 \leq j \leq 2x+1\}$. Now consider K^*_{14x+7} to have vertex set $\bigcup_{j=1}^{2x+1} H_j$ where each H_j induces a K^*_7 . Thus, K^*_{14x+7} decomposes into copies of K^*_7 and one copy of $K^*_{(2x+1)\times7}$. Since both K^*_7 and $K^*_{(2x+1)\times7}$ have a *D*-decomposition by Example 2.1 and Lemma 3.4, respectively, we have our desired decomposition of K^*_v . \Box

Lemma 3.6 Let $D \in \{D_1, D_2, \dots, D_8\}$. There exists a *D*-decomposition of K_v^* for all $v \equiv 8 \pmod{14}$.

Proof Let $D \in \{D_1, D_2, \dots, D_8\}$. For v = 8, the result follows from Example 2.2. Now, we let v = 14x + 8 for some integer $x \ge 1$.

Here we can consider $V(K_{14x+8}^*) = \left(\bigcup_{j=1}^{2x+1} H_j\right) \cup \{\infty\}$, where each H_j is defined as in the proof of Lemma 3.5 with the modification that each $H_j \cup \{\infty\}$ induces a K_8^* . Similar to the proof of Lemma 3.5, the desired *D*-decomposition of K_{14x+8}^* can be constructed using *D*-decompositions of K_8^* and $K_{(2x+1)\times7}^*$, which exist by Example 2.2 and Lemma 3.4, respectively.

Since D_9 is the reverse orientation of D_8 , existence of a (K_v^*, D_9) -design is equivalent to the existence of a (K_v^*, D_8) -design. Thus, combining the previous results from Lemmas 3.2, 3.3, 3.5, and 3.6, we obtain the following necessary and sufficient conditions for the existence of a decomposition of K_v^* into the oriented heptagons.

Theorem 3.7 Let D be an oriented heptagon. There exists a D-decomposition of K_v^* if and only if $v \equiv 0$ or 1 (mod 7).

4. Conclusion and future work

In this article, we considered the spectrum problem for each of the ten nonisomorphic orientations of a heptagon. The necessary condition for such a decomposition is that $v(v-1) \equiv 0 \pmod{7}$. We have shown that this necessary condition is also sufficient.

ODABAŞI/Turk J Math

For future work, it would be interesting to consider a generalization of our problem for the λ -fold complete symmetric directed graphs.

Acknowledgment

The author wishes to thank Saad El-Zanati for helpful suggestions during the course of this work.

References

- Abel RJ, Bennett FE, Greig M. PBD-Closure. In: Colbourn CJ, Dinitz JH (editors). Handbook of Combinatorial Designs. Boca Raton, FL, USA: Chapman and Hall/CRC Press, 2007, pp. 246-254.
- [2] Adams P, Bunge RC, Dulowski J, El-Zanati SI et al. The λ -fold spectrum problem for the orientations of the 6-cycle. preprint.
- [3] Alspach B, Gavlas H. Cycle decompositions of K_n and $K_n I$. Journal of Combinatorial Theory, Series B 2001; 81 (1): 77-99.
- [4] Alspach B, Gavlas H, Šajna M, Verrall H. Cycle decompositions IV: complete directed graphs and fixed length directed cycles. Journal of Combinatorial Theory, Series A 2003; 103 (1): 165-208.
- [5] Alspach B, Heinrich K, Varma BN. Decompositions of complete symmetric digraphs into the oriented pentagons. Journal of the Australian Mathematical Society 1979; 28 (3): 353-361.
- [6] Bermond JC. An application of the solution of Kirkman's schoolgirl problem: the decomposition of the symmetric oriented complete graph into 3-circuits. Discrete Mathematics 1974; 8 (4): 301-304.
- [7] Colbourn CJ, Dinitz JH. Handbook of Combinatorial Designs. Boca Raton, FL, USA: Chapman/CRC Press, 2007.
- [8] Ge G. Group divisible designs. In: Colbourn CJ, Dinitz JH (editors). Handbook of Combinatorial Designs. Boca Raton, FL, USA: Chapman and Hall/CRC Press, 2007, pp. 255-260.
- [9] Harary F, Wallis WD, Heinrich K. Decomposition of complete symmetric digraph into the four oriented quadrilaterals. In: Holton DA, Seberry J (editors). Lecture Notes in Mathematics, Vol. 686. Berlin, Germany: Springer-Verlag, 1978, pp. 165-173.
- [10] Hung SH, Mendelsohn NS. Directed triple systems. Journal of Combinatorial Theory, Series B 1973; 14 (3): 310-318.
- [11] Liu J. A generalization of the Oberwolfach problem and C_t -factorizations of complete equipartite graphs. Journal of Combinatorial Designs 2000; 8 (1): 42-49.
- [12] Liu J. The equipartite Oberwolfach Problem with uniform tables. Journal of Combinatorial Theory, Series A 2003; 101 (1): 20-34.
- [13] Mendelsohn NS. A generalisation of Steiner triple systems. In: Atkin AO, Birch BJ (editors). Computers in number theory. New York, USA: Academic Press, 1971, pp. 323-339.
- [14] Schönheim J. Partition of the edges of the directed complete graph into 4-cycles. Discrete Mathematics 1975; 11 (1): 67-70.