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Abstract: In this paper, the aim of this work to study mixed Lagrange function for the minimax fractional programming
problem with nonsmooth exponential (p, r) -invex functions with respect to η . We introduced a new concept of saddle
point for a mixed Lagrange function. We present the equivalence between a saddle point of the mixed Lagrange function
and an optimal solution in the considered minimax fractional programming problem under appropriate nonsmooth
exponential (p, r) -invexity hypotheses.
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1. Introduction
In recent years, minimax programming problems have been the subjective of interest. Some basic results
of minimax programming problems under differentiable functions have be presented. In [15], Rockafellar has
pointed out that in many practical applications of applied mathematics the functions involved are not necessarily
differentiable. Shortly after, Clarke [6] studied generalized gradient involving nondifferentiable functions. Many
authors have discussed various concepts of generalized convexity/ invexity and have showed optimality conditions
and duality theorems for fractional optimization problems, for instance, [1, 7–15, 18, 19], and others. In [9], Ho
and Lai defined the concept of nonsmooth exponential (p, r) -invexity for a locally Lipschitz function, which is a
generalization of the invexity concept; they presented necessary and sufficient optimality theorems for minimax
fractional programming problems as well as weak, strong and strict converse duality theorems for the introducted
parametric dual model under appropriate nonsmooth exponential (p, r) -invexity hypotheses. Later, Ho and Lai
[10, 11] used their results to minimax fractional programming problems and established duality theorems with
appropriate nonsmooth exponential (p, r) -invexity hypotheses.

In mathematical optimization, the method of classical Lagrange multipliers is well-known to solve stan-
dard nonlinear mathematical programming problems in which an objective function can be applied in different
fields, different types and different constraints, for instance, [2–4, 8, 16, 17, 20], and others. In [4], Bector et
al. introduced an incomplete Lagrange function and saddle point of nonlinear programming problems under
differentiable generalized invexity suppositions. Antczak [2] introduced the η -Lagrange function and η -saddle
point and established the equivalence between optima of a differentiable multiobjective programming problem
and η -saddle points of its associated η -approximated vector optimization problem with differentiable invexity
supposition. In [20], Zalmai presented four sets of parametric and nonparametric saddle-point-type necessary
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and sufficient optimality conditions for a discrete minimax fractional subset programming problem under suit-
able (b, φ, ρ, θ) -convexity suppositions. Antczak [3] considered semi-infinite minimax fractional programming
problems with both inequality and equality constraints and presented the optimal solution as a saddle point
of the Lagrange function defined for the considered minimax problem under appropriate (Φ, ρ) -invexity hy-
potheses. Ho [8] studied a mixed Lagrange function to a system of nondifferentiable multiobjective nonlinear
fractional programming problem and presented the equivalence between a saddle point of the aforesaid Lagrange
function and an efficient solution of the considered multiobjective programming problem involving appropriate
nonsmooth exponential (p, r) -invexity hypotheses.

In this paper, motivated by [3], [4], [8] and incomplete Lagrange technique, we introduce mixed Lagrange
function for a minimax fractional programming problem. We present the characterization of an optimal
solution as a saddle point of the mixed Lagrange function defined for the considered problem under appropriate
nonsmooth exponential (p, r) -invexity hypotheses. The rest of the paper is written as follows: In Section2, we
present some preliminary notation, definitions and results, which will be needed in the sequel. First of all, we
give the definition of a nonsmooth exponential (p, r) -invex function and also we define the minimax fractional
programming problem considered in the paper. For the aforesaid extremum problem, we define its associated
nonfractional parametric optimization problem introduced by Bector et al. [5]. Then, we give some results which
show the equivalence between the minimax fractional programming problem and its associated nonfractional
parametric programming problem. At last, we re-call the parametric necessary optimality conditions for the
considered minimax fractional programming problem established by Liu [14]. In Section 3, for nonfractional
parametric optimization problem, we define the so-called mixed Lagrange function and its saddle point. Then,
under appropriate nonsmooth exponential (p,r) -invexity hypotheses, we prove the equivalence between an
optimal solution in the considered minimax fractional programming problem and a saddle point of the mixed
Lagrange function.

2. Definitions and preliminaries

Throughout the paper, Rn is the n -dimensional Euclidean space and Rn
+ denote the order cone. For the cone

partial order, if x = (x1, x2, · · · , xn) , y = (y1, y2, · · · , yn) in Rn , we define:

(1) x = y if and only if xi = yi for all i = 1, 2, · · · , n;

(2) x > y if and only if xi > yi for all i = 1, 2, · · · , n;

(3) x ≧ y if and only if xi ≥ yi for all i = 1, 2, · · · , n;

(4) x ≥ y if and only if x ≧ y and xi ̸= yi for some i ∈ {1, 2, · · · , n} .

Let X be an open subset of Rn . A function f : X −→ R is said to be locally Lipschitz around x ∈ X if
there exist a positive constant c ∈ R and a neighborhood Γ of x ∈ X such that

|f(y)− f(z)| ≦ c∥y − z∥ for all z, y ∈ Γ.

where ∥ · ∥ stands for any norm of Rn .
For any vector ν in Rn , the generalized directional derivative of f at x in the direction ν ∈ Rn in Clarke
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sense (see [6]) is given by

f◦(x; ν) = lim sup
y−→x
λ−→0+

f(y + λν)− f(y)

λ
.

The generalized subdifferential of f at x ∈ S is defined by the set

∂cf(x) = {ξ ∈ Rn : f◦(x; ν) ≥ ⟨ξ, ν⟩ for all ν ∈ Rn}

where ⟨ξ, ν⟩ denotes the inner product in Rn .
Now, we introduce the following definitions on exponential (p, r) -invex function conditions by Ho and

Lai [9].

Definition 2.1 (cf. [9]) Let p , r be arbitrary real numbers. A locally Lipschitz function f : X ⊆ Rn −→ R
is said to be exponential (p, r)-invexity (strictly) at u ∈ X if there exists a function η : X ×X −→ Rn with
property η(x, u) = 0 only if u = x in X such that for each x ∈ X , the following inequalities hold for any
ξ ∈ ∂cf(u)

1

r
erf(x) ≥ 1

r
erf(u)

[
1 +

r

p

〈
ξ , (epη(x,u) − 1)

〉]
(> if x ̸= u) for p ̸= 0, r ̸= 0, (2.1)

erf(x) − erf(u) ≥ rerf(u) ⟨ξ , η(x, u)⟩ (> if x ̸= u) for r ̸= 0, p = 0, (2.2)

f(x)− f(u) ≥ 1

p

〈
ξ , (epη(x,u) − 1)

〉
(> if x ̸= u) for p ̸= 0, r = 0, (2.3)

f(x)− f(u) ≥ ⟨ξ , η(x, u)⟩ (> if x ̸= u) for p = 0, r = 0, (2.4)

where 1 = (1, 1, · · · , 1) ∈ Rn , (epη(x,u)−1) stands for the n-vector (epη1(x,u)−1, epη2(x,u)−1, · · · , epηn(x,u)−1) ,
and ⟨· , ·⟩ stands for the inner product in Rn throughout this paper.

Remark 2.2 All theorems in our work will be described only in the case of p ̸= 0 and r ̸= 0 . We omit the
proof of other cases like in (2.2) , (2.3) , and (2.4) .

In this paper, we consider the following minimax fractional programming problem as the primal problem:

(FP ) v∗ = min
x∈F

max
1≤i≤p

fi(x)

gi(x)

subject to F =
{
x ∈ X

∣∣ h(x) ∈ −Rm
+

}
,

where

1 F is nonempty and compact set;

2 fi(x) and gi(x) : X −→ R , and h(·) : X −→ Rm are locally Lipschitz functions;

3 Without loss of generality, we may assume that gi(x) > 0 and fi(x) ≥ 0 for all x ∈ F .
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In Bector et al. [5], we know that the primal problem (FP ) is equivalent to a nonfractional parametric
programming problem (EP )v for a given v :

(EP )v min q

subject to fi(x)− vgi(x) ≤ q, i = 1, 2, · · · , p,

h(x) ∈ −Rm
+ .

The precise relationship linking (FP ) and (EP )v that will be useful for our present purposes is stated
in the following lemmas:

Lemma 2.3 (cf. [5]) If (x, v, q) is a feasible solution to the nonfractional parametric programming problem
(EP )v , then x is a feasible solution to the primal problem (FP ) . If x is a feasible solution to the primal
problem (FP ) , then there exist v and q such that (x, v, q) is a feasible solution to the nonfractional parametric
programming problem (EP )v .

Lemma 2.4 (cf. [5]) x∗ is an optimal solution to the primal problem (FP ) with corresponding optimal value of
the (FP )-objective equal to v∗ iff (x∗, v∗, q∗) is an optimal solution to the nonfractional parametric programming
problem (EP )v with corresponding optimal value of the (EP )v -objective equal to zero, i.e., q∗ = 0 .

For the primal problem (FP ) , we give the parametric necessary optimality conditions presented by Liu
[14].

Theorem 2.5 (cf. [14]) Let x∗ be an optimal solution to the primal problem (FP ) with optimal value equal to
v∗ and an appropriate constraint qualification [7] holds for (EP )v∗ . Then, there exist y∗ ∈ Rp , q∗ ∈ R , and
an m-vector Lagrange multiplier z∗ ∈ Rm such that

0 ∈
p∑

i=1

y∗i {∂cfi(x
∗)− v∗∂cgi(x

∗)}+
m∑
j=1

z∗j ∂
chj(x

∗), (2.5)

y∗i [fi(x
∗)− v∗gi(x

∗)] = 0, i = 1, 2, · · · , p, (2.6)

z∗j hj(x
∗) = 0, j = 1, 2, · · · ,m, (2.7)

q∗ = 0, z∗ ∈ Rm
+ , y∗ ∈ I, (2.8)

where I = {y∗ ∈ Rp
+ : y∗ = (y∗1 , y

∗
2 , · · · , y∗p) with

p∑
i=1

y∗i = 1} .

3. Mixed Lagrange function and saddle point theorems
We introduce a new mixed Lagrange function that associates with the considered minimax fractional program-
ming problem (FP ) . For convenience, the symbols are stated as follows to define mixed Lagrange function. At
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first, we define the index sets P = {1, 2, · · · , p} and M = {1, 2, · · · ,m} . We partition the index set M of the
constraint function h = (h1, h2, · · · , hm) : X → Rm of the primal problem (FP ) to be J0, J1, · · · , Js (s < m)

with ∪s
α=0Jα = M , Jα∩Jβ = ∅ if α ̸= β , and |Jα| denotes the cardinality of the index set Jα , α = 0, 1, 2, · · · , s .
Now, we perform the mixed Lagrange function in the primal problem as the following form:

Definition 3.1 The mixed Lagrange function associated with the constrained primal problem (FP ) is the

function L : F× Rp
+ × R+ × R|J0|

+ → Rp defined by

L(x, y, v, z) ≡ (L1(x, y, v, z), L2(x, y, v, z), · · · , Lp(x, y, v, z)),

where Li(x, y, v, z) ≡ yi[fi(x)− vgi(x)] +
1

p

∑
j∈J0

zjhj(x) , i ∈ P , x ∈ F .

If the index set M of the constraints in the primal problem (FP ) is separated into two parts J0 and J1 , that
is, M = J0 ∪ J1 (Jα = ∅ for α = 2, 3, . . . , s), we have

(i) If J0 = M and J1 = ∅ , then the mixed Lagrange function is the vector-valued Lagrange function without
equality constraints in [3].

(ii) If J0 and J1 are nonempty, then the mixed Lagrange function is the imcomplete Lagrange function in [4].

Now, we give the definition of a saddle point of the mixed Lagrange function L in the considered primal
problem (FP ) .

Definition 3.2 A point (x, y, v, z) ∈ F× Rp
+ × R+ × R|J0|

+ is said to be a saddle point for the mixed Lagrange
function L if

(i) L(x, y, v, z) ≦ L(x, y, v, z) , for all z ∈ R|J0|
+ ,

(ii) L(x, y, v, z) ≦ L(x, y, v, z) , for all x ∈ F .

At first, we show the saddle point related to an optimal solution of the primal problem (FP ) as follows:

Theorem 3.3 Let (x, y, v, z) be a saddle point of the mixed Lagrange function in the considered primal problem
(FP ) . Then, x is an optimal solution of the primal problem (FP ) .

Proof Since (x, y, v, z) is a saddle point of the mixed Lagrange function in the considered primal problem
(FP ) , by Definition 3.2, the conditions (i) and (ii) are satisfied. From the condition (i) , we have

yi[fi(x)− vgi(x)] +
1

p

∑
j∈J0

zjhj(x) ≤ yi[fi(x)− vgi(x)] +
1

p

∑
j∈J0

zjhj(x) (3.1)

hold for all z ∈ R|J0|
+ .

It follows the relation (3.1) as well as p is a positive integer, we obtain∑
j∈J0

zjhj(x) ≤
∑
j∈J0

zjhj(x) for all z ∈ R|J0|
+ . (3.2)
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From the inequality (i) in Definition 3.2 we have, by setting zj = 0 , j ∈ J0 , and the relation (3.2) , that

∑
j∈J0

zjhj(x) ≥ 0. (3.3)

x ∈ F along with zj ≥ 0, j ∈ J0 implies ∑
j∈J0

zjhj(x) ≤ 0. (3.4)

Thus, by inequalities (3.3) and (3.4) , it follows that∑
j∈J0

zjhj(x) = 0. (3.5)

We proceed by contradiction. Suppose, contrary to the result, that x ∈ F is not an optimal solution in the
considered primal problem (FP ) . Then, there exists x ∈ F such that

max
1≤i≤p

fi(x)

gi(x)
< max

1≤i≤p

fi(x)

gi(x)
= v

that is,
fi(x)− vgi(x) < fi(x)− vgi(x), i ∈ P. (3.6)

Multiplying the inequalities (3.6) by the associated Lagrange multiplier yi , i = 1, 2, · · · , p , we obtain

yi[fi(x)− vgi(x)] ≤ yi[fi(x)− vgi(x)], i ∈ P, (3.7)

and
yi[fi(x)− vgi(x)] < yi[fi(x)− vgi(x)], for at least one i ∈ P. (3.8)

For x and x belong to F and the equality (3.5) , we get, respectively,

yi[fi(x)− vgi(x)] +
1

p

∑
j∈J0

zjhj(x)

≤ yi[fi(x)− vgi(x)] +
1

p

∑
j∈J0

zjhj(x), i ∈ P,
(3.9)

and

yi[fi(x)− vgi(x)] +
1

p

∑
j∈J0

zjhj(x)

< yi[fi(x)− vgi(x)] +
1

p

∑
j∈J0

zjhj(x), for at least one i ∈ P.
(3.10)

By the definition of the mixed Lagrange function, (3.9) and (3.10) imply, respectively,

Li(x, y, v, z) ≤ Li(x, y, v, z), i ∈ P, (3.11)

and
Li(x, y, v, z) < Li(x, y, v, z), for at least one i ∈ P, (3.12)
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contradicting the condition (ii) in the definition of a saddle point of the mixed Lagrange function L defined in
the primal problem (FP ) . 2

Suppose that x is an optimal solution of the primal problem (FP ) . Using x , the optimality conditions
of the primal problem (FP ) and some reasonable conditions, we can find a saddle point of the mixed Lagrange
function in the considered primal problem (FP ) as the following theorem.

Theorem 3.4 Let x ∈ F be an optimal solution to the considered primal problem (FP ) such that there exist
y ∈ Rp

+ , v ∈ R+ and z ∈ Rm
+ satisfying conditions from (2.5) ∼ (2.8) . Denote

A(·) =
p∑

i=1

yi[fi(·)− vgi(·)] +
∑
j∈J0

zjhj(·).

If any one of the following three conditions holds:

(1). A(·) is an exponential (p,r)-invexity and
∑
j∈Jα

zjhj(·) for α = 1, 2, · · · , s are exponential (p,r)-invexities

with respect to η at x .

(2). A(·) is a strictly exponential (p,r)-invexity and
∑
j∈Jα

zjhj(·) for α = 1, 2, · · · , s are exponential (p,r)-

invexities with respect to η at x .

(3). A(·) is a strictly exponential (p,r)-invexity and
∑
j∈Jα

zjhj(·) for α = 1, 2, · · · , s are strictly exponential

(p,r)-invexities with respect to η at x .

Then, (x, y, v, z) is a saddle point of the mixed Lagrange function in the considered primal problem (FP ) .

Proof From x ∈ F , we obtain ∑
j∈J0

zjhj(x) ≤ 0 (3.13)

holds for all z ∈ R|J0|
+ .

By assumption, x ∈ F is an optimal solution to the primal problem (FP ) and there exist y ∈ Rp
+ , v ∈ R and

z ∈ Rm
+ such that conditions (2.5) ∼ (2.8) are fulfilled at this point. Then, we obtain∑

j∈J0

zjhj(x) = 0. (3.14)

From the relations (3.13) and (3.14) , it follows that∑
j∈J0

zjhj(x) ≤ 0 =
∑
j∈J0

zjhj(x). (3.15)

For each i ∈ P , we obtain

yi[f(x)− vgi(x)] +
1

p

∑
j∈J0

zjhj(x) ≤ yi[f(x)− vgi(x)] +
1

p

∑
j∈J0

zjhj(x).
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The above inequality implies
Li(x, y, v, z) ≤ Li(x, y, v, z), i ∈ P (3.16)

holds for all z ∈ R|J0|
+ . This means that the inequality (i) in the Definition 3.2 of a saddle point of the mixed

Lagrange function is satisfied.
Now, we prove the inequality (ii) in Defintion 3.2. We proceed by contradication. Suppose, contrary to

the result, that there exists x ∈ F such that L(x, y, v, z) ≦̸ L(x, y, v, z) . This means that

Li(x, y, v, z) ≤ Li(x, y, v, z), i ∈ P, (3.17)

and
Lt(x, y, v, z) < Lt(x, y, v, z), for some t ∈ P. (3.18)

By the relations (3.17) , (3.18) and Definition 3.1, we have

yi[fi(x)− vgi(x)] +
1

p

∑
j∈J0

zjhj(x)

≤ yi[fi(x)− vgi(x)] +
1

p

∑
j∈J0

zjhj(x), i ∈ P,
(3.19)

and

yt[ft(x) −vgt(x)] +
1

p

∑
j∈J0

zjhj(x)

< yt[ft(x)− vgt(x)] +
1

p

∑
j∈J0

zjhj(x), for some t ∈ P.
(3.20)

Adding both sides of the inequalities (3.19) and (3.20) , we obtain

p∑
i=1

yi[fi(x)− vgi(x)] +
∑
j∈J0

zjhj(x) <

p∑
i=1

yi[fi(x)− vgi(x)] +
∑
j∈J0

zjhj(x),

that is,
A(x) < A(x). (3.21)

According to relation (2.5) , there exist ξi ∈ ∂cfi(x) , ρi ∈ ∂cgi(x) for i ∈ P , and ζj ∈ ∂chj(x) for all j ∈ M ,
such that the vector

p∑
i=1

yi[ξi − vρi] +

m∑
j=1

zjζj = 0 =

p∑
i=1

yi[ξi − vρi] +
∑
j∈J0

zjζj +
∑

j∈M\J0

zjζj . (3.22)

By the equality (3.22) , it follows that

1

p

〈
p∑

i=1

yi[ξi − vρi] +
∑
j∈J0

zjζj +
∑

j∈M\J0

zjζj , (epη(x,x) − 1)

〉
= 0. (3.23)

For each x ∈ F , we get
hj(x) ≤ 0, for all j ∈ M. (3.24)
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Since x is an efficient solution and from the inequality (3.24) and z ∈ Rm
+ , we have

∑
j∈Jα

zjhj(x) ≤ 0 =
∑
j∈Jα

zjhj(x), for all α = 1, 2, · · · , s. (3.25)

By assumption,
∑
j∈Jα

zjhj(·) for α = 1, 2, · · · , s are exponential (p, r)-invexity with respect to η at x .

Hence, by Definition 2.1, the following inequalities

1

r
er

∑
j∈Jα

zjhj(x) ≥ 1

r
er

∑
j∈Jα

zjhj(x)

[
1 +

r

p

〈
Hα , (epη(x,x) − 1)

〉]
(3.26)

where x ∈ F and Hα =
∑
j∈Jα

zjζj for α = 1, 2, · · · , s.

Using the inequality (3.25) together with (3.26) , we have

1

p

〈
Hα , (epη(x,x) − 1)

〉
≤ 0, α = 1, 2, · · · , s. (3.27)

From the inequality (3.27) , we obtain

1

p

〈
s∑

α=1

Hα , (epη(x,x) − 1)

〉
≤ 0,

that is,

1

p

〈 ∑
j∈M\J0

zjζj , (epη(x,x) − 1)

〉
≤ 0. (3.28)

Thus, from (3.23) and (3.28) , it follows that

1

p

〈
p∑

i=1

yi[ξi − vρi] +
∑
j∈J0

zjζj , (epη(x,x) − 1)

〉
≥ 0. (3.29)

If hypothesis (1) holds, A(·) is an exponential (p, r)-invexity with respect to η at x , we obtain

1

r
erA(x) ≥ 1

r
erA(x)

1 + r

p

〈
p∑

i=1

λi[ξi − viρi] +
∑
j∈J0

zjζj , (epη(x,x) − 1)

〉 . (3.30)

Using the inequality (3.29) together with (3.30) , we have

1

r
erA(x) − 1

r
erA(x) ≥ 0,

that is,
A(x) ≥ A(x),
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which contradicts inequality (3.21) . This completes the proof of theorem under hypotheses (1) .
Proof of the second inequality in Definition 3.2 under hypotheses (2) and (3) are similar to the proof

under hypotheses (1) .
We have established under each hypotheses that the inequality (ii) in Definition 3.2 is satisfied. This

means that (x, λ, v, z) is a saddle point of the mixed Lagrange function in the considered primal problem (FP ) .
2
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