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Abstract: Let p be a prime number such that p = 2 or p ≡ 1 (mod 4) . Let εp denote the fundamental unit of Q(
√
p)

and let a be a positive square-free integer. The main aim of this paper is to determine explicitly the Hilbert genus field
of the imaginary cyclic quartic fields of the form Q(

√
−aεp

√
p) .
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1. Introduction
The study of the unramified extensions of a given number field k is of a huge interest in algebraic number
theory. For instance, the importance of the Hilbert class field of k , denoted by H(k) , is represented in the fact
that it is the maximal abelian unramified extension of k and its Galois group over k , i.e. G := Gal(H(k)/k) ,
is isomorphic to Cl(k) , the class group of k (cf. [14, p. 228]). Another important example of these unramified
extensions is the genus field of k , which is defined as the maximal extension of k which is unramified at all
finite and infinite primes of k of the form kk1 , where k1 is an abelian extension of Q (cf. [13]). These two
fields have been largely investigated in old and recent studies (e.g. [1, 2, 4–6, 15]).

Another very interesting example of unramified extensions of k is the Hilbert genus field of k which is
the invariant field E(k) of G2 . Then, by Galois theory, we have:

Cl(k)/Cl(k)2 ' G/G2 ' Gal(E(k)/k),

and thus, 2 -rank (Cl(k)) = 2 -rank (Gal(E(k)/k)) . On the other hand, E(k)/k is the maximal unramified
Kummer extension of exponent 2 . Thus, by Kummer theory (cf. [18, p. 14]), there exists a unique multiplicative
group ∆ such that

E(k) = H(k) ∩ k(
√
k∗) = k(

√
∆) and k∗2 ⊂ ∆ ⊂ k∗.

Therefore, the question that arises is how to construct the Hilbert genus field of k , or equivalently, how to give
a set of generators for the finite group ∆/k∗2 . Note that many mathematicians have investigated this question
for some biquadratic number fields. For example, Bae and Yue studied the Hilbert genus field of the fields
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Q(
√
p,
√
d) , for a prime number p such that, p = 2 or p ≡ 1 (mod 4) , and a positive square-free integer d (cf.

[3]).
Recently, Ouang and Zhang have determined the Hilbert genus field of the imaginary biquadratic fields

Q(
√
δ,
√
d) , where δ = −1,−2 or −p with p ≡ 3 (mod 4) a prime number and d any square-free integer.

Thereafter, they constructed the Hilbert genus field of real biquadratic fields Q(
√
δ,
√
d) , for any positive

square-free integer d , and δ = p, 2p or p1p2 where p , p1 , and p2 are prime numbers congruent to 3 (mod 4) ,
such that the class number of Q(

√
δ) is odd (cf. [19, 20]). For more works on this problem, we refer the reader

to the papers [10, 21, 23].
In the present work, using other easier techniques based on genus fields, we shall construct the Hilbert

genus fields of imaginary cyclic quartic fields of the form K = Q(
√

−aεp
√
p) , for a prime number p such that

p = 2 or p ≡ 1 (mod 4) , and a positive square-free integer a relatively prime to p .
The plan of this paper is as follows. In Section 2, we shall collect some results of cyclic quartic fields

theory and genus theory. Section 3 is dedicated to the investigation of the genus field of the imaginary cyclic
quartic fields K . In Section 4, we will construct the Hilbert genus fields of the fields K . Therein, we give some
numerical examples.

1.1. Notations
Let k be a number field. The next notations will be used for the rest of this article:

• Ok : the ring of integers of k ,

• Cl(k) : the class group of k ,

• h(k) : the class number of k ,

• Nk/k′ : the norm map of an extension k/k′ ,

• Ek : the unit group of k ,

• k∗ : the nonzero elements of k ,

• k(∗) : the genus field of k ,

• E(k) : the Hilbert genus field of k ,

• H(k) : the Hilbert class field of k ,

• δk : the absolute discriminant of k ,

• δk/k′ : the generator of the relative discriminant of an extension k/k′ ,

• r2(A) : the 2 -rank of a finite abelian group A ,

• εd : the fundamental unit of Q(
√
d) , where d is a positive square-free integer,

• p : a prime number such that p = 2 or p ≡ 1 (mod 4) ,

• a : a positive square-free integer relatively prime to p ,
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• δ = −aεp
√
p ,

• k0 = Q(
√
p) ,

• K = k0(
√
δ) : an imaginary quartic cyclic number field,

• qj : an odd prime integer,

•
( ·
·

)
: the Legendre symbol,

•
(

−,−
Pi

)
: the Hilbert symbol over k0 .

For more notations, see the beginning of each section below.

2. Preliminary results

In this section, we start by recalling some results that we will need in what follows. Let L be a cyclic quartic
extension of the rational number field Q . It is known that L can be expressed uniquely in the form:

L = Q(

√
a(d+ b

√
d)),

for some integers a , b , c , and d are such that d = b2 + c2 is square-free with b > 0 and c > 0 , and a is an
odd square-free integer relatively prime to d (cf. [9, 24]). Note that L possesses a unique quadratic subfield
k = Q(

√
d) .

Lemma 2.1 ([12]) Keep the above notations. We have:

1. The absolute discriminant of L is given by δL , where:

δL =


28a2d3, if d ≡ 0 (mod 2),
24a2d3, if d ≡ 1 (mod 4), b ≡ 0 (mod 2), a+ b ≡ 3 (mod 4),
a2d3, if d ≡ 1 (mod 4), b ≡ 0 (mod 2), a+ b ≡ 1 (mod 4),
26a2d3, if d ≡ 1 (mod 4), b ≡ 1 (mod 2).

2. The relative discriminant of L/k is given by ∆L/k = δL/kOk, where:

δL/k =


4a

√
d, if d ≡ 0 (mod 2),

4a
√
d, if d ≡ 1 (mod 4), b ≡ 0 (mod 2), a+ b ≡ 3 (mod 4),

a
√
d, if d ≡ 1 (mod 4), b ≡ 0 (mod 2), a+ b ≡ 1 (mod 4),

8a
√
d, if d ≡ 1 (mod 4), b ≡ 1 (mod 2).

Lemma 2.2 ([12]) Keep the above notations. If the class number of k = Q(
√
d) is odd, then L = Q(

√
a′εd

√
d),

where

a′ =

{
2a, if d ≡ 1 (mod 4) and b ≡ 1 (mod 2),

a, otherwise.
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Proposition 2.3 ([13]) Let L be an abelian extension of Q of degree n . If n = rs , where r is a prime number
and s is a positive integer, then

L(∗) =

 ∏
p/δL,p̸=r

Mp

L,

where Mp is the unique subfield of degree ep (the ramification index of p in L) over Q of Q(ξp) the p-th
cyclotomic field and δL is the discriminant of L .

Proposition 2.4 ([16], p. 160) If p is a prime number such that p ≡ 1 (mod 4) , then Q(
√

ε∗p
√
p) is the

quartic subfield of Q(ξp) , where ε∗p =
(

2
p

)
εp and Q(

√
2 +

√
2) is the real quartic field of Q(ξ16) .

We close this section with the following two results.

Lemma 2.5 ([8]) Let k/k′ be a quadratic extension of number fields. If the class number of k′ is odd, then
the rank of the 2-class group of k is given by

r2(Cl(k)) = t− 1− e,

where t is the number of ramified primes (finite or infinite) in the extension k/k′ and e is defined by
2e = [Ek′ : Ek′ ∩Nk/k′(k∗)] .

Proposition 2.6 ([11]) Let k/k′ be a quadratic extension of number fields, and µ a number of k′ , coprime
with 2 , such that k = k′(

√
µ) . The extension k/k′ is unramified at all finite primes of k′ if and only if the two

following items hold:

1. the ideal generated by µ is the square of the fractional ideal of k′ , and

2. there exists a nonzero number ξ of k′ verifying µ ≡ ξ2 (mod 4) .

3. Genus fields of the imaginary cyclic quartic fields : K = Q(
√

−aεp
√
p)

Let p denote a prime number such that p = 2 or p ≡ 1 (mod 4) and a be a positive square-free integer
coprime with p . In the present section, we shall investigate the genus field of the imaginary cyclic quartic fields
K = Q(

√
−aεp

√
p) . Note that K is a CM -field with maximal real subfield k0 = Q(

√
p) . For the construction

of the genus field of K , we shall need the factorization of the integer a ; therefore, we put:

a =

n∏
i=1

qi or 2

n∏
i=1

qi, (3.1)

where q1, q2, . . . , qn are distinct odd primes. Assume that the Legendre symbols
(

p

qj

)
= 1 for 1 ≤ j ≤ m

(m ≤ n , the case m = 0 is included here) and
(

p

qj

)
= −1 for m+ 1 ≤ j ≤ n .

Let eℓ denote the ramification index of a prime number ` in K/Q and put q∗j = (−1)
qj−1

2 qj .
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Proposition 3.1 Assume that p ≡ 5 (mod 8) , then

1. If a = (

n∏
i=1

qi) ≡ 1 (mod 4) , we have

K(∗) = K(
√
q1∗,

√
q2∗, . . . ,

√
qn∗);

2. If a = (

n∏
i=1

qi) ≡ 3 (mod 4), we have

K(∗) = K(
√
−1,

√
q1∗,

√
q2∗, . . . ,

√
qn∗);

3. If a = 2

n∏
i=1

qi and (

n∏
i=1

qi) ≡ 1 (mod 4) , we have

K(∗) = K(
√
2,
√
q1∗,

√
q2∗, . . . ,

√
qn∗);

4. If a = 2

n∏
i=1

qi and (

n∏
i=1

qi) ≡ 3 (mod 4) , we have

K(∗) = K(
√
−2,

√
q1∗,

√
q2∗, . . . ,

√
qn∗).

Proof We have p ≡ 5 (mod 8) , then by the expression of the absolute discriminant of K (cf. Lemma 2.1),
the prime numbers of Q that ramify in K are :

• the odd prime divisors of a (with ramification index equals 2),

• the prime p (with ep = 4),

• and 2 if a 6≡ 1 (mod 4) (with e2 = 2).

On the other hand, we know that Q(ξp)/Q is a Galois extension such that

Gal(Q(ξp)/Q) ' (Z/pZ)∗ ' Z/(p− 1)Z,

and if m divides p−1 , then Q(ξp) contains a unique subfield of degree m over Q . Since p is the unique prime
which is ramified in Q(ξp) , then Q(

√
−εp

√
p) is the unique subfield of degree 4 of Q(ξp) (Proposition 2.4).

Therefore, by Proposition 2.3, we get:

1. If a =

n∏
i=1

qi ≡ 1 (mod 4) , then:

K(∗) = Q(
√
q1∗)Q(

√
q2∗) . . .Q(

√
qn∗)Q(

√
−εp

√
p)K = K(

√
q1∗,

√
q2∗, . . . ,

√
qn∗).
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2. If a =

n∏
i=1

qi ≡ 3 (mod 4) , then:

K(∗) = Q(
√
q1∗)Q(

√
q2∗) . . .Q(

√
qn∗)Q(

√
−εp

√
p)K = K(

√
−1,

√
q1∗,

√
q2∗, . . . ,

√
qn∗).

3. If a = 2

n∏
i=1

qi and
n∏

i=1

qi ≡ 1 (mod 4) , then:

K(∗) = Q(
√
q1∗)Q(

√
q2∗) . . .Q(

√
qn∗)Q(

√
−εp

√
p)K = K(

√
2,
√
q1∗,

√
q2∗, . . . ,

√
qn∗).

4. If a = 2

n∏
i=1

qi and
n∏

i=1

qi ≡ 3 (mod 4) , then:

K(∗) = Q(
√
q1∗)Q(

√
q2∗) . . .Q(

√
qn∗)Q(

√
−εp

√
p)K = K(

√
−2,

√
q1∗,

√
q2∗, . . . ,

√
qn∗),

which completes the proof. 2

We similarly prove the following two propositions.

Proposition 3.2 Assume that p ≡ 1 (mod 8) , then

1. If a =

n∏
i=1

qi ≡ 3 (mod 4) , then K(∗) = K(
√
q1∗,

√
q2∗, . . . ,

√
qn∗).

2. If a =

n∏
i=1

qi ≡ 1 (mod 4) , then K(∗) = K(
√
−1,

√
q1∗,

√
q2∗, . . . ,

√
qn∗).

3. If a = 2

n∏
i=1

qi and
n∏

i=1

qi ≡ 1 (mod 4) , then K(∗) = K(
√
−2,

√
q1∗,

√
q2∗, . . . ,

√
qn∗).

4. If a = 2

n∏
i=1

qi and
n∏

i=1

qi ≡ 3 (mod 4) , then K(∗) = K(
√
2,
√
q1∗,

√
q2∗, . . . ,

√
qn∗).

Proposition 3.3 If p = 2, then K(∗) = K(
√
q1∗,

√
q2∗, . . . ,

√
qn∗).

4. Hilbert genus fields of the imaginary cyclic quartic fields : K = Q(
√

−aεp
√
p)

Keep the notations of the previous sections. At this stage, we can start the construction of the Hilbert genus field
of the imaginary cyclic quartic field K = Q(

√
−aεp

√
p) . However, we must first expose some more ingredients

of our proofs. We have the following lemmas.

1694



HAJJAMI and CHEMS-EDDIN/Turk J Math

Lemma 4.1 Let k/k′ be a quadratic extension of number fields such that the class number of k′ is odd. Let
∆ denote the multiplicative group such that k∗2 ⊂ ∆ ⊂ k∗ and k(

√
∆) is the Hilbert genus field of k (cf. §1) .

Then
r2(∆/k∗2) = t− e− 1,

where t and e are defined in Lemma 2.5.

Proof Put G = Gal(H(k)/k) . By the definition of E(k) (cf. §1) we have:

Cl(k)/Cl(k)2 ' G/G2 ' Gal(E(k)/k),

Since E(k) = k(
√
∆) , then by class field theory:

r2(∆/k∗2) = log2[k(
√
∆) : k] = log2[E(k) : k] = r2(Cl(k)).

Thus, we get the result by the ambiguous class number formula (Lemma 2.5). 2

Lemma 4.2 ([22]) Let p ≡ 1 (mod 4) be a prime number and εp be the fundamental unit of Q(
√
p) . Then,

there are two natural integers u and v such that:

ελp = u+ v
√
p, u ≡ 0 (mod 2), v ≡ 1 (mod 4),

where λ =

{
1, if p ≡ 1 (mod 8);

3, if p ≡ 5 (mod 8).

Lemma 4.3 Let p and q be two different prime numbers such that p ≡ 1 (mod 4) , q ≡ ±1 (mod 4) and(
p

q

)
= 1 . Then, there exist two natural integers x and y such that:

x2 − py2 = qλh,

where h is the class number of Q(
√
p) and λ =

{
1, if p ≡ 1 (mod 8);

3, if p ≡ 5 (mod 8).

Furthermore, we have: {
x ≡ 1 (mod 2), y ≡ 0 (mod 2), if q ≡ 1 (mod 4);

x ≡ 0 (mod 2), y ≡ 1 (mod 2), if q ≡ 3 (mod 4).

Proof Since (pq ) = 1 , then q splits in k0 = Q(
√
p) . Thus, there exist two prime ideals H1 and H2 of Ok0

,

such that qOk0
= H1H2 and σ(H1) = H2 (σ is the generator of Galois group of k0 ). Thus, qhOk0

= Hh
1Hh

2 ,
where h is the class number of k0 . Since Hh

1 and Hh
2 are two principal ideals, we can choose two natural

integers x and y such that Hλh
1 = (x+

√
py) , Hλh

2 = (x−√
py) and x2− py2 > 0 . Then qλhOk0

= (x2− py2) .
Therefore, x2 − py2 = ηqλh , for a certain unit η ∈ Ek0 . Thus, η ∈ Ek0 ∩ Q . Since Ek0 = 〈−1, εp〉 and
x2 − py2 > 0 , it follows that η = 1 and so x2 − py2 = qλh , which gives the first part of the lemma. If we
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assume that q ≡ 1 (mod 4) , we get x2 − y2 ≡ 1 (mod 4) . By checking all the possibilities of x2 − y2 (mod 4)

we deduce that x ≡ 1 (mod 2) and y ≡ 0 (mod 2) . If q ≡ 3 (mod 4) , we get x2 − y2 ≡ 3 (mod 4) . Hence,
x ≡ 0 (mod 2) and y ≡ 1 (mod 2) , which completes the proof. 2

Lemma 4.4 Let k = k′(
√
µ) be a quadratic extension of number fields and β ∈ k′ . Then, β ∈ k2 if and only if β ∈

k′
2 or µβ ∈ k′

2
.

Proof If β ∈ k2 , then β = (a+ b
√
µ)

2 , for some a , b ∈ k′ , so β = a2 + µb2 + 2ab
√
µ . Since β ∈ k′ , we have

a = 0 or b = 0 . If b = 0 , then β = a2 ∈ k′
2 . If a = 0 , then β = µb2 . Therefore, µβ = (µb)

2 ∈ k′
2 . The

reciprocal implication is evident. 2

Now, after all the above preparations, we can state our first main theorem. We keep the notations in the
beginning of the previous section and we shall put E = E(K) .

Theorem 4.5 Let p ≡ 5 (mod 8) be a prime number and denote by E the Hilbert genus field of K =

Q(
√
−aεp

√
p) . We have:

1. If a ≡ 1 (mod 4) , then:

E = K(
√
q1∗,

√
q2∗, . . . ,

√
qn∗,

√
α1

∗,
√
α2

∗, . . . ,
√
αm

∗);

2. If a ≡ 3 (mod 4) , then:

E = K(
√
−1,

√
q1∗,

√
q2∗, . . . ,

√
qn∗,

√
α1

∗,
√
α2

∗, . . . ,
√
αm

∗);

3. If a = 2

n∏
i=1

qi and
n∏

i=1

qi ≡ 1 (mod 4) , then:

E = K(
√
2,
√
q1∗,

√
q2∗, . . . ,

√
qn∗,

√
α1

∗,
√
α2

∗, . . . ,
√
αm

∗);

4. If a = 2

n∏
i=1

qi and
n∏

i=1

qi ≡ 3 (mod 4) , then:

E = K(
√
−2,

√
q1∗,

√
q2∗, . . . ,

√
qn∗,

√
α1

∗,
√
α2

∗, . . . ,
√
αm

∗);

where: 

qi
∗ = (−1)

qi−1

2 qi, (1 ⩽ i ⩽ n),
αj = xj + yj

√
p, (1 ⩽ j ⩽ m), xj and yj are the integers given by Lemma 4.3,

such that x2
j − py2j = qλhj ,

α∗
j =

{
(−1)

xj+yj−1

2 αj , if qj ≡ 1 (mod 4),

(−1)
xj+yj−1

2 αj
√
p, if qj ≡ 3 (mod 4),

(1 ⩽ j ⩽ m).

Proof Note that K/k0 is a quadratic extension with the class number of k0 = Q(
√
p) is odd. So we

are in the conditions of Lemma 4.1. Let ∆ be the multiplicative group such that E = K(
√
∆) . Thus
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r2(∆/K∗2) = t− e− 1 . Let p∞ and p̄∞ denote the infinite primes of k0 which are respectively corresponding
to the Q -embeddings:

ip∞ : k0 ↪→ R√
p 7−→ −√

p
and ip̄∞ : k0 ↪→ R√

p 7−→ √
p

Set ip∞(εp) = ε̄p . Note that Nk0/Q(εp) = εpε̄p = −1 . By the definition of Hilbert symbol (cf. [7]), we have:(
−1,−aεp

√
p

p∞

)
= i−1

p∞
((ip∞(−1), ip∞(−aεp

√
p))p∞)

= i−1
p∞

((−1, aε̄p
√
p)p∞)

= i−1
p∞

(−1)
= −1,(

εp,−aεp
√
p

p∞

)
= i−1

p∞
((ip∞(εp), ip∞(−aεp

√
p))p∞)

= i−1
p∞

((ε̄p, aε̄p
√
p)p∞)

= i−1
p∞

(−1)
= −1,(

−εp,−aεp
√
p

p̄∞

)
= i−1

p̄∞((ip̄∞(−εp), ip̄∞(−aεp
√
p))p̄∞)

= i−1
p̄∞((−εp,−aεp

√
p)p̄∞)

= i−1
p̄∞(−1)

= −1.

It follows, by the Hasse norm theorem, that −1 , εp and −εp are not in NK/k0
(K∗) . Thus, e = 2 . Therefore,

to compute r2(∆/K∗2) , it suffices to determine the number of prime ideals of k0 which ramify in K .

Case 1. Assume that a ≡ 1 (mod 4) :
In this case, we have δK/k0

= a
√
p (Lemma 2.1). Thus, the finite primes of k0 which ramify in K are

the prime divisors of a in k0 and the prime ideal (
√
p) . Since

(
p

qj

)
= 1 , for 1 ≤ j ≤ m , then qj

splits in k0 . Thus, we have:

r2(∆/K∗2) = (n+m+ 1) + 2− 2− 1 = n+m.

On the other hand, to explicitly determine E , it suffices to determine the set of generators for the finite
group (∆/K∗2) . For this, we consider the set:

B = {q∗1 , q∗2 , . . . , q∗n, α∗
1, α

∗
2, . . . , α

∗
m}.

Let us show that the elements of B are linearly independent modulo K∗2 (provided that the notion of
linear independence is translated to a multiplicative setting: α1, ..., αs are multiplicatively independent
if αm1

1 ...αms
s = 1 implies that mi = 0 , for all i).

We consider the element β =

(
n∏

i=1

q∗i
ai

) m∏
j=1

α∗
j
bj

 , where ai, bj ∈ {0, 1} and are not all zero.

Suppose that β ∈ K∗2.
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• If we assume that ∀ j ∈ {1, 2, . . . ,m} bj = 0 , we get β =

(
n∏

i=1

q∗i
ai

)
∈ K∗2 , which implies that

√
β ∈ K∗ . Thus, Q(

√
β) is a quadratic subfield of K , which is impossible, because K has only one

quadratic subfield that is k0 = Q(
√
p) .

• Assume that ∃ j ∈ {1, . . . ,m} with bj 6= 0 . Note that β ∈ k∗0 and β ∈ K∗2 . By Lemma 4.4, we have
β ∈ k∗0

2 or δβ ∈ k∗0
2, where δ = −aεp

√
p . We shall discuss each case.

Suppose that β ∈ k∗0
2. Then, we have Nk0/Q(β) = ββσ ∈ Q∗2 (with Gal(k0/Q)={1, σ} ) . Put

N = Nk0/Q . We have ∀ i ∈ {1, 2, . . . , n} , N(qi
∗) = q2i and ∀ j ∈ {1, 2, . . . ,m} :

N(αj) = x2
j − py2j = q3hj = qjz

2
j ,

where zj = (qj)
3h−1

2 (where h is the class number of k0 , note that here h is an odd number) and
N(

√
p) = −p , so:

N(αj
∗) =

{
qjz

2
j , if qj ≡ 1 (mod 4),

−pqjz
2
j , if qj ≡ 3 (mod 4).

Thus,

N(β) = (−p)l

(
n∏

i=1

qi
ai

)2
 m∏

j=1

qj
bj

 m∏
j=1

zj
bj

2

,

where l is the number of qj such that qj ≡ 3 (mod 4) .

If l is even, N(β) =

 m∏
j=1

qj
bj

Z2 ∈ Q∗2 where Z ∈ Q , then

 m∏
j=1

qj
bj

 ∈ Q∗2 .

If l is odd, N(β) = −p

 m∏
j=1

qj
bj

Z2 ∈ Q∗2 , so −p

 m∏
j=1

qj
bj

 ∈ Q∗2 .

Both cases are not possible because p, q1, q2, . . . , qm are distinct prime numbers.
If now δβ ∈ k∗0

2 , then N(δβ) =N(β)N(δ) ∈ Q∗2 . Since N(εp) = −1 , we have N(δ) = N(−a)N(εp)N(
√
p) =

pa2 . Thus,

N(δβ) = pa2(−p)l

(
n∏

i=1

qi
ai

)2
 m∏

j=1

qj
bj

 m∏
j=1

zj
bj

2

,

if l is even, N(δβ) = p

 m∏
j=1

qj
bj

Y 2 ∈ Q∗2 , where Y ∈ Q , then p

m∏
j=1

qj
bj ∈ Q∗2, if l is odd,

N(δβ) = −

 m∏
j=1

qj
bj

Y 2 ∈ Q∗2 , then −
m∏
j=1

qj
bj ∈ Q∗2. Both of these cases are impossible. Hence,

the elements of B are linearly independent modulo K∗2 .

On the other hand, according to Proposition 3.1, the genus field of K is K(∗) = (
√
q1∗,

√
q2∗, . . . ,

√
qn∗) .

Thus, for 1 ≤ i ≤ n , K(
√
q∗i )/K is an unramified extension, and by Lemma 4.3, for 1 ≤ j ≤ m ,
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qjOk = Hj
1H

j
2 , where Hj

1 and Hj
2 are the prime ideals of Ok0 above qj , since Hj

1 is ramified in

K and Hj3h

1 = (xj + yj
√
p) = (αj) , then (αj) is the square of the fractional ideal of K . Note

also that if qj ≡ 1 (mod 4) for some 1 ≤ j ≤ m , we have xj is odd and yj is even. Hence,

αj = xj + yj
√
p ≡ xj + yj +

−1+
√
p

2 2yj (mod 4) ≡ xj + yj (mod 4) ≡ ±1 (mod 4) . Therefore,
α∗
j ≡ 1 (mod 4) and the ideal generated by α∗

j is the square of the fractional ideal of K . Thus, by
Proposition 2.6, K(

√
α∗
j )/K is also an unramified extension (the proof of the case qj ≡ 3 (mod 4) is

analogous). Therefore,
B = {q∗1 , q∗2 , ..., q∗n, α∗

1, α
∗
2, . . . , α

∗
m},

is a representative set of ∆/K∗2 . Hence,

E = K(
√
q1∗,

√
q2∗, . . . ,

√
qn∗,

√
α1

∗,
√
α2

∗, . . . ,
√
αm

∗),

is the Hilbert genus field of K .

Case 2. Case: a ≡ 3 (mod 4) :
In this case, we have δK/k0

= 4a
√
p , so the prime ideals of k0 which ramify in K are the prime divisors

of a in k0 , the ideal (
√
p) and also the prime ideal (2) . Thus, r2(∆/K∗2) = n+m+ 1 .

We consider the set:
B = {−1, q∗1 , q

∗
2 , . . . , q

∗
n, α

∗
1, α

∗
2, . . . , α

∗
m},

We proceed as in the first case and we show that the elements of B are linearly independent modulo
K∗2 . Noting that the genus fields of K is:

K(∗) = K(
√
−1,

√
q1∗,

√
q2∗, . . . ,

√
qn∗),

we deduce that the extensions K(
√
−1)/K and K(

√
q∗i )/K (for 1 ≤ i ≤ n) are unramified, and in

a similar way as in the previous case, we prove that the extensions K(
√
α∗
j )/K are also unramified.

Thus, B is a representative set of ∆/K∗2 . Therefore,

E = K(
√
−1,

√
q1∗,

√
q2∗, . . . ,

√
qn∗,

√
α1

∗,
√
α2

∗, . . . ,
√
αm

∗).

Case 3. a = 2

n∏
i=1

qi and
n∏

i=1

qi ≡ 1 (mod 4) .

In this case, we have δK/k0
= 4a

√
p , so the prime ideals of k0 which ramify in K are the prime divisors

of a in k0 , the ideal (
√
p) , and the prime ideal (2) . Then r2(∆/K∗2) = n + m + 1 , and since the

genus fields of K is:
K(∗) = K(

√
2,
√
q1∗,

√
q2∗, . . .,

√
qn∗),

so we shall consider the set:
B = {2, q∗1 , q∗2 , . . . , q∗n, α∗

1, α
∗
2, ..., α

∗
m}.

Similar to the previous cases, we show that B is a representative set of ∆/K∗2 , then:

E = K(
√
2,
√
q1∗,

√
q2∗, . . . ,

√
qn∗,

√
α1

∗,
√
α2

∗, . . . ,
√
αm

∗).
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Using similar techniques as in the previous case, we prove the fourth item. Which completes the proof. 2

Theorem 4.6 Let p ≡ 1 (mod 8) be a prime number and denote by E the Hilbert genus field of K =

Q(
√
−aεp

√
p) . We have:

1. If a ≡ 3 (mod 4) , then:

E = K(
√
q1∗,

√
q2∗, . . . ,

√
qn∗,

√
α1

∗,
√
α2

∗, . . . ,
√
αm

∗);

2. If a ≡ 1 (mod 4) , then:

E = K(
√
−1,

√
q1∗,

√
q2∗, . . . ,

√
qn∗,

√
α1

∗,
√
α2

∗, . . . ,
√
αm

∗,
√
εp);

3. If a = 2

n∏
i=1

qi and
n∏

i=1

qi ≡ 1 (mod 4) , then:

E = K(
√
−2,

√
q1∗,

√
q2∗, . . . ,

√
qn∗,

√
α1

∗,
√
α2

∗, . . . ,
√
αm

∗,
√
εp);

4. If a = 2

n∏
i=1

qi and
n∏

i=1

qi ≡ 3 (mod 4) , then:

E = K(
√
2,
√
q1∗,

√
q2∗, . . . ,

√
qn∗,

√
α1

∗,
√
α2

∗, . . . ,
√
αm

∗,
√
εp).

Proof The proof of the case a ≡ 3 (mod 4) is similar to that of the first item of Theorem 4.5, so we let it for
the reader.

In the case where a ≡ 1 (mod 4) , we have δK/k0
= 4a

√
p , then the prime ideals of k0 that ramify in

K are the prime divisors of a in k0 , the ideal (
√
p) , 21 and 22 , where 21 and 22 are the two prime ideals

of k0 above 2 . Thus, r2(∆/K∗2) = n + m + 2 . On the other hand, the genus field of K in this case is
K(∗) = K

(√
−1,

√
q1∗,

√
q2∗, . . . ,

√
qn∗
)
. As in the proof of Theorem 4.5, we shall consider the set:

B = {−1, q∗1 , q
∗
2 , . . . , q

∗
n, α

∗
1, α

∗
2, . . . , α

∗
m, εp},

where εp is the fundamental unit of k0 and we shall show that the elements of B are linearly independent

modulo K∗2 . Let β = (−1)aεp
b

(
n∏

i=1

q∗i
ai

) m∏
j=1

α∗
j
bj

 , where a, b, ai, bj ∈ {0, 1} and they are not all zero.

Assume that β ∈ K∗2 .

• If b = 0 , then β = (−1)a

(
n∏

i=1

q∗i
ai

) m∏
j=1

α∗
j
bj

 , following the same reasoning in the proof of Theorem 4.5,

we get a contradiction.

• If b = 1 , we will distinguish two cases:
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1. Assume that ∀j ∈ {1, 2, . . . ,m}, bj = 0 , β = (−1)aεp

(
n∏

i=1

q∗i
ai

)
, then by Lemma 4.4, β ∈ k∗0

2 or

δβ ∈ k∗0
2 . If β ∈ k∗0

2 , then N(β) = −

(
n∏

i=1

q∗i
ai

)2

∈ Q2 (in fact, N(εp) = −1). Thus, −1 is a square

in Q , which is impossible. If δβ ∈ k∗0
2 , N(δβ) = −pa2

(
n∏

i=1

q∗i
ai

)2

∈ Q2 , then −p is a square in Q ,

which is also impossible.

2. Assume that ∃j ∈ {1, 2, . . . ,m}, bj 6= 0 , then β = (−1)aεp

(
n∏

i=1

q∗i
ai

) m∏
j=1

α∗
j
bj

 . If β ∈ k∗0
2 , then

by keeping the same previous notations we obtain:

N(β) = −(−p)l

(
n∏

i=1

qi
ai

)2
 m∏

j=1

qj
bj

 m∏
j=1

zj
bj

2

,

Thus,

N(β) =


−

 m∏
j=1

qj
bj

Z2 ∈ Q∗2, if l is even,

−p

 m∏
j=1

qj
bj

Z2 ∈ Q∗2, if l is odd,

where Z ∈ Q , so −

 m∏
j=1

qj
bj

 ∈ Q∗2 or −p

 m∏
j=1

qj
bj

 ∈ Q∗2 , which is impossible.

If now δβ ∈ k∗0
2 , we get:

N(δβ) =


p

 m∏
j=1

qj
bj

Y 2 ∈ Q∗2, if l is even,

−

 m∏
j=1

qj
bj

Y 2 ∈ Q∗2, if l is odd,

where Y ∈ Q , so −

 m∏
j=1

qj
bj

 ∈ Q∗2 or p

 m∏
j=1

qj
bj

 ∈ Q∗2 , which is also impossible. Therefore, the

elements of B are linearly independent modulo K∗2 . It is easy seen by [6, p. 67] that the extension
K(

√
εp)/K is unramified. Thus, by the above discussion, B is a representative set of ∆/K∗2 and the

Hilbert genus field of K is:

E = K
(√

−1,
√
q1∗,

√
q2∗, . . . ,

√
qn∗,

√
α1

∗,
√
α2

∗, . . . ,
√
αm

∗,
√
εp
)
.
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We similarly prove the rest. 2

Now we shall construct the Hilbert genus field of K = Q(
√

−aεp
√
p) , with p = 2 . Let us now assume

that a =

n∏
i=1

qi is an odd positive square-free integer such that qj ≡ ±1 (mod 8) for all 1 ≤ j ≤ m (m ≤ n ,

the case m = 0 is possible here) .

Theorem 4.7 Let a be as above. For any j such that 1 ≤ j ≤ m , let xj and yj be the two positive integers

such that qj = x2
j − 2y2j . Put αj = xj + yj

√
2 , then the Hilbert genus field of K = Q(

√
−aε2

√
2) is:

E = K
(√

q1∗,
√
q2∗, . . . ,

√
qn∗,

√
α1

∗,
√
α2

∗, . . . ,
√
αm

∗
)
,

where α∗
j is defined as follows:

• If qj ≡ 1 (mod 8), α∗
j := (−1)

xj−1

2 αj ,

• If qj ≡ −1 (mod 8), then xj and yj are odd and we put

α∗
j :=

{
−ε2αj , if xj ≡ ±1 (mod 4) and yj ≡ −1 (mod 4),
ε2αj , else.

Proof It is known that for a prime number q ≡ ±1 (mod 8) , there are positive integers x, y such that
q = x2 − 2y2 , and if q ≡ 1 (mod 8) , the integers x and y may be chosen such that x ≡ 1 (mod 2) and y ≡ 0

(mod 4) (cf. [17]).

• Assume that qj ≡ 1 (mod 8) , for some 1 ≤ j ≤ m . We have (αj) = (xj + yj
√
2) and the prime ideals of k0

above (qj) , are ramified in K . Then the ideal (αj) is the square of a fractional ideal of K . By the definition of
α∗
j , we find α∗

j ≡ 1 (mod 4) and the ideal (α∗
j ) is the square of a fractional ideal of K for 1 ≤ j ≤ m . Hence,

by Proposition 2.6, K(
√
α∗
j )/K is an unramified extension.

• Assume that qj ≡ −1 (mod 8) , for some 1 ≤ j ≤ m . Let us firstly show that yj is odd. It is clear that xj is
odd. We have, 2y2j ≡ x2− q ≡ 2 (mod 8) . By easy calculus one can check that the classes y of Z/8Z such that

2y2 = 2 are exactly the classes of odd integers y . Thus, yj is odd. If xj ≡ yj ≡ −1 (mod 4) , then we have
α∗
j = −(1+

√
2)(xj+yj

√
2) = −(xj+2yj)−(xj+yj)

√
2 . Thus, α∗

j ≡ −1−2
√
2 ≡ (3−2

√
2) ≡ (1−

√
2)2 (mod 4) .

Since qj ramify in K/k0 , (αj) is the square of an ideal of K . Therefore, by Proposition 2.6, K(
√
α∗
j )/K is

an unramified extension. We similarly proceed for the other cases of xj and yj .

Note that, by Lemma 2.1, δK/k0
= 4a

√
2 , so the prime ideals of k0 which ramify in K are the prime

divisors of a in k0 and the prime ideal (
√
2) . Therefore, r2(∆/K∗2) = n+m . Hence, we show as in the proofs

of the previous theorems that the set:

B = {q∗1 , q∗2 , . . . , q∗n, α∗
1, α

∗
2, . . . , α

∗
m}

is a representation of ∆/K∗2 . Finally, we get:

E = K(
√
q1∗,

√
q2∗, . . . ,

√
qn∗,

√
α1

∗,
√
α2

∗, . . . ,
√
αm

∗),
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which completes the proof. 2

We close this section with some numerical examples.

Examples

1. Theorem 4.5: (the case a ≡ 3 (mod 4)). Let K = Q(
√

−42427(5 + 2
√
5) ) = Q(

√
−42427(2 +

√
5)
√
5 ) .

We have p = 5 ≡ 5 (mod 8) , ε5 = 2+
√
5 is the fundamental unit of Q(

√
5) , 42427 = 7×11×19×29 ≡

3 (mod 4) and ( 57 ) = −1 , ( 5
11 ) = ( 5

19 ) = ( 5
29 ) = 1 , then n = 4 and m = 3 . Thus, r2(∆/K∗2)

= n + m + 1 = 8. As 11 = 42 − 5 , 19 = 82 − 5 × 32 and 29 = 72 − 5 × 22 , it follows that
α1 = 4+

√
5, α2 = 8+3

√
5 and α3 = 7+2

√
5 , so α∗

1 = 5+4
√
5 , α∗

2 = −(15+8
√
5) and α∗

3 = 7+2
√
5 .

Hence,
E = K(

√
−3,

√
−7,

√
−11,

√
−19,

√
29,
√
α∗
1,
√
α∗
2,
√
α∗
3)

is the Hilbert genus fields of K .

2. Theorem 4.6: (the case a ≡ 1 (mod 4)). Let K = Q(
√

−4199ε73
√
73 ) , we have: 73 ≡ 1 (mod 8) ,

4199 = 13× 17× 19 ≡ 1 (mod 4) , ( 7313 ) = ( 7317 ) =−1 and ( 7319 ) = 1. Thus, n = 3,m = 1 . Therefore,

r2(∆/K∗2) = n+m+ 2=6.
As 19 = 262 + 3

√
73 , then α1 = 26 + 3

√
73 and α∗

1 = 219 + 26
√
73 . Hence, the Hilbert genus fields

of K is:

E = K(
√
−1,

√
13,

√
−17,

√
−19,

√
ε73,

√
219 + 26

√
73),

where ε73 is the fundamental unit of Q(
√
73) .

3. Theorem 4.7: (the case p = 2). Let K = Q(
√

595(1 +
√
2)
√
2 ) . We have 595 = 7× 17× 5 , ( 25 ) = −1

and ( 27 ) = ( 2
17 ) = 1 . Then r2(∆/K∗2) = n + m = 3 + 2 = 5 , by 7 ≡ 7 (mod 8) , 17 ≡ 1 (mod 8) ,

7 = 32−2×12 and 17 = 72−2×42 . So α1 = 3+1
√
2, α2 = 7+4

√
2 , α∗

1 = (1+
√
2)(3+

√
2) = 5+4

√
2

and α∗
2 = −(7 + 4

√
2) . Hence, the Hilbert genus field of K is:

E = K(
√
5,
√
−7,

√
17,

√
5 + 4

√
2,

√
−(7 + 4

√
2)).

.
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