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Abstract: Let p be a prime number such that p =2 or p =1 (mod 4). Let ¢, denote the fundamental unit of Q(,/p)

and let a be a positive square-free integer. The main aim of this paper is to determine explicitly the Hilbert genus field

of the imaginary cyclic quartic fields of the form Q(y/—aep\/D).
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1. Introduction
The study of the unramified extensions of a given number field k is of a huge interest in algebraic number
theory. For instance, the importance of the Hilbert class field of &, denoted by H(k), is represented in the fact
that it is the maximal abelian unramified extension of k and its Galois group over k, i.e. G:= Gal(H(k)/k),
is isomorphic to CI(k), the class group of k (cf. [14, p. 228]). Another important example of these unramified
extensions is the genus field of k&, which is defined as the maximal extension of k which is unramified at all
finite and infinite primes of k of the form kk;, where ky is an abelian extension of Q (cf. [13]). These two
fields have been largely investigated in old and recent studies (e.g. [1, 2, 4-6, 15]).

Another very interesting example of unramified extensions of k is the Hilbert genus field of k& which is
the invariant field E(k) of G2. Then, by Galois theory, we have:

Cl(k)/Cl(k)?* ~ G/G? ~ Gal(E(k)/k),

and thus, 2-rank (Cl(k)) = 2-rank (Gal(E(k)/k)). On the other hand, E(k)/k is the maximal unramified
Kummer extension of exponent 2. Thus, by Kummer theory (cf. [18, p. 14]), there exists a unique multiplicative

group A such that
BE(k) = H(k) N k(VEk*) = k(VA) and k** € A C k*.

Therefore, the question that arises is how to construct the Hilbert genus field of k, or equivalently, how to give

a set of generators for the finite group A/ k*2. Note that many mathematicians have investigated this question

for some biquadratic number fields. For example, Bae and Yue studied the Hilbert genus field of the fields
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Q(\/ps V/d), for a prime number p such that, p =2 or p =1 (mod 4), and a positive square-free integer d (cf.
3])-

Recently, Ouang and Zhang have determined the Hilbert genus field of the imaginary biquadratic fields
Q(\/g, \/3), where § = —1,—2 or —p with p = 3 (mod 4) a prime number and d any square-free integer.
Thereafter, they constructed the Hilbert genus field of real biquadratic fields (@(\/5, \/(j), for any positive

square-free integer d, and 6 = p,2p or pips where p, p1, and py are prime numbers congruent to 3 (mod 4),

such that the class number of Q(v/d) is odd (cf. [19, 20]). For more works on this problem, we refer the reader
to the papers [10, 21, 23].

In the present work, using other easier techniques based on genus fields, we shall construct the Hilbert
genus fields of imaginary cyclic quartic fields of the form K = Q(\/Tp\/ﬁ), for a prime number p such that
p=2or p=1 (mod 4), and a positive square-free integer a relatively prime to p.

The plan of this paper is as follows. In Section 2, we shall collect some results of cyclic quartic fields
theory and genus theory. Section 3 is dedicated to the investigation of the genus field of the imaginary cyclic
quartic fields K. In Section 4, we will construct the Hilbert genus fields of the fields K. Therein, we give some

numerical examples.

1.1. Notations

Let k£ be a number field. The next notations will be used for the rest of this article:

e (g the ring of integers of k,

e Ci(k): the class group of k,

e h(k): the class number of k,

e Npji: the norm map of an extension k/k',
e FE)}: the unit group of k,

e k*: the nonzero elements of k,

e k™): the genus field of k,

e FE(k): the Hilbert genus field of k,

e H(k): the Hilbert class field of k,

e J;: the absolute discriminant of k,

® Oy ¢ the generator of the relative discriminant of an extension k/k’,

e 79(A): the 2-rank of a finite abelian group A,

e &4: the fundamental unit of Q(v/d), where d is a positive square-free integer,
e p: a prime number such that p=2 or p=1 (mod 4),

e q: a positive square-free integer relatively prime to p,
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® 0= —acy\/D,
e ko =Q(/p),
o K = ko(+/9): an imaginary quartic cyclic number field,

e ¢;: an odd prime integer,

. (—) : the Legendre symbol,

° (‘ﬁj) : the Hilbert symbol over kg .

For more notations, see the beginning of each section below.

2. Preliminary results

In this section, we start by recalling some results that we will need in what follows. Let L be a cyclic quartic

extension of the rational number field Q. It is known that L can be expressed uniquely in the form:

L =Q(y/a(d+bVd)),

for some integers a, b, ¢, and d are such that d = b? + ¢? is square-free with b > 0 and ¢ > 0, and a is an

odd square-free integer relatively prime to d (cf. [9, 24]). Note that L possesses a unique quadratic subfield

k= Q(Vd).

Lemma 2.1 ([12]) Keep the above notations. We have:

1. The absolute discriminant of L is given by 0r,, where:

28a2d®, if d=0 (mod 2),
i — 24a%2d®, if d=1 (mod4),b=0 (mod2),a+b=3 (mod4),
L= a?dd, if d=1 (mod4),b=0 (mod2),a+b=1 (mod 4),
200243, if d=1 (mod4),b=1 (mod 2).

2. The relative discriminant of L/k is given by Ar i, = 61,50k, where:

4av/d, if d=0 (mod 2),
PR 4av/d, if d=1 (mod4),b=0 (mod2),a+b=3 (mod4),
LIE=Y avd, if d=1 (mod4),b=0 (mod?2),a+b=1 (mod 4),
8avd, if d=1 (mod4),b=1 (mod 2).

Lemma 2.2 ([12]) Keep the above notations. If the class number of k = Q(v/d) is odd, then L = Q(\/ a’eqV/d),
where

, 2a, ifd=1 (mod4)andb=1 (mod 2),
a, otherwise.

1691



HAJJAMI and CHEMS-EDDIN/Turk J Math

Proposition 2.3 ([13]) Let L be an abelian extension of Q of degree n. If n = r®, where r is a prime number

and s is a positive integer, then
Y= [ ™)L
p/dL,p#r

where M, is the unique subfield of degree e, (the ramification index of p in L) over Q of Q(&,) the p-th

cyclotomic field and &1, is the discriminant of L.

Proposition 2.4 ([16], p. 160) If p is a prime number such that p = 1 (mod 4), then Q(\/e}+/p) is the

quartic subfield of Q(&,), where ej = (2) g, and Q(\/2 +/2) is the real quartic field of Q(&16)-

P
We close this section with the following two results.

Lemma 2.5 ([8]) Let k/k' be a quadratic extension of number fields. If the class number of k' is odd, then
the rank of the 2-class group of k is given by

ro(Cl(k)) =t —1—ce,

where t is the number of ramified primes (finite or infinite) in the extension k/k' and e is defined by
2¢ = [Ek/ B N Nk/k/(k*)] .

Proposition 2.6 ([11]) Let k/k' be a quadratic extension of number fields, and p a number of k', coprime
with 2, such that k = k'(\/;). The extension k/k' is unramified at all finite primes of k" if and only if the two

following items hold:
1. the ideal generated by u is the square of the fractional ideal of k', and

2. there exists a nonzero number & of k' verifying p = &2 (mod 4).

3. Genus fields of the imaginary cyclic quartic fields : K = Q(/—acy,/p)

Let p denote a prime number such that p = 2 or p = 1 (mod 4) and a be a positive square-free integer
coprime with p. In the present section, we shall investigate the genus field of the imaginary cyclic quartic fields
K = Q(y/—aep/p). Note that K is a CM-field with maximal real subfield kg = Q(,/p). For the construction

of the genus field of K, we shall need the factorization of the integer a; therefore, we put:

a:ﬁqi or 2ﬁqi, (3.1)
i=1 i=1

where ¢1,q2,-..,q, are distinct odd primes. Assume that the Legendre symbols (p) =lforl1<ji<m

95

(m < n, the case m =0 is included here) and (p) =—1lform+1<j<n.
4j
1
Let e, denote the ramification index of a prime number £ in K/Q and put ¢; = (71)%2 qj-
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Proposition 3.1 Assume that p =5 (mod 8), then

1. Ifa= qu =1 (mod 4), we have
K™ = KNG& Va© - Van®);
2. Ifa= qu =3 (mod 4), we have
K® = K(V=1,Va" V@2, -,V ™);
3. Ifa—2qu and qu =1 (mod 4), we have
= K(V2,Va" V&', -,V b);
4. ]fa—2qu and qu =3 (mod 4), we have

K™ = K(V=2,Var Vo™, ..., Van").

Proof We have p =5 (mod 8), then by the expression of the absolute discriminant of K (cf. Lemma 2.1),
the prime numbers of Q@ that ramify in K are :

e the odd prime divisors of a (with ramification index equals 2),
e the prime p (with e, =4),
e and 2 if a Z 1 (mod 4) (with ez =2).

On the other hand, we know that Q(&,)/Q is a Galois extension such that

Gal(Q(&p)/Q) ~ (Z/pZ)" ~ Z/(p — 1)Z,

and if m divides p—1, then Q(¢,) contains a unique subfield of degree m over Q. Since p is the unique prime
which is ramified in Q(,), then Q(\/—¢,/p) is the unique subfield of degree 4 of Q(§,) (Proposition 2.4).
Therefore, by Proposition 2.3, we get:

1. Ifa= Hqi =1 (mod 4), then:
i=1

KY = QVa")Ve") ... Qe )/ ~epv/D) K = KNGS Ve, Van).
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2. fa= Hqi =3 (mod 4), then:

=1

3. If a= QH% and Hqi =1 (mod 4), then:

i=1 i=1

K = Qo)) - Qe )/ —epy/D) K = K(V2Var™ Vaa™, - Van™)-

4. If a = QHqZ— and HQi =3 (mod 4), then:
i=1 i=1

K = QWarr)QWa) .. Qg )y ~ep /DK = K(V=2 @ vz ..V,

which completes the proof. O

We similarly prove the following two propositions.

Proposition 3.2 Assume that p=1 (mod 8), then

1. If a= Hqi =3 (mod 4), then K™ = K(\/@1*, /2" - - - s /™).

i=1

2. If a= H% =1 (mod 4), then K& = K(vV/=1,\/q1*,/@2"+ - - s \/an*).

i=1

3. If a= QH%‘ and Hqi =1 (mod 4), then K™ = K(vV=2,\/41%, V32" - - -, V" )-

i=1 i=1

4. If a = ZHqZ— and Hqi =3 (mod 4), then K = K(V2,v/@1™,V@2" - - - s V/n")-

i=1 i=1
Proposition 3.3 If p =2, then K" = K(\/q1%, /32", - -, V/n")-

4. Hilbert genus fields of the imaginary cyclic quartic fields : K = Q(/—acp/p)

Keep the notations of the previous sections. At this stage, we can start the construction of the Hilbert genus field
of the imaginary cyclic quartic field K = Q(/—aep+/p). However, we must first expose some more ingredients

of our proofs. We have the following lemmas.
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Lemma 4.1 Let k/k' be a quadratic extension of number fields such that the class number of k' is odd. Let

A denote the multiplicative group such that k** € A C k* and k(v/A) is the Hilbert genus field of k (cf. §1).
Then
ro(AJE) =t —e—1,

where t and e are defined in Lemma 2.5.
Proof Put G = Gal(H(k)/k). By the definition of E(k) (cf. §1) we have:
Cl(k)/Cl(k)® ~ G/G? = Gal(E(k)/k),
Since E(k) = k(v/A), then by class field theory:
ra(A/k*%) = logy[k(VA) : k] = logy[E(k) : k] = ra(CI(k)).

Thus, we get the result by the ambiguous class number formula (Lemma 2.5). O

Lemma 4.2 ([22]) Let p=1 (mod 4) be a prime number and €, be the fundamental unit of Q(/p). Then,

there are two natural integers w and v such that:

egzu—i—v\/@ u=0 (mod 2), v=1 (mod 4),

where X — 1, ifp=1 (mod 8);
3, ifp=5 (mod8).

Lemma 4.3 Let p and q be two different prime numbers such that p = 1 (mod 4), ¢ = +1 (mod 4) and

(p) = 1. Then, there exist two natural integers x and y such that:
q

® —py? =",

1, i p=1 (mod 8);

where h is the class number of Q(\/p) and X\ = {37 ifp=5 (mod 8)

Furthermore, we have:

=1 (mod2), y=0 (mod?2), ifg=1 (mod 4);
=0 (mod2), y=1 (mod?2), if¢g=3 (mod4).

Proof Since (%) =1, then ¢ splits in ky = Q(/p). Thus, there exist two prime ideals H; and Ha of O,
such that qOy, = H1H2 and o(H1) = Ha (o is the generator of Galois group of kg). Thus, ¢"Oy, = HIHE,
where h is the class number of ky. Since H} and H% are two principal ideals, we can choose two natural
integers = and y such that H" = (x+ /py), H3" = (z — /py) and 22 —py® > 0. Then ¢ Oy, = (2? —py?).
Therefore, 2% — py? = ng*", for a certain unit n € Ej,. Thus, n € Ex, N Q. Since Ej, = (-1, &,) and
z? — py? > 0, it follows that n = 1 and so z? — py? = ¢, which gives the first part of the lemma. If we
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assume that ¢ = 1 (mod 4), we get 22 —y? =1 (mod 4). By checking all the possibilities of 2 — y? (mod 4)
we deduce that = 1 (mod 2) and y = 0 (mod 2). If ¢ =3 (mod 4), we get 2> — % = 3 (mod 4). Hence,
=0 (mod 2) and y =1 (mod 2), which completes the proof. O

Lemma 4.4 Let k = k'(\/n) be a quadratic extension of number fields and 8 € k'. Then, 8 € k?* if and only if B €
E? or uB € k'

Proof If B € k?, then 8= (a+b\/ﬁ)2, for some a, b € k', so B = a®+ pb® + 2ab\/1i. Since 5 € k', we have
a=0o0rb=0.Ifb=0,then 8 =a2 € k> If a =0, then 8 = pub?. Therefore, uB = (ub)*> € k’*. The

reciprocal implication is evident. O

Now, after all the above preparations, we can state our first main theorem. We keep the notations in the

beginning of the previous section and we shall put F = E(K).

Theorem 4.5 Let p = 5 (mod 8) be a prime number and denote by E the Hilbert genus field of K =
Q(\/—aep+/p). We have:

1. If a=1 (mod 4), then:
E:K(Vql*7 Vq2*7"'7 an*7m7va2*7~~‘7vam*);
2. If a =3 (mod 4), then:

E:K(V_17\/ql*7VqQ*a"'v\/qn*a\/al*7 042*7..., Oém*),

3. [fa:ZHqi and Hqizl (mod 4), then:

=1 i=1

E:K(\/ivVQ1*7\/qQ*7"'7\/(]n7*7Val*; 042*,~~~»v04m*);

4. If a = QHqZ— and Hqi =3 (mod 4), then:
i=1 i=1

E:K(\/j2>\/ql*a\/q27*7"'aan*a\/al*7 062*7...,\/Otm*);

where:
i—1 .
"= (-1)" g, (1<i<n),
aj = x5 +yj/p, (1<j<m), x; and y; are the integers given by Lemma 4.3,
such that x? — pyjz» = qj\h,

y {(—l)zﬁgjlaj, ifg; =1 (mod 4),

(1<j<m).

@ity —1

(1)~ =" a;/p, ifgj =3 (mod 4),

Proof Note that K/kg is a quadratic extension with the class number of kg = Q(,/p) is odd. So we
are in the conditions of Lemma 4.1. Let A be the multiplicative group such that £ = K (\/K) Thus
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ro(A/K*?) =t —e—1. Let po and fine denote the infinite primes of ky which are respectively corresponding
to the Q-embeddings:
Z-poo kg — R iﬁw kg — R

and

VP — =P VP o VP

Set i, (€p) = &p. Note that Ny, /g(ep) = €pép = —1. By the definition of Hilbert symbol (cf. [7]), we have:

(%) = ir ((ip (—1),ip (—agpy/P))p.c)

— i (Lag,yP))
— i)

= -1,

(}Tﬁ) = 05 ((ipe (£p) s ipoe (—aEp/P))por)
= i;i((épaaép\/ﬁ)l)oo)
= i, (-1)
= -1,

(F=e ) = i (i (). i (—azpyP)p)
= iyl ((—ep, —acpy/P)p.)
= z‘;%(—l)

It follows, by the Hasse norm theorem, that —1, &, and —¢, are not in Ng i, (K*). Thus, e = 2. Therefore,

to compute ro(A/K *2), it suffices to determine the number of prime ideals of kg which ramify in K.

Case 1. Assume that ¢ =1 (mod 4):
In this case, we have 0g /i, = a,/p (Lemma 2.1). Thus, the finite primes of kg which ramify in K are

the prime divisors of a in kg and the prime ideal (y/p). Since <p> =1, for 1 < j < m, then g;

4qj
splits in kg. Thus, we have:

r(AJK*) = (n+m+1)+2—-2—1=n+m.

On the other hand, to explicitly determine F | it suffices to determine the set of generators for the finite

group (A/K*?). For this, we consider the set:
B={¢. g, .., q,a],a5,...,a}.

Let us show that the elements of B are linearly independent modulo K*? (provided that the notion of
linear independence is translated to a multiplicative setting: aq, ..., s are multiplicatively independent
if af"™...a” =1 implies that m; =0, for all 7).

n

m
We consider the element § = (H q;ka"> Ha;bj , where a;,b; € {0,1} and are not all zero.
i=1 j=1

Suppose that g € K*2.
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o If we assume that Vj € {1,2,...,m} b; =0, we get 8 = (qu“) € K*?, which implies that
i=1

VB € K*. Thus, Q(+v/B) is a quadratic subfield of K, which is impossible, because K has only one

quadratic subfield that is ko = Q(/p).

o Assume that 35 € {1,...,m} with b; # 0. Note that 8 € k§ and § € K*?. By Lemma 4.4, we have
B e k;g or 0§ € kSQ, where § = —ag,,/p. We shall discuss each case.

Suppose that 3 € k§®. Then, we have Ny, o(8) = BB7 € Q** (with Gal(ko/Q)={1,0}). Put
N = Ny, /q- We have Vi e {1,2,...,n}, N(¢;*) = ¢} and Vj € {1,2,...,m}:

N(oy) =2} —py; = ¢3" = q;27,

where z; = (qj)% (where h is the class number of kg, note that here h is an odd number) and

N(\/p) = —p, so:

N(a;*) = 423, ifg; =1 (mod 4),
’ qujz?, ifgj =3 (mod 4).

Thus,
2

n 2 m m
N(B) = (-p)' (H Qiai> o) (11" ] -
i1 i=1 =1

where [ is the number of ¢; such that ¢; =3 (mod 4).

m m
If [ is even, N(B) = qubf Z? € Q*? where Z € Q, then qubf € Q*2.
Jj=1 j=1

If I is odd, N(B8) = —p qubf 72 e Q*?, 50 —p qubj e Q*?.
j=1 j=1

Both cases are not possible because p, q1,qo, ..., ¢, are distinct prime numbers.
Ifnow 64 € k3%, then N(63) =N(B)N(8) € Q*?. Since N(g,) = —1, we have N(§) = N(—a)N(ep)N(\/p) =
pa?. Thus,

2

n 2 [ .
N(68) = pa*(~p)' (H qi‘“> s | (T ] -
i=1 j=1 j=1

if 1 is even, N(68) = p qubj Y2 € Q*2, where Y € Q, then qujb7 € Q*2, if [ is odd,
Jj=1 j=1
N(6p) = — H quj Y2 € Q*?, then — H quj € Q*Q. Both of these cases are impossible. Hence,
j=1 j=1

the elements of B are linearly independent modulo K*2.

On the other hand, according to Proposition 3.1, the genus field of K is K™ = (\/g1*, V@2 - . ., V/n") -
Thus, for 1 < ¢ < n, K(y/¢f)/K is an unramified extension, and by Lemma 4.3, for 1 < j < m,
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qjOr = HIM), where HJ and H} are the prime ideals of O, above gj, since HJ is ramified in

K and H{gh = (z; + yj/P) = (o), then (a;) is the square of the fractional ideal of K. Note

also that if ¢; = 1 (mod 4) for some 1 < j < m, we have z; is odd and y; is even. Hence,

o =z +yi /P =z +y; + _1';‘/52% (mod 4) = z; + y; (mod 4) = +1 (mod 4). Therefore,
o = (mod 4) and the ideal generated by aj is the square of the fractional ideal of K. Thus, by
Proposition 2.6, K(,/a})/K is also an unramified extension (the proof of the case g; =3 (mod 4) is
analogous). Therefore,

B={q, %, 01,035,005},

is a representative set of A/K*?. Hence,

E:K(Vq1*7VqQ*7"'7VQn*7\/al*a v042*,-~-,v0ém*),
is the Hilbert genus field of K .

Case: a =3 (mod 4):

In this case, we have dx /i, = 4a,/p, so the prime ideals of ky which ramify in K are the prime divisors

of a in ko, the ideal (\/p) and also the prime ideal (2). Thus, r2(A/K*?) = n+m + 1.
We consider the set:
B={-14{,05---.q5,07,05,...,03,},
We proceed as in the first case and we show that the elements of B are linearly independent modulo

K*?. Noting that the genus fields of K is:

K(*) :K(V_]-,Vql*v\/QZ*a"'v an*)a

we deduce that the extensions K(v/—1)/K and K(y/qf)/K (for 1 < i < n) are unramified, and in

a similar way as in the previous case, we prove that the extensions K(,/aj) /K are also unramified.

Thus, B is a representative set of A/K*2. Therefore,

E:K(\/jl3\/ql*7Vq2*7"’7\/q’n*7Val*ava2*7"'a\/am*)~

a= 2ﬁqi and ﬁqi =1 (mod 4).
i=1 i=1

In this case, we have dx /i, = 4a,/p, so the prime ideals of ky which ramify in K are the prime divisors

of a in ko, the ideal (\/p), and the prime ideal (2). Then r5(A/K*?) = n+m + 1, and since the
genus fields of K is:

K(*) = K(\/§7 VCII*7 VCI2*7 .. '7an*)7

so we shall consider the set:

* %k * * * *
IB = {27q15q27"'7q'ypa17a27"'7am}'

Similar to the previous cases, we show that B is a representative set of A/K *2 then:
E:K(\/ia Vql*a\/(hi*a“w VQn*a Val*ama~-~a \/am*)~
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Using similar techniques as in the previous case, we prove the fourth item. Which completes the proof. O

Theorem 4.6 Let p = 1 (mod 8) be a prime number and denote by E the Hilbert genus field of K =
Q(y/—aep+/p). We have:

1. If a =3 (mod 4), then:
E:K(VQI*7\/q27*7"'7an*7\/a1*7 a2*7"'7\/am*);
2. If a=1 (mod 4), then:

E=KKN-1LVa*,Var*, . ..,Van™, Var*, vao*, ...,V am™*, \/Ep);

3. Ifa:2Hqi and Hqizl (mod 4), then:

i=1 i=1

E:K(V_27 \/Q1*a \/qQ*a"'a \/qn*7 Va1*7 042*,..., Vam*a\/‘gp);

4. Ifa:QHqi and H%‘E?) (mod 4), then:

i=1 i=1

E = K(\/ﬁ, Vs, vV, Ve Vot Vag®, o Vam*, \/Ep).

Proof The proof of the case a =3 (mod 4) is similar to that of the first item of Theorem 4.5, so we let it for
the reader.

In the case where a = 1 (mod 4), we have dx/, = 4a,/p, then the prime ideals of ko that ramify in
K are the prime divisors of a in ko, the ideal (,/p), 21 and 2, where 2; and 2, are the two prime ideals
of ko above 2. Thus, ro(A/K*?) = n 4 m + 2. On the other hand, the genus field of K in this case is
K® =K (\/TI, NV \/q,T*) . As in the proof of Theorem 4.5, we shall consider the set:

*

* %k * * *
B={-1,¢7,45,---,45, 07,05, ...,Q0 Ep},

where €, is the fundamental unit of ky and we shall show that the elements of B are linearly independent

n

modulo K*2. Let 3 = (—1)%,° <H q?‘“) Ha;bj , where a,b,a;,b; € {0,1} and they are not all zero.
i=1 j=1

Assume that 8 € K*2.

o If b=0, then § = (1) (qum)
i=1

we get a contradiction.

*bj
J

s

o , following the same reasoning in the proof of Theorem 4.5,

Jj=1

e If b =1, we will distinguish two cases:
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1. Assume that V5 € {1,2,...,m},b; =0, f = (Hq ), then by Lemma 4.4, 8 € k>
2
6B € ki If B e ki?, then N(B <H q*%) € Q? (in fact, N(e,) = —1). Thus, —1 is a square
2
in Q, which is impossible. If §8 € k‘sz, N8 <H q*‘”) € Q?, then —p is a square in Q,

which is also impossible.

n m
2. Assume that 3j € {1,2,...,m},b; # 0, then 3 = (Hq*[“) Ha;fbj If B € ki?, then
j=1
by keeping the same previous notations we obtain:

N(B) = —(-p)' <qu‘a”> e ) (11" ] -

j=1 j=1
Thus,

quﬂ' Z2 € Q*2, if I is even,

q;% | 22 € Q*?, if L is odd,

m m
where Z € Q, so — H quj e Q*? or —p H quj € Q*?, which is impossible.
j=1 j=1

If now 08 € kSZ, we get:

m
D H q;”’ € Q*2, if | is even,

H q;”’ Y2 e Q*2, if [ is odd,

where Y € Q, so — ﬁ quj eQ*orp ﬁ quj € Q*?, which is also impossible. Therefore, the
Jj=1 Jj=1

clements of B are linearly independent modulo K*2. Tt is easy seen by [6, p. 67] that the extension

K(,/z;)/K is unramified. Thus, by the above discussion, B is a representative set of A/K *2 and the

Hilbert genus field of K is:

:K(Vf]-v\/ql*aVqQ*a"'aan*7Val*a\/O@*a"'v\/am*a\/‘%)'
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We similarly prove the rest. O

Now we shall construct the Hilbert genus field of K = Q(\/—ag,+/p), with p = 2. Let us now assume

n

that a = HQi is an odd positive square-free integer such that ¢; = £1 (mod 8) forall 1 < j <m (m < n,
i=1

the case m = 0 is possible here).

Theorem 4.7 Let a be as above. For any j such that 1 < j < m, let x; and y; be the two positive integers

such that q; = m? - 2yj2. Put aj =z + yj\/ﬁ, then the Hilbert genus field of K = Q(\/ —agay/2) is:

E:K(Vql*aVq2*7"'aan*>Val*a\/a2*a"'7\/am*)7
where o is defined as follows:

x;—1

e Ifgi=1 (mod 8),a} :=(-1)"7 ay,

e If ¢j =—1 (mod 8), then x; and y; are odd and we put

. { —egaj, ifzj=x1 (mod4) andy; =—-1 (mod 4),
i

al
€20, else.

Proof It is known that for a prime number ¢ = +1 (mod 8), there are positive integers x,y such that
q=12%?—2y% and if ¢ =1 (mod 8), the integers x and y may be chosen such that z =1 (mod 2) and y =0
(mod 4) (cf. [17]).

e Assume that ¢; = 1 (mod 8), for some 1 < j < m. We have (a;) = (z; + y;v/2) and the prime ideals of kg
above (g;), are ramified in K. Then the ideal («;) is the square of a fractional ideal of K. By the definition of

*
7o

by Proposition 2.6, K(,/a})/K is an unramified extension.

aj, we find o =1 (mod 4) and the ideal (a7} ) is the square of a fractional ideal of K for 1 <j <m. Hence,

e Assume that ¢; = —1 (mod 8), for some 1 < j < m. Let us firstly show that y; is odd. It is clear that z; is
odd. We have, 2yj2 =22 —-¢=2 (mod 8). By easy calculus one can check that the classes 7 of Z/8Z such that
2y = 2 are exactly the classes of odd integers y. Thus, y; is odd. If z; = y; = —1 (mod 4), then we have
of = —(14+v2)(z;4y;v2) = —(z;+2y;) — (z;+y;)V2. Thus, of = —1-2v2 = (3—2v2) = (1-v2)? (mod 4).
Since g; ramify in K/ko, (a;) is the square of an ideal of K. Therefore, by Proposition 2.6, K(,/aj)/K is
an unramified extension. We similarly proceed for the other cases of z; and y;.

Note that, by Lemma 2.1, dg/p, = 4a+/2, so the prime ideals of ko which ramify in K are the prime

divisors of a in ko and the prime ideal (v/2). Therefore, ro(A/K*?) = n+m. Hence, we show as in the proofs
of the previous theorems that the set:

_ ko k * * * *
B*{Q17q2""aanalaQQa"'aam}

is a representation of A/K *2 Finally, we get:
E=KNa V&, .., Vau©, Vart, Vag ', Vag®),
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which completes the proof. O

We close this section with some numerical examples.

Examples

1. Theorem 4.5: (the case a =3 (mod 4)). Let K = Q(\/—42427(5 +2v5)) = Q(\/—42427(2 +v5)V5).
We have p = 5=15 (mod 8), €5 = 2++/5 is the fundamental unit of Q(v/5), 42427 = Tx11x19x29 =
3 (mod 4) and () = -1, (&) = () = (&) = 1, then n = 4 and m = 3. Thus, ro(A)K*?)
=n+m+1 =8 As 11 =42 -5, 19 = 8 —5x 3% and 29 = 72 — 5 x 22, it follows that

a1 =445, a0 = 8+43V5 and a3 = 7+2v5, so of = 54445, al = —(15+8\/5) and of = T+2V5.
Hence,

E = K(V=3,V=7,V=11,V/=19,V29, \/ai, /a3, \/a})

is the Hilbert genus fields of K.

2. Theorem 4.6: (the case a = 1 (mod 4)). Let K = Q(v/—4199¢73v/73), we have: 73 = 1 (mod 8),
4199 =13 x 17 x 19 =1 (mod 4), (B) = () =—1 and () = 1. Thus, n = 3,m = 1. Therefore,
ro(A/K*?) = n4m + 2=6.

As 19 = 262 + 3/73, then ag = 26 + 3v/73 and o] =219+ 264/73. Hence, the Hilbert genus fields
of K is:

E = K(V=1,V13,V=17,V/—19, \/e73, \/ 219 + 26/73),

where €73 is the fundamental unit of Q(+/73).

3. Theorem 4.7: (the case p = 2). Let K = Q(1/595(1 + v2)v/2). We have 595 = 7x 17 x5, (2) = —1
and (2) = (Z) =1. Then r(A/K**) =n+m=3+2=5,by 7=7 (mod 8), 17 =1 (mod 8),
7=32-2x1%2and 17="72-2x4%. So a; = 3+1v2,a0 = T+4V2, o = (1+V2)(3+V2) = 5+4V2
and ab = —(7+ 4/2). Hence, the Hilbert genus field of K is:

E = K5, V=T,V17,\/5 + 42,1/ — (7 + 4V2)).
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