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Abstract: In this study, we investigate an susceptible-infected-recovered-susceptible (SIRS) epidemic model with logistic
growth and information intervention. Firstly, the basic reproduction number R0 is defined and the main results are
given in terms of local stability. Then, sufficient conditions for the global stability of endemic equilibrium are obtained.
Finally, some numerical simulations are given to validate our theoretical conclusions.
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1. Introduction

Epidemiology is the scientific field that plays a decisive role in health-related states or events in specified
populations [14]. In recent years, the establishment and analysis of mathematical models play a critical role in
epidemiology. In [3, 6, 9, 11], a variety of epidemic models have been demonstrated and investigated extensively.
With the investigation of epidemic diseases, it was noted that the behaviors of individuals changed according to
the information they obtained about the epidemic. Behavior change resulting from this information has been
found beneficial as it reduces the power of the epidemic [1, 2, 8, 13]. Information on the course of the epidemic
can be disseminated through the media and social activities, so it can be used in the disease outbreak as an
external intervention [9]. Therefore, researchers are increasingly interested in studying the impact of factors
influencing behavior on the spread of infectious diseases [2, 8, 13]. Basically, two approaches have been used
in the literature to include the impact of knowledge in a mathematical model. One of these approaches is the
acceptance of a correction in the incidence rate [4, 7, 13], the other is the introduction of a new class of conscious
individuals [5, 9, 13].

∗Correspondence: irem.atac@kocaeli.edu.tr
2010 AMS Mathematics Subject Classification: 34A34, 34D23

1668

https://orcid.org/0000-0001-9234-2523


ÇAY/Turk J Math

In [9], the authors proposed the following SIRS epidemic model with information intervention:

dS(t)

dt
= Λ− βS(t)I(t)− ρS(t) + δR(t)− µmZ(t)S(t) (1.1)

dI(t)

dt
= βS(t)I(t)− (ρ+ ν + γ)I(t) (1.2)

dR(t)

dt
= γI(t)− (ρ+ δ)R(t) + µmZ(t)S(t) (1.3)

dZ(t)

dt
=

α0I(t)

1 + β0I(t)
− α1Z(t) (1.4)

where S(t), I(t), and R(t) represent the densities of the susceptible, infectious, and recovery at time t ,
respectively. Also, Z(t) denotes the density of information in the population. The parameter Λ denotes the
birth rate of susceptible population, β indicates the rate of disease transmission from susceptible population to
infective population. ρ is the natural mortality rate and δ is the rate at which total immunity disappears. m

and 0 ≤ µ ≤ 1 represents the information interaction rate and response intensity, respectively. ν is the death
rate related to the disease; γ is the recovery rate of the infected population. α0 is the information growth rate
and β0 is the saturation constant; α1 is the natural decay rate of information.

In this study, we suppose that the susceptible population in a country has logistic growth. Because in
many realistic problems, the assumption that the susceptible population has logistical growth may be more
appropriate for a relatively long-term disease or a disease with a high mortality rate. Thus we present the
following SIRS epidemic model:

dS(t)

dt
= rS(t)

(
1− S(t)

K

)
− βS(t)I(t)

1 + aI(t)
+ δR(t)− µmZ(t)S(t), (1.5)

dI(t)

dt
=

βS(t)I(t)

1 + aI(t)
− (ρ+ ν + γ)I(t), (1.6)

dR(t)

dt
= γI(t)− (ρ+ δ)R(t) + µmZ(t)S(t), (1.7)

dZ(t)

dt
=

α0I(t)

1 + β0I(t)
− α1Z(t). (1.8)

Here r is the endogenous growth rate of susceptible population; K is the carrying capacity of the country that
ignores the infected and recovered persons and a is the saturation constant. It is assumed in this paper all
parameters are positive constants.

The rest of this paper is organized as follows. In Section 2, we show that all solutions of model (1.5)-(1.8)
are non-negative and bounded in the non-negative cone of R4 . In Section 3, we investigate the existence of
equilibria and the local dynamics of equilibria. In Section 4, we concentrate on the analysis of global stability.
In Section 5, we give some numerical examples to validate our theoretical conclusions.

2. Positivity and boundedness

Theorem 2.1 All solutions (S(t), I(t), R(t), Z(t)) of model (1.5)-(1.8) with initial conditions S(0) ≥ 0, I(0) ≥
0, R(0) ≥ 0, Z(0) ≥ 0 are non-negative and bounded for all t ≥ 0 .
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Proof From the model system (1.5)-(1.8), we have

dS

dt
|S=0 = δR,

dI

dt
|I=0 = 0,

dR

dt
|R=0 = γI + µmZS,

dZ

dt
|Z=0 =

α0I

1 + β0I
.

Note that all above ratios are non-negative on bounding planes of the non-negative cone of R4 . So, if we start
from the inside of this cone, we shall always stay in this cone in the direction of vector field is inward on all the
bounding planes. As a result, all the solutions of the model (1.5)-(1.8) are non-negative [9].

Moreover from Eqs. (1.5)-(1.7), we take V = S + I +R gives the differential equation given below:

dV

dt
= rS

(
1− S

K

)
− (ρ+ ν)I − ρR

≤ rS

(
1− S

K

)
− ρ(I +R),

then there exists Λ > 0 and η > 0 such that

dV

dt
≤ Λ− η(S + I +R) = Λ− ηV.

This gives lim supt→∞ V ≤ Λ
η . Consequently, all solutions S , I and R are bounded by Λ

η . By using the bound

of I , we obtain lim supt→∞ Z ≤ α0Λ
α1(η+β0Λ) . Hence, we get the following positively invariant bounded set:

Γ = {(S, I,R, Z) ∈ R4
+|S + I +R ≤ Λ

η
, Z ≤ α0Λ

α1(η + β0Λ)
, S ≥ 0, I ≥ 0, R ≥ 0, Z ≥ 0}

for the model (1.5)-(1.8). This proves that the solutions of Eqs. (1.5)-(1.8) are bounded. 2

3. Equilibria and local dynamics

In this section, we investigate the local stability analysis for the model (1.5)-(1.8). A significant threshold basic
reproduction number R0 , which is the average number of secondary cases produced by an infected individual
entering a population of susceptible individuals determines the stability of equilibrium points of a model. We
obtain the basic reproduction number R0 for the model (1.5)-(1.8) as follows:

R0 =
Kβ

ρ+ ν + γ
. (3.1)

The model (1.5)-(1.8) has following equilibria:
(i) the disease-free equilibrium E0 = (K, 0, 0, 0) and
(ii) the endemic equilibrium E∗ = (S∗, I∗, R∗, Z∗) which exists whenever R0 > 1 . Here,

S∗ =
(ρ+ ν + γ)(1 + aI∗)

β
,

R∗ =
1

ρ+ δ

(
γI∗ + µm

α0(ρ+ ν + γ)(1 + aI∗)I∗

α1β(1 + β0I∗)

)
,

Z∗ =
α0I

∗

α1(1 + β0I∗)
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and I∗ is the positive root of the equation below

f(I) = A1I
3 +B1I

2 + C1I +D1 = 0

where

A1 =
rα1a

2β0(ρ+ ν + γ)2

Kβ
,

B1 =
rα1(ρ+ ν + γ)2(a2 + aβ0)

Kβ
+ α1ββ0(ρ+ ν) +

ργα1ββ0

ρ+ δ
− rα1aβ0(ρ+ ν + γ),

C1 =
rα1(ρ+ ν + γ)2(2a0 + β0)

Kβ
+ α1β(ρ+ ν) +

ργα1β

ρ+ δ
− rα1(ρ+ ν + γ)(a+ β0),

D1 =
rα1(ρ+ ν + γ)2

Kβ
− rα1(ρ+ ν + γ).

Note that A1 > 0 . If R0 > 1 , then D1 < 0 and so the Eqs. (1.5)-(1.8) has at least one positive equilibrium.
Further, if B1 > 0 , the model Eqs. (1.5)-(1.8) has a unique positive equilibrium.

The variational matrix corresponding to the model Eqs. (1.5)-(1.8) is given as:

J =


r − 2rS

K − βI
1+aI − µmZ − βS

(1+aI)2 δ −µmS
βI

1+aI
βS

(1+aI)2 − (ρ+ ν + γ) 0 0

µmZ γ −(ρ+ δ) µmS
0 α0

(1+β0I)2
0 −α1

 .

We now get the local stability of equilibrium points using the variational matrix J obtained above.

Theorem 3.1 (i) The disease free equilibrium E0 of the Eqs. (1.5)-(1.8) is locally asymptotically stable if
R0 < 1 and is unstable if R0 > 1 .
(ii) If R0 > 1 then the Eqs. (1.5)-(1.8) has a unique infected equilibrium E∗ and in this instance E∗ locally
asymptotically stable provided the following conditions are satisfied:
A2 > 0, D2 > 0, A2B2 > C2 and A2(B2C2 −A2D2) > C2

2 .

Proof (i) The Jacobian matrix corresponding to E0 = (K, 0, 0, 0) of Eqs. (1.5)-(1.8) is as follows

J0 =


−r −βK δ −µmK
0 βK − (ρ+ ν + γ) 0 0
0 γ −(ρ+ δ) µmK
0 α0 0 −α1

 .

The eigenvalues of J0 are

λ1 = −r, λ2 = −(ρ+ δ), λ3 = −α1, λ4 = (ρ+ ν + γ)(R0 − 1).

It is clear that λ1, λ2, λ3 < 0 . Note that if R0 < 1 , λ4 < 0 and so the disease-free equilibrium E0 is locally
asymptotically stable. Conversely, if R0 > 1 , λ4 > 0 and so E0 is unstable.
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(ii) Let J∗ be the Jacobian matrix corresponding to E∗ = (S∗, I∗, R∗, Z∗) of Eqs. (1.5)-(1.8). The
characteristic equation of J∗ as follows

λ4 +A2λ
3 +B2λ

2 + C2λ+D2 = 0,

where

A2 = α1 + ρ+ δ + µmZ∗ +
βI∗

1 + aI∗
+ (ρ+ ν + γ)

(
1− 1

1 + aI∗

)
+ r

(
2S∗

K
− 1

)
,

B2 = α1(ρ+ ν + γ)

(
1− 1

1 + aI∗

)
+ ρµmZ∗ +

β(ρ+ δ)I∗

1 + aI∗
+ (ρ+ δ)r

(
2S∗

K
− 1

)
+

(
α1 + (ρ+ ν + γ)

(
1− 1

1 + aI∗

))(
µmZ∗ +

βI∗

1 + aI∗
+ ρ+ δ + r

(
2S∗

K
− 1

))
+

β(ρ+ ν + γ)

(1 + aI∗)2
,

C2 =

(
α1 + (ρ+ ν + γ)

(
1− 1

1 + aI∗

))(
ρµmZ∗ +

β(ρ+ δ)I∗

1 + aI∗
+ (ρ+ δ)r

(
2S∗

K
− 1

))
+ α1(ρ+ ν + γ)

(
1− 1

1 + aI∗

)(
µmZ∗ +

βI∗

1 + aI∗
+ ρ+ δ + r

(
2S∗

K
− 1

))
+

β(ρ+ α1 + δ)(ρ+ ν + γ)I∗

(1 + aI∗)2
+

α0µm(ρ+ ν + γ)I∗

(1 + β0I∗)2
,

D2 = α1(ρ+ ν + γ)

(
1− 1

1 + aI∗

)(
ρµmZ∗ +

β(ρ+ δ)I∗

1 + aI∗
+ (ρ+ δ)r

(
2S∗

K
− 1

))
+

α0µmρ(ρ+ ν + γ)I∗

(1 + β0I∗)2
.

If A2 > 0, D2 > 0, A2B2 > C2 and A2(B2C2 − A2D2) > C2
2 then by Routh–Hurwitz criterion, characteristic

equation of J∗ has the roots which are negative or with negative real parts. Hence, we finalize that E∗ is
locally asymptotically stable for R0 > 1 supplied A2 > 0, D2 > 0, A2B2 > C2 and A2(B2C2 −A2D2) > C2

2 . 2

4. Global stability analysis

In this section, we have obtained the sufficient conditions for global stability of E0 and E∗ .

Theorem 4.1 The disease-free equilibrium E0 = (K, 0, 0, 0) of Eqs. (1.5)-(1.8) is globally asymptotically stable
provided that the following condition holds:

µmK < α1, βK + α0 < ρ+ ν. (4.1)

Proof Consider the following Lyapunov function

V0(S, I,R, Z) =

(
S − S0 − S0ln

S

S0

)
+ I +R+ Z. (4.2)
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Clearly V0 is a positive definite function. If we differentiate V0 with respect to t, we get

dV0

dt
=

S − S0

S

dS

dt
+

dI

dt
+

dR

dt
+

dZ

dt

= − r

K
(S − S0)

2 −
(
S0

S
δ + ρ

)
R+ (µmK − α1)Z

+

(
βK

1 + aI
+

α0

1 + β0I
− (ρ+ ν)

)
I

≤ − r

K
(S − S0)

2 −
(
S0

S
δ + ρ

)
R+ (µmK − α1)Z + (βK + α0 − (ρ+ ν))I.

Obviously, if µmK < α1 and βK +α0 < ρ+ ν , then dV0

dt ≤ 0 . Therefore, E0 is globally asymptotically stable,
i.e. the disease fades out. Hence, the proof is completed. 2

Theorem 4.2 If R0 > 1 , then the infected equilibrium E∗ = (S∗, I∗, R∗, Z∗) is globally asymptotically stable.

Proof We apply the method of Lyapunov functions combined with the theory of Volterra–Lyapunov stable
matrices to prove the global asymptotic stability of E∗ . For this, we determine the Lyapunov function as
follows:

V ∗ = 2w1

(
S − S∗ − ln

S

S∗

)
+ w2(I − I∗)2 + w3(R−R∗)2 + w4(Z − Z∗)2, (4.3)

where w1, w2, w3, w4 are positive constants. If we calculate the time derivative of V ∗ along the trajectories of
Eqs. (1.5)-(1.8), we get

dV ∗

dt
= 2w1

(
1− S∗

S

)
dS

dt
+ 2w2(I − I∗)

dI

dt
+ 2w3(R−R∗)

dR

dt
+ 2w4(Z − Z∗)

dZ

dt

= 2w1(S − S∗)

(
r

(
1− S

K

)
− βI

1 + aI
+

δR

S
− µmZ

)
+ 2w2(I − I∗)

(
βSI

1 + aI
− (ρ+ ν + γ)I

)
+ 2w3 (γI − (ρ+ δ)R+ µmZS)

+ 2w4(Z − Z∗)

(
α0I

1 + β0I
− α1Z

)
= −2w1

(
r

K
+

δR

SS∗

)
(S − S∗)2 + 2w1

(
aβI∗

(1 + aI)(1 + aI∗)
− β

1 + aI

)
(S − S∗)(I − I∗)

+ 2w1
δ

S∗ (S − S∗)(R−R∗)− 2w1µm(S − S∗)(Z − Z∗) + 2w2
βI

1 + aI
(I − I∗)(S − S∗)

− 2w2

(
ρ+ ν + γ − βS∗

(1 + aI)(1 + aI∗)

)
(I − I∗)2 + 2w3γ(R−R∗)(I − I∗)

− 2w3(ρ+ δ)(R−R∗)2 + 2w3µmS(R−R∗)(Z − Z∗)− 2w3µmZ∗(R−R∗)(S − S∗)

− 2w4α1(Z − Z∗)2 + 2w4
α0

1 + β0I
(Z − Z∗)(I − I∗)− 2w4

α0β0I
∗

(1 + β0I)(1 + β0I∗)
(Z − Z∗)(I − I∗)

= Y (WA+ATWT )Y T ,
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where Y = (S − S∗, I − I∗, R−R∗, Z − Z∗) , W = diag(w1, w2, w3, w4) and

A =


− r

K − δR
SS∗ − β

(1+aI)(1+aI∗)
δ
S∗ −µm

βI
1+aI

βS∗

(1+aI)(1+aI∗) − (ρ+ ν + γ) 0 0

−µmZ∗ 0 −(ρ+ δ) µmS

0 α0

1+β0I
− α0β0I

∗

(1+β0I)(1+β0I∗) 0 −α1

 .

Now, to prove the global stability of E∗ , we investigate that A is Volterra–Lyapunov stable. For this purpose,
we show that matrices Ã and ˜A−1 are Volterra–Lyapunov stable.

Step I:

D = −Ã =


r
K + δR

SS∗
β

(1+aI)(1+aI∗) − δ
S∗

− βI
1+aI ρ+ ν + γ − βS∗

(1+aI)(1+aI∗) 0

µmZ∗ 0 ρ+ δ

 .

−D̃ =

(
− r

K − δR
SS∗ − β

(1+aI)(1+aI∗)
βI

1+aI
βS∗

(1+aI)(1+aI∗) − (ρ+ ν + γ)

)
.

Clearly, − r
K − δR

SS∗ < 0 . Remember that S∗ = (ρ+ν+γ)(1+aI∗)
β , then βS∗

(1+aI)(1+aI∗) − (ρ + ν + γ) =

(ρ+ ν + γ)
(

1
1+aI − 1

)
< 0 . Hence

det(−D̃) = (ρ+ ν + γ)

(
− r

K
− δR

SS∗

)(
1

1 + aI
− 1

)
+

β2I

(1 + aI)2(1 + aI∗)
> 0 (4.4)

Based on the theory of Volterra–Lyapunov stable matrices [12], −D̃ is Volterra–Lyapunov stable.
Moreover, we obtain

− ˜D−1 =
1

det(−D̃)

(
(ρ+ ν + γ)

(
1

1+aI − 1
)

β
(1+aI)(1+aI∗)

− βI
1+aI − r

K − δR
SS∗

)
.

It is clear that det(− ˜D−1) > 0 . Thus, from the theory of Volterra–Lyapunov stable matrices [12], − ˜D−1

is Volterra–Lyapunov stable.

Therefore, D = −Ã is diagonally stable, and so Ã is Volterra-Lyapunov stable.

Step II: In a similar manner as above, we can show that ˜A−1 is Volterra–Lyapunov stable. We can obtain
E = − ˜A−1 ,

E =
1

det(−Ã)

 e11 e12 e13
e21 e22 e23
e31 e32 e33

 .

where

e11 = (ρ+ δ)(ρ+ ν + γ)
(
1− 1

1+aI

)
,
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e12 = β(ρ+δ)
(1+aI)(1+aI∗) ,

e13 = (ρ+ ν + γ) δ
S∗

(
1− 1

1+aI

)
,

e21 = −(ρ+ δ) βI
(1+aI) ,

e22 = −
[(

r
K + δR

SS∗

)
(ρ+ δ) + δµmZ∗

S∗

]
,

e23 = βδI
S∗(1+aI) ,

e31 = (ρ+ ν + γ)
(
1− 1

1+aI

)
µmZ∗ ,

e32 = βmZ∗

(1+aI)(1+aI∗) ,

e33 =
(

r
K + δR

SS∗

)
(ρ+ ν + γ)

(
1− 1

1+aI

)
+ β2I

(1+aI)2(1+aI∗) .

−Ẽ =
1

det(−Ã)

 (ρ+ δ)(ρ+ ν + γ)
(

1
1+aI − 1

)
β(ρ+δ)

(1+aI)(1+aI∗)

−(ρ+ δ) βI
(1+aI) −

[(
r
K + δR

SS∗

)
(ρ+ δ) + δµmZ∗

S∗

]  .

It is clear that det(−Ẽ) > 0 , and −Ẽ is Volterra-Lyapunov stable.

− ˜E−1 =
1

det(−Ã)det(−Ẽ)

 −
[(

r
K + δR

SS∗

)
(ρ+ δ) + δµmZ∗

S∗

]
− β(ρ+δ)

(1+aI)(1+aI∗)

(ρ+ δ) βI
(1+aI) (ρ+ δ)(ρ+ ν + γ)

(
1

1+aI − 1
)  .

From the theory of Volterra–Lyapunov stable matrices [12], it is easy to observe that − ˜E−1 is Volterra–Lyapunov
stable. Therefore, A−1 is Volterra-Lyapunov stable.

Finally, dV ∗

dt < 0 , and by LaSalle’s invariance principle [10], E∗ is globally asymptotically stable in the
interior of Γ provided that R0 > 1 . 2

5. Numerical results
We now give some numerical simulations to confirm the global stability of the model investigated in Section 4.
In this section, we set the hypothetical initial values as (S(0), I(0), R(0), Z(0)) = (40, 10, 1, 10) . We also take
the parameter values that we have determined hypothetically as in Table . All the numerical simulations are
done in MATLAB (MathWorks, Inc., Natick, MA, USA).

Using the parameters in Table , we obtain the basic reproduction number R0 = 9.0909 > 1 and the
unique infected equilibrium E∗ = (S∗ = 4.7380, I∗ = 9.6014, R∗ = 46.8938, Z∗ = 0.6487) . Figure 1 and Figure
2 show the global stability of the infected equilibrium E∗ when R0 > 1 . This means that when R0 > 1 , the
disease becomes endemic. Finally, we can say that our numerical results validate our theoretical conclusions.
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Table . Parameter values.

Parameter Description V alue

r Endogenous growth rate 0.5 person day−1

K Carrying capacity 40 person day−1

a Saturation constant of treatment 0.008

δ Loss of immunity rate 0.001 day−1

µ Response intensity 0.008 day−1

m Information interaction rate 1 day−1

β Disease transmission rate 0.05 person−1day−1

ρ Natural mortality rate 0.02 day−1

ν Death rate 0.1 day−1

γ Recovery rate 0.1 day−1

α0 Information growth rate 0.05

β0 Saturation constant of information 0.05

α1 Natural decay rate of information 0.5
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Figure 1. When R0 > 1 , solutions have reached the
equilibrium point E∗ .
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Figure 2. When R0 > 1 , E∗ is globally stable.
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