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Abstract: We formulate initial value problems for delay difference equations in Banach spaces as fixed-point problems
in sequence spaces. By choosing appropriate sequence spaces various types of attractivity can be described. This
allows us to establish global attractivity by means of fixed-point results. Finally, we provide an application to delay
integrodifference equations in the space of continuous functions over a compact domain.
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1. Introduction
Delay difference equations have become a popular topic in dynamical systems. There are many applications of
delay difference equations as models in mathematical life science, e.g., population models. For example, [5, 7]
consider difference equations where solutions are frequently real-valued. The work of [15] contains several other
applications to social science models. However, recent applications also involve spatial effects such as dispersal.
This requires attractivity conditions valid for problems in general Banach spaces.
In [11, 12] linear and nonlinear delay difference equations are considered as operator equations in a separable
Hilbert space, in particular, the space and subspace of square summable sequences. This functional analytic
approach has been applied to investigate the asymptotic behaviour of delay difference equations by applying
fixed-point theorem for holomorphic mappings. While the topology of the considered sequence spaces is given
by an inner product, [13] consider spaces of convergent or exponentially bounded sequences. Attractivity
properties are obtained by showing the well-definedness of a nonlinear operator on an ambient space and using
the contraction mapping principle, which provide assumptions guaranteeing the existence of fixed-points.
In this paper, we extend results from [13] and formulate initial value problems for delay difference equations as
fixed point problems. We establish attractivity properties of difference equations on Banach spaces of infinite
sequences. These difference equations involve finite delays. Three different norms are considered on the base
Banach space. Both explicit and implicit difference equations are investigated, the latter requiring a fixed point
argument to establish the existence and uniqueness of solutions. These results are then applied to general
integrodifference equations and illustrated with two examples.
In order to obtain global attractivity, we discuss several spaces of sequences converging to zero.
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Let X be a Banach space and ℓd(X) , d ∈ N0 , the space of all sequences (Φt)t≥−d with values Φt ∈ X for all
t ≥ −d . In detail we consider the space of

• ω -bounded sequences ℓ∞ω (X) := {Φ ∈ ℓd(X) : supt≥−d ω
−1
t ∥Φt∥ < ∞} with ωt > 0 , which allows us to

capture various form of decay to 0 and even boundedness for the limiting case ωt ≡ 1 ,

• zero convergent sequences c0(X) := {Φ ∈ ℓd(X) : limt→∞ ∥Φt∥ = 0} ,

• p -summable sequences ℓp(X) := {Φ ∈ ℓd(X) :
∑

t≥−d ∥Φt∥p < ∞} , where elements allow us to describe
a subexponential decay to 0 .

A particularly relevant special case is given in terms of integrodifference equations, see [8]. Our abstract theory
can be applied to delay integrodifference equations in Banach spaces of continuous functions over a compact
domain Ω . Integrodifference equations are used in theoretical ecology to model growth and spatial dispersal of
species living in a habitat Ω . In the following, we consider integrodifference equations given in implicit form by

ut+1(x) =

∫
Ω

ft(x, y, ut(x), ut+1(y), ut(y), . . . , ut−d(y))dy + ht(x),

t ∈ N0 , where ut is a real or vector valued continuous function, the kernel ft and the inhomogeneity ht are
continuous and Ω ⊆ Rκ is a compact domain. The inhomogeneity function ht is an external increase in the
population. This class of problems contains three relevant special cases:

i) the continuous functions ft depend on x, ut(x) only. This leads to the explicit spatial difference equations

ut+1(x) =

∫
Ω

ft(x, ut(x))dy + ht(x) = λκ(Ω)ft(x, ut(x)) + ht(x),

which model sedentary populations [9], where λκ(Ω) denotes the Lebesgue measure of Ω ,

ii) the continuous functions ft depend on x, y, ut(y) only. This leads us to the explicit integrodifference
equations

ut+1(x) =

∫
Ω

ft(x, y, ut(y))dy + ht(x),

which model dispersive populations. For background, see [9],

iii) the continuous functions ft depend on x, y, ut+1(y) only. This leads us to the nonlinear Urysohn integral
equation

ut+1(x) =

∫
Ω

ft(x, y, ut+1(y))dy + ht(x);

for background see [10, 16].

These special cases illustrate how classical iterative methods for the solution of nonlinear Urysohn integral
equations extend to more contemporary problems related to the long-term behavior of nonautonomous inte-
grodifference equations.

1739



KALKAN/Turk J Math

In order to illustrate our results we use appropriate discretisation to replace the integral equations by the
Nyström method with trapezoidal quadrature rule, for instance, see [2, 14]. This method is also used in [6],
where simulations are given for pullback and forward attractors of contractive integrodifference equations.
The contents of this paper are as follows: In Section 2, we first establish the necessary terminology concerning
attractivity notions and the required operator settings. Associate initial value problems for delay difference
equations are formulated in this section as fixed-point problems using an operator GF . We show the well-
definedness of this operator in the appropriate sequence spaces. This allows us to apply a variant of the Banach
contraction principle to obtain global attractivity. Followed by that, Section 3 addresses the related notions
for integrodifference equations of Urysohn type and presents an application of our abstract theory. Finally,
we provide two examples, namely the delay Ricker and the delay Beverton–Holt integrodifference equation,
including numerical simulations.

Notation. Now we provide some standard notions. Let N0 := {0, 1, 2, ...} be the set of nonnegative integers.
Let Ω be a compact and nonempty set in Rκ , κ ∈ N . Consider a Banach space X with ∥ · ∥ and a closed
subset D ⊆ X containing 0 throughout. Writing Y for another Banach space, the space of linear bounded
mappings between X and Y is L(X,Y ) with norm ∥ · ∥L , we abbreviate L(X) := L(X,X) . We denote the
open ball with center x ∈ X and radius ρ > 0 as Bρ(x) .

Sequence spaces. Let ℓd(X) := {(Φt)t≥−d : Φt ∈ X for all t ≥ −d} , d ∈ N0 , denote the linear space of all
sequences Φ = (Φt)t≥−d in X . Moreover, we define the subset ℓd(D) := {(Φt)t≥−d : Φt ∈ D for all t ≥ −d} .
A real sequence ω = (ωt)t≥−d with positive values is called a weight sequence, if

Υ(ω) := sup
t≥−d

ωt

ωt+1
< ∞.

With the positive sequence ω , we define the Banach space of ω -bounded sequences

ℓ∞ω (X) = {Φ ∈ ℓd(X) : sup
t≥−d

ω−1
t ∥Φt∥ < ∞},

with norm
∥Φ∥ℓ∞ω (X) := sup

t≥−d
ω−1
t ∥Φt∥

and the closed subset
ℓ∞ω (D) := {Φ ∈ ℓ∞ω (X) : Φt ∈ D for all t ≥ −d}.

For simplicity we write ∥ · ∥ω instead of ∥ · ∥ℓ∞ω (X) . Note that ℓ∞ω (X) coincides with the bounded sequences for
ωt ≡ 1 . Furthermore consider the Banach space of sequences converging to zero

c0(X) = {Φ ∈ ℓd(X) : lim
t→∞

∥Φt∥ = 0}

as a normed subspace of ℓ∞1 (X) , i.e. with the norm ∥Φ∥0 := supt≥−d ∥Φt∥ and the closed subset

c0(D) := {Φ ∈ c0(X) : Φt ∈ D for all t ≥ −d}.
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With a real p ≥ 1 we define the Banach spaces of p -summable sequences

ℓp(X) = {Φ ∈ ℓd(X) :
∑
t≥−d

∥Φt∥p < ∞},

and the norm

∥Φ∥ℓp(X) :=

( ∑
t≥−d

∥Φt∥p
)1/p

;

where we usually write ∥ · ∥p rather than ∥ · ∥ℓp(X) . Again we abbreviate the closed subset

ℓp(D) := {Φ ∈ ℓp(X) : Φt ∈ D for all t ≥ −d}.

It is clear that ℓp(D) ⊆ c0(D) .

Example 1.1 (weight sequences) Consider the sequence ω defined by ωt := γt with γ > 0 . Then Υ(ω) =

supt∈N0

1
γ < ∞ and thus the sequence ω is a weight sequence. If we consider the sequence ω defined by

ωt := γt2 , then we have Υ(ω) = supt∈N0

1
γ2t+1 . This exists if and only if γ ≥ 1 . Hence, we obtain a weight

sequence for γ ≥ 1 only. Also polynomial sequences (in t) are weight sequences, if the coefficients are positive.

The following proposition enables us to prove our results. It is a variant of the Banach contraction principle [4,
p.10, (1.1) Theorem].

Proposition 1.2 (uniform contraction principle) Suppose (Y, dY ) is a complete metric space and (Z, dZ)

is a metric space. If there exist L ∈ [0, 1) and λ ≥ 0 such that G : Y × Z → Y satisfies

i) dY (G(y, z), G(ȳ, z)) ≤ LdY (y, ȳ)

ii) dY (G(y, z), G(y, z̄)) ≤ λdZ(z, z̄)

for all y, ȳ ∈ Y, z, z̄ ∈ Z , then the following holds

a) there exists a unique function φ : Z → Y satisfying G(φ(z), z) ≡ φ(z) on Z .

b) dY (φ(z), φ(z̄)) ≤ λ
1−LdZ(z, z̄) for all z, z̄ ∈ Z .

Proof a) The existence of a unique fixed-point function φ : Z → Y is an immediate consequence of the
Banach contraction principle [4, p.10, (1.1) Theorem].

b) For all z, z̄ ∈ Z the triangle inequality yields

dY (φ(z), φ(z̄)) = dY (G(φ(z), z), G(φ(z̄), z̄))

≤ dY (G(φ(z), z), G(φ(z), z̄)) + dY (G(φ(z), z̄), G(φ(z̄), z̄))

i)

≤ dY (G(φ(z), z), G(φ(z), z̄)) + LdY (φ(z), φ(z̄))
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and consequently L ∈ [0, 1) implies

dY (φ(z), φ(z̄)) ≤
1

1− L
dY (G(φ(z), z), G(φ(z), z̄))

ii)

≤ λ

1− L
dZ(z, z̄).

This is the claim. 2

2. Delay difference equations
Consider an abstract implicit delay difference equation of the following form

ut+1 = Ft(ut+1, ut, ut−1, . . . , ut−d), (2.1)

with right-hand side Ft : D
d+2 → D , t ≥ 0 , d ∈ N0 and the initial conditions

u0 = ξ0, u−1 = ξ1, . . . , u−d = ξd (2.2)

with initial values ξ0, · · · , ξd ∈ D . A forward solution to (2.1) is a sequence Φ = (Φt)t≥−d in D satisfying

Φt+1 ≡ Ft(Φt+1,Φt,Φt−1, . . . ,Φt−d)

for all t ≥ 0 . In case Φ0 = ξ0,Φ−1 = ξ1, . . . ,Φ−d = ξd holds, we say that Φ solves the initial value problem
(2.1), (2.2). In addition, (2.1) is called well-posed on D , if for all ξ0, ξ1, . . . , ξd ∈ D , there exists a unique
forward solution of (2.1), (2.2). Note that the continuous dependence on the initial condition will be a part of
our result below.
Let us write φ(ξ0, ξ1, . . . , ξd) for the general solution of (2.1), i.e. the unique forward solution of the above
initial value problem.

Attractivity notions. Let Y be a subspace of ℓd(D) . We say a delay difference equation (2.1) is Y -attractive,
if φ(ξ0, ξ1, . . . , ξd) ∈ Y holds for all initial values ξ0, ξ1, . . . , ξd ∈ D . Note that, in case Y ⊆ c0(X) , the solutions
actually converge to 0 as t → ∞ .

Operator setting We introduce the operators:

• the linear embedding operator E : Xd+1 → ℓd(X) defined by

E(ξ0, ξ1, . . . , ξd) := (ξd, . . . , ξ0, 0, 0, . . . ),

• the linear right shift operator S : c0(X) → ℓd(X) defined by

SΦ := (0,Φ0,Φ1,Φ2, . . . ),

• the nonlinear substitution operator FF : ℓd(D) → c0(D) defined by

FF(Φ) := (Ft(Φt+1,Φt, . . . ,Φt−d))t∈N0
,
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and GF : ℓd(D)×Dd+1 → ℓd(D) given by

GF(Φ, ξ0, . . . , ξd) := E(ξ0, . . . , ξd) + Sd+1FF(Φ). (2.3)

This brings us to the following almost trivial but central observation:

Theorem 2.1 Let ξ0, . . . , ξd ∈ D . A sequence Φ ∈ ℓd(D) solves the initial value problem (2.1), (2.2) if and
only if GF(Φ, ξ0, . . . , ξd) = Φ .

Proof Let ξ0, . . . , ξd ∈ D . If Φ ∈ ℓd(D) solves (2.1), (2.2), then

Φ−d

...
Φ0

Φ1

Φ2

...


=



ξd
...
ξ0

F0(Φ1,Φ0, . . . ,Φ−d)
F1(Φ2,Φ1, . . . ,Φ−d+1)

...


= E(ξ0, . . . , ξd) + Sd+1FF(Φ)

and conversely. 2

Hypothesis. We suppose the right-hand side Ft of (2.1) satisfies the assumption

(A) for all t ≥ 0 there exists a real Lt ≥ 0 such that

∥Ft(u1, u0, . . . , u−d)− Ft(ū1, ū0, . . . , ū−d)∥

≤ Lt∥(u1, u0, . . . , u−d)− (ū1, ū0, . . . , ū−d)∥

for all u1, u0, . . . , u−d, ū1, ū0, . . . , ū−d ∈ D .

In the following subsections we compute the operator norms which we use in order to establish Lipschitz
conditions on the operators GF in respective sequence spaces. This enables us to solve GF(Φ, ξ0, . . . , ξd) = Φ ,
for instance using Proposition 1.2.

2.1. Attractivity on ℓ∞ω

In this subsection we equip Xd+1 with the maximum norm ∥x∥ = max0≤i≤d ∥xi∥ , where we use the component
notation x = (x0, . . . , xd) .

Lemma 2.2 One has E ∈ L(Xd+1, ℓ∞ω (X)) and S ∈ L(ℓ∞ω (X)) with

i) ∥E∥L ≤ max{ω−1
0 , . . . , ω−1

−d} ,

ii) ∥Sd+1∥L ≤ Υ(ω) .

Proof We compute the operator norm of E and S .
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i) Let ξ0, . . . , ξd ∈ X . One has

∥E(ξ0, . . . , ξd)t∥ω−1
t ≤ max{ω−1

0 , . . . , ω−1
−d}∥(ξ0, . . . , ξd)∥

for all t ≥ −d and this implies

∥E(ξ0, . . . , ξd)∥ω ≤ max{ω−1
0 , . . . , ω−1

−d} max
0≤i≤d

∥ξi∥.

Thus, we get E ∈ L(Xd+1, ℓ∞ω (X)) with

∥E∥L ≤ max{ω−1
0 , . . . , ω−1

−d}.

ii) Let Φ ∈ ℓ∞ω (X) . One has

∥(Sd+1Φ)t∥ω−1
t =

{
0, −d ≤ t ≤ 0,

ω−1
t+1∥Φt∥, t > 0

≤ Υ(ω)

{
0, −d ≤ t ≤ 0,

ω−1
t ∥Φt∥, t > 0

≤ Υ(ω)∥Φ∥ω

for all t ≥ −d . This implies ii) .

This shows the lemma. 2

Hypothesis. We suppose that the assumption (A) holds with

(B) L̃ := supt≥0 Lt max{ωt+1

ωt
, 1, ωt−1

ωt
, . . . , ωt−d

ωt
} < ∞.

Lemma 2.3 (Lipschitz condition of FF ) If the assumption (B) holds, then one has

FF(Φ)− FF(Φ̄) ∈ ℓ∞ω (X) with ∥FF(Φ)− FF(Φ̄)∥ω ≤ L̃ ∥Φ− Φ̄∥ω

for all Φ, Φ̄ ∈ ℓ∞ω (D).

Proof Using the assumption (B) we have

∥FF(Φ)t − FF(Φ̄)t∥ω−1
t = ∥Ft(Φt+1,Φt, . . . ,Φt−d)− Ft(Φ̄t+1, Φ̄t, . . . , Φ̄t−d)∥ω−1

t

≤ Lt||(Φt+1,Φt, . . . ,Φt−d)− (Φ̄t+1, Φ̄t, . . . , Φ̄t−d)∥ω−1
t

= Lt max{∥Φt+1 − Φ̄t+1∥ω−1
t , ∥Φt − Φ̄t∥ω−1

t , . . . , ∥Φt−d − Φ̄t−d∥ω−1
t }

= Lt max{||Φt+1 − Φ̄t+1∥ω−1
t+1

ωt+1

ωt
, ∥Φt − Φ̄t∥ω−1

t , . . . , ∥Φt−d − Φ̄t−d∥ω−1
t−d

ωt−d

ωt
}

≤ Lt max{ωt+1

ωt
, 1,

ωt−1

ωt
, . . . ,

ωt−d

ωt
}∥Φ− Φ̄∥ω

≤ L̃ ∥Φ− Φ̄∥ω

for all t ≥ 0 and Φ, Φ̄ ∈ ℓ∞ω (D) . Passing over the supremum over t ≥ 0 yields the claim. 2
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Lemma 2.4 (Lipschitz condition of GF ) Let Φ, Φ̄ ∈ ℓ∞ω (D) and ξ0, . . . , ξd, ξ̄0, . . . , ξ̄d ∈ D . If the assump-
tions of Lemma 2.3 hold with a weight sequence ω , then

GF(Φ, ξ0, . . . , ξd)−GF(Φ̄, ξ0, . . . , ξd) ∈ ℓ∞ω (X),

GF(Φ, ξ0, . . . , ξd)−GF(Φ, ξ̄0, . . . , ξ̄d) ∈ ℓ∞ω (X)

with

∥GF(Φ, ξ0, . . . , ξd)−GF(Φ̄, ξ0, . . . , ξd)∥ω ≤ Υ(ω)L̃ ∥Φ− Φ̄∥ω,

∥GF(Φ, ξ0, . . . , ξd)−GF(Φ, ξ̄0, . . . , ξ̄d)∥ω ≤ max{ω−1
0 , . . . , ω−1

−d} max
0≤i≤d

∥ξi − ξ̄i∥.

Proof Let Φ, Φ̄ ∈ ℓ∞ω (D) and ξ0, . . . , ξd ∈ D . One has with (2.3) that

GF(Φ, ξ0, . . . , ξd)−GF(Φ̄, ξ0, . . . , ξd) = Sd+1FF(Φ)− Sd+1FF(Φ̄)

Using Lemma 2.3 and Lemma 2.2 ii) yields

∥GF(Φ, ξ0, . . . , ξd)−GF(Φ̄, ξ0, . . . , ξd)∥ω ≤ Υ(ω)L̃ ∥Φ− Φ̄∥ω.

Moreover, for Φ ∈ ℓ∞ω (D) and ξ0, . . . , ξd , ξ̄0, . . . , ξ̄d ∈ D one has

∥GF(Φ, ξ0, . . . , ξd)−GF(Φ, ξ̄0, . . . , ξ̄d)∥ω = ∥E(ξ0, . . . , ξd)− E(ξ̄0, . . . , ξ̄d)∥

≤ max{ω−1
0 , . . . , ω−1

−d} max
0≤i≤d

∥ξi − ξ̄i∥.

This completes the proof of the lemma. 2

Theorem 2.5 (ℓ∞ω -attraction) Let ω be a weight sequence and suppose that the right-hand side Ft : D
d+2 →

D of the delay difference equation (2.1) satisfies (B) . If

Υ(ω)L̃ < 1

and FF(0) ∈ ℓ∞ω (D) , then the following holds for all ξ0, . . . , ξd ∈ D :

(a) The delay difference equation (2.1) is well-posed.

(b) φ(ξ0, . . . , ξd) ∈ ℓ∞ω (D)

(c) The inequality

∥φ(ξ0, . . . , ξd)t − φ(ξ̄0, . . . , ξ̄d)t∥ ≤
max{ω−1

0 , . . . , ω−1
−d}

1−Υ(ω)L̃
max
0≤i≤d

∥ξi − ξ̄i∥ωt

holds for all t ≥ −d , ξ̄0, . . . , ξ̄d ∈ D .

Proof Let Φ, Φ̄ ∈ ℓ∞ω (D) and ξ0, . . . , ξd , ξ̄0, . . . , ξ̄d ∈ D .
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(a) Claim: We first show the inclusion GF(Φ, ξ0, . . . , ξd) ∈ ℓ∞ω (D) . By definition (2.3) and the assumption
FF(0) ∈ ℓ∞ω (D) ,

GF(0, ξ0, . . . , ξd) = E(ξ0, . . . , ξd) + Sd+1FF(0) ∈ ℓ∞ω (D)

holds, thanks to Lemma 2.3 we have

GF(Φ, ξ0, . . . , ξd)−GF(0, ξ0, . . . , ξd) = Sd+1(FF(Φ)− FF(0)) ∈ ℓ∞ω (D),

and consequently

GF(Φ, ξ0, . . . , ξd) = GF(Φ, ξ0, . . . , ξd)−GF(0, ξ0, . . . , ξd) +GF(0, ξ0, . . . , ξd) ∈ ℓ∞ω (D).

(b) Next we apply Proposition 1.2 with the complete metric spaces

Y := ℓ∞ω (D), dY (Φ, Φ̄) := ∥Φ− Φ̄∥ω,

Z := Dd+1, dZ(ξ, ξ̄) := max
0≤i≤d

∥ξi − ξ̄i∥

and the mapping G = GF : Y ×Z → Y . Due to Lemma 2.4, the operator GF(·, ξ0, . . . , ξd) has contraction
constant L := Υ(ω)L̃ < 1 , while GF(Φ, ·) has the Lipschitz constant λ := max{ω−1

0 , . . . , ω−1
−d} . Now, the

assertion follows from Proposition 1.2 yielding a unique fixed point φ(ξ0, . . . , ξd) ∈ Y of GF(Φ, ·) , which
by Theorem 2.1 is the desired solution in ℓ∞ω (D) . Thus, (a) and (b) hold.

(c) With Lemma 2.4 again one computes

∥φ(ξ0, . . . , ξd)t − φ(ξ̄0, . . . , ξ̄d)t|∥ω−1
t ≤ dY (φ(ξ0, . . . , ξd), φ(ξ̄0, . . . , ξ̄d))

≤ λ

1− L
max
0≤i≤d

∥ξi − ξ̄i∥

for all t ≥ −d . This implies the assertion (c) .

This shows the theorem. 2

Corollary 2.6 If the assumption B holds with supt≥0 L̃ < 1 and (Ft(0, . . . , 0))t≥0 is a bounded sequence, then
the unique forward solution of (2.1), (2.2) is bounded for all ξ0, . . . , ξd ∈ D .

Proof Since ℓ∞1 (D) is the set of the bounded sequences in D , the assertion follows from Theorem 2.5 with
ωt ≡ 1 . 2

2.2. Attractivity on c0

On Xd+1 we use the same maximum norm as in the previous subsection.

Lemma 2.7 One has E ∈ L(Xd+1, c0(X)) and S ∈ L(c0(X)) with

i) ∥E∥L = 1 ,

ii) ∥S∥L = 1 .
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Proof We compute the operator norm of E and S .

i) For all ξ0, . . . , ξd ∈ X one has

∥E(ξ0, . . . , ξd)∥0 = sup
t≥−d

∥E(ξ0, . . . , ξd)t∥ = max{∥ξ0∥, . . . , ∥ξd∥} = ∥(ξ0, . . . , ξd)∥

and this implies the claim.

ii) Given Φ ∈ c0(X) it holds
∥SΦ∥0 = sup

t≥0
∥Φt∥ = ∥Φ∥0,

and, thus, we have S ∈ L(c0(X)) with ∥S∥L = 1.

2

Lemma 2.8 (Lipschitz condition on FF ) If the assumption (B) holds with L̃ := supt≥0 Lt < ∞, then one
has

FF(Φ)− FF(Φ̄) ∈ c0(X) with ∥FF(Φ)− FF(Φ̄)∥0 ≤ L̃ ∥Φ− Φ̄∥0

for all Φ, Φ̄ ∈ c0(D).

Proof Using the assumption (B) with L̃ = supt≥0 Lt < ∞, we have

∥FF(Φ)t − FF(Φ̄)t∥ = ∥Ft(Φt+1,Φt, . . . ,Φt−d)− Ft(Φ̄t+1, Φ̄t, . . . , Φ̄t−d)∥

≤ Lt ∥(Φd+1,Φd, . . . ,Φ0)− (Φ̄d+1, Φ̄d, . . . , Φ̄0)||

≤ Lt max{∥Φd+1 − Φ̄d+1∥, ∥Φd − Φ̄d∥, . . . , ||Φ0 − Φ̄0∥}

≤ Lt ∥Φ− Φ̄∥0

= L̃ ∥Φ− Φ̄∥0

for all t ≥ 0 and Φ, Φ̄ ∈ c0(D) . Taking the supremum over t ≥ 0 of both sides yields the result immediately.
2

Lemma 2.9 (Lipschitz condition of GF ) Let Φ, Φ̄ ∈ c0(D) and ξ0, . . . , ξd, ξ̄0, . . . , ξ̄d ∈ D . If the assump-
tions of Lemma 2.8 hold, then

GF(Φ, ξ0, . . . , ξd)−GF(Φ̄, ξ0, . . . , ξd) ∈ c0(X),

GF(Φ, ξ0, . . . , ξd)−GF(Φ, ξ̄0, . . . , ξ̄d) ∈ c0(X)

with

∥(GF(Φ, ξ0, . . . , ξd)−GF(Φ̄, ξ0, . . . , ξd)∥0 ≤ L̃ ∥Φ− Φ̄∥0,

∥GF(Φ, ξ0, . . . , ξd)−GF(Φ, ξ̄0, . . . , ξ̄d)||0 ≤ max
0≤i≤d

∥ξi − ξ̄i∥.
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Proof Let Φ, Φ̄ ∈ c0(D) and ξ0, . . . , ξd ∈ D . One has with (2.3) that

GF(Φ, ξ0, . . . , ξd)−GF(Φ̄, ξ0, . . . , ξd) = Sd+1(FF(Φ)− FF(Φ̄)).

Using Lemma 2.8 and Lemma 2.7 ii) yields

∥GF(Φ, ξ0, . . . , ξd)−GF(Φ̄, ξ0, . . . , ξd)∥0 ≤ L̃ ∥Φ− Φ̄||0.

Moreover, for Φ, Φ̄ ∈ c0(D) and ξ0, . . . , ξd, ξ̄0, . . . , ξ̄d ∈ D one has

∥GF(Φ, ξ0, . . . , ξd)−GF(Φ, ξ̄0, . . . , ξ̄d)∥0 = ∥E(ξ0, . . . , ξd)− E(ξ̄0, . . . , ξ̄d)∥0

= max
0≤i≤d

∥ξi − ξ̄i∥.

This completes the proof of the lemma. 2

Theorem 2.10 (c0 -attraction) Suppose that the right-hand side Ft : Dd+2 → D of the delay difference
equation (2.1) satisfies (B) with L̃ := supt≥0 Lt < ∞ . If

sup
t≥0

Lt < 1

and FF(0) ∈ c0(D) , then the following holds for all ξ0, . . . , ξd ∈ D :

(a) The delay difference equation (2.1) is well-posed.

(b) φ(ξ0, . . . , ξd) ∈ c0(D)

(c) The inequality

∥φ(ξ0, . . . , ξd)t − φ(ξ̄0, . . . , ξ̄d)t∥ ≤ 1

1− supt≥0 Lt
max
0≤i≤d

∥ξi − ξ̄i∥

holds for all t ≥ −d , ξ̄0, . . . , ξ̄d ∈ D .

Remark 2.11 The assumption supt≥0 Lt < 1 in Theorem 2.10 implies that Ft is a contraction mapping.

Proof For Φ, Φ̄ ∈ c0(D) and ξ0, . . . , ξd , ξ̄0, . . . , ξ̄d ∈ D we proceed as in the proof of Theorem 2.5.

(a) The inclusion GF(Φ, ξ0, . . . , ξd) ∈ c0(D) follows from Lemma 2.8.

(b) Now we apply Proposition 1.2 with the complete metric space

Y := c0(D), dY (Φ, Φ̄) := ∥Φ− Φ̄∥0.

As a result of Lemma 2.9, the operator GF(·, ξ0, . . . , ξd) has Lipschitz constant L := L̃ < 1 and GF(Φ, ·)
possesses the Lipschitz constant λ = 1 . The unique fixed point results from Proposition 1.2. Hence, (a)

and (b) hold.

(c) Due to Lemma 2.9 one obtains

∥φ(ξ0, . . . , ξd)t − φ(ξ̄0, . . . , ξ̄d)t∥ ≤ λ

1− L
max
0≤i≤d

∥ξi − ξ̄i∥

for all t ≥ −d . This implies (c) .

The proof of the theorem is completed. 2
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2.3. Attractivity on ℓp

We handle this case differently to the previous cases, and we now equip the product Xd+1 with the p -norm

∥x∥p =
(∑d

i=0 ∥xi∥p
)1/p , where we assume p ≥ 1 throughout.

Lemma 2.12 One has E ∈ L(Xd+1, ℓp(X)) and S ∈ L(ℓp(X)) with

i) ∥E∥L = 1 ,

ii) ∥S∥L = 1 .

Proof We compute the operator norm of E and S .

i) For ξ0, . . . , ξd ∈ D one has

∥E(ξ0, . . . , ξd)∥pp =

d∑
i=0

∥ξi∥p = ∥(ξ0, . . . , ξd)∥p

and this implies E ∈ L(Xd+1, ℓp(X)) with ∥E∥L = 1.

ii) Given Φ ∈ ℓp(D) one obtains

∥(SΦ)t∥pp =
∑
t≥−d

∥Φt∥p

and hence S ∈ L(ℓp(X)) with ∥S∥L = 1.

2

Lemma 2.13 (Lipschitz condition on FF ) If the assumption (B) holds with L̃ := supt≥0 Lt , then one has

FF(Φ)− FF(Φ̄) ∈ ℓp(X) with ∥FF(Φ)− FF(Φ̄)∥p ≤ L̃(d+ 2)1/p ∥Φ− Φ̄∥p

for all Φ, Φ̄ ∈ ℓp(D).

Proof Using the assumption (B) with L̃ := supt≥0 Lt , we have∑
t≥0

∥FF(Φ)t − FF(Φ̄)t∥p =
∑
t≥0

∥Ft(Φt+1,Φt, . . . ,Φt−d)− Ft(Φ̄t+1, Φ̄t, . . . , Φ̄t−d)∥p

≤
∑
t≥0

Lp
t ∥(Φt+1,Φt, . . . ,Φt−d)− (Φ̄t+1, Φ̄t, . . . , Φ̄t−d)∥p

=
∑
t≥0

Lp
t

t+1∑
i=t−d

∥Φi − Φ̄i∥p

≤ L̃p
∑
t≥0

(
∥Φt−d − Φ̄t−d∥p + . . .+ ∥Φt+1 − Φ̄t+1∥p

)
≤ L̃p(d+ 2)∥Φ− Φ̄∥pp
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and consequently

∥FF(Φ)− FF(Φ̄)∥p ≤ L̃(d+ 2)1/p∥Φ− Φ̄∥p

for all Φ, Φ̄ ∈ ℓp(D) . 2

Lemma 2.14 (Lipschitz condition of GF ) Let Φ, Φ̄ ∈ ℓp(D) and ξ0, . . . , ξd, ξ̄0, . . . , ξ̄d ∈ D . If the assump-
tions of Lemma 2.13 hold, then

GF(Φ, ξ0, . . . , ξd)−GF(Φ̄, ξ0, . . . , ξd) ∈ ℓp(X),

GF(Φ, ξ0, . . . , ξd)−GF(Φ, ξ̄0, . . . , ξ̄d) ∈ ℓp(X)

with

∥GF(Φ, ξ0, . . . , ξd)−GF(Φ̄, ξ0, . . . , ξd)∥p ≤ L̃(d+ 2)1/p ∥Φ− Φ̄∥p,

∥GF(Φ, ξ0, . . . , ξd)−GF(Φ, ξ̄0, . . . , ξ̄d)∥p ≤ ∥ξ − ξ̄∥p.

Proof The proof of this result is similar to the proof of Lemma 2.9 or Lemma 2.4 using our suitable Lemma
2.13 and Lemma 2.12 ii) . 2

Theorem 2.15 (ℓp -attraction) Suppose that the right-hand side Ft : Dd+2 → D of the delay difference
equation (2.1) satisfies (B) with L̃ := supt≥0 Lt . If

(d+ 2)1/p sup
t≥0

Lt < 1

and FF(0) ∈ ℓp(D) , then the following holds for all ξ0, . . . , ξd ∈ D :

(a) The delay difference equation (2.1) is well-posed.

(b) φ(ξ0, . . . , ξd) ∈ ℓp(D)

(c) The inequality

∥φ(ξ0, . . . , ξd)t − φ(ξ̄0, . . . , ξ̄d)t∥ ≤ 1

1− (d+ 2)1/p supt≥0 Lt
∥ξ − ξ̄∥p

holds for all t ≥ −d , ξ̄0, . . . , ξ̄d ∈ D .

Remark 2.16 Our assumption (2 + d)1/p supt≥0 Lt < 1 covers the worst possible case. Indeed, as the alert

reader concludes from the proof of Lemma 2.13, the constant (2+ d)1/p can be replaced by n1/p , where n is the
number of variables in {ut+1, ut, . . . , ut−d} on which Ft actually depends.

Proof Given Φ, Φ̄ ∈ ℓp(D) and ξ0, . . . , ξd , ξ̄0, . . . , ξ̄d ∈ D we again proceed as in the proof of Theorem 2.5.

(a) The inclusion GF(Φ, ξ0, . . . , ξd) ∈ ℓp(D) results from Lemma 2.13
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(b) Now apply Proposition 1.2 with the complete metric space

Y := ℓp(D), dY (Φ, Φ̄) := ∥Φ− Φ̄∥p.

Due to 2.14 the operator GF(·, ξ0, . . . , ξd) has Lipschitz constant L := (d + 2)1/p supt≥0 Lt < 1 and
GF(Φ, ·) possesses the Lipschitz constant λ = 1 . Again, the assertion follows from Proposition 1.2.

(c) The inequality

∥φ(ξ0, . . . , ξd)t − φ(ξ̄0, . . . , ξ̄d)t∥ ≤ λ

1− L

( d∑
i=0

∥ξi − ξ̄i∥p
)1/p

holds thanks to Lemma 2.14.

This establishes the proof. 2

3. Integrodifference equations

This section applies the abstract theory above to concrete integrodifference equations (shortly IDEs). We study
a class of IDEs involving Hammerstein integral operators with Ricker and Beverton–Holt growth functions
satisfying a global Lipschitz condition and being defined on the space of continuous functions over a compact
domain.
First, we deal with scalar delay integrodifference equations of Urysohn type defined on the space of all continuous
functions C(Ω) over a compact domain Ω ⊆ Rκ equipped with the sup-norm ∥u∥ := supx∈Ω |u(x)| . Moreover,
given a closed interval I ∈ {R+,R} we introduce the closed set D := {u ∈ C(Ω) | u(x) ∈ I for all x ∈ Ω} .
We consider nonautonomous delay integrodifference equations of form (2.1) given by

ut+1(x) =

∫
Ω

ft(x, y, ut+1(y), ut(y), . . . , ut−d(y))dy + ht(x) (3.1)

with right-hand side defined as

Ft(u1, u0, . . . , u−d) :=

∫
Ω

ft(·, y, ut+1(y), ut(y), . . . , ut−d(y))dy + ht

under the following standing assumptions for all t ∈ N0 :

• the kernel function ft : Ω
2 × Id+2 → I is continuous,

• the inhomogeneity ht : Ω → I is continuous,

• there exists a continuous function lt : Ω
2 → R+ such that for all x, y ∈ Ω and

z1, z0, . . . , z−d, z̄1, z̄0, . . . , z̄−d ∈ I , one has

|ft(x, y, z1, z0, . . . , z−d)− ft(x, y, z̄1, z̄0, . . . , z̄−d)| ≤ lt(x, y) max
−d≤i≤1

|zi − z̄i|

• and additionally ft(x, y, 0, . . . , 0) = 0 for all x, y ∈ Ω .
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Lemma 3.1 Under the above assumptions, the Urysohn integral operator Ft : D
d+2 → D is well-defined and

satisfies

∥Ft(u1, u0, . . . , u−d)− Ft(ū1, ū0, . . . , ū−d)∥ ≤ sup
x∈Ω

∫
Ω

lt(x, y)dy max
−d≤i≤1

∥ui − ūi∥

for all t ∈ N0 and u1, u0, . . . , u−d, ū1, ū0, . . . , ū−d ∈ D .

Proof Let t ∈ N0 . Using the above assumptions, we compute the Lipschitz constant of the integral operator
Ft as follows:

|Ft(u1, u0, · · · , u−d)(x)− Ft(ū1, ū0, · · · , ū−d)(x)|

≤
∫
Ω

|ft(x, y, u1(y), u0(y), . . . , u−d(y))− ft(x, y, ū1(y), ū0(y), . . . , ū−d(y))|dy

≤
∫
Ω

lt(x, y) max
−d≤i≤1

|ui(y)− ūi(y)|dy

≤
∫
Ω

lt(x, y)dy max
−d≤i≤1

∥ui − ūi∥

≤ sup
x∈Ω

∫
Ω

lt(x, y)dy max
−d≤i≤1

∥ui − ūi∥,

and passing to the supremum over all x ∈ Ω yields the claim. 2

Proposition 3.2 (ℓ∞ω -attraction for IDEs) Under the above assumptions with

i) Υ(ω) supt≥0 max{ωt+1

ωt
, 1, ωt−1

ωt
, . . . , ωt−d

ωt
} supx∈Ω

∫
Ω
lt(x, y)dy < 1 and

ii) supt≥0 supx∈Ω |ht(x)|ω−1
t < ∞ ,

the assertions of Theorem 2.5 hold for the solutions of IDEs (3.1).

Proof With the above assumptions one has Lt = supx∈Ω

∫
Ω
lt(x, y)dy and

FF(0)t = Ft(0, · · · , 0) = ht ∈ C(Ω)

and Theorem 2.5 applies. 2

Proposition 3.3 (c0 -attraction for IDEs) Under the above assumptions with

i) supt≥0 supx∈Ω

∫
Ω
lt(x, y)dy < 1 and

ii) limt→∞ supx∈Ω |ht(x)| = 0 ,

the assertions of Theorem 2.10 hold for the solutions of IDEs (3.1).

Proof The proof follows as in Proposition 3.2, and Theorem 2.10 applies. 2

Proposition 3.4 (ℓp -attraction for IDEs) Under the above assumptions with
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i) (2 + d)1/p supt≥0 Lt < 1 and

ii)
∑∞

t=0 supx∈Ω |ht(x)|p < ∞ ,

the assertions of Theorem 2.15 hold for the solutions of IDEs (3.1).

Proof Thanks to Lemma 3.1 we have

∥Ft(u1, u0, . . . , u−d)− Ft(ū1, ū0, . . . , ū−d)∥ ≤ sup
x∈Ω

∫
Ω

lt(x, y)dy max
−d≤i≤1

∥ui − ūi∥

≤ sup
x∈Ω

∫
Ω

lt(x, y)dy

( 1∑
i=−d

∥ui − ūi∥p
)1/p

for all t ∈ N0 and u1, u0, . . . , u−d, ū1, ū0, . . . , ū−d ∈ D . Given this the proof is akin to Proposition 3.2 and
Theorem 2.15 applies. 2

In the remaining paper we retreat to delay IDEs (3.1) of Hammerstein type, i.e.

Ft(u0, . . . , u−d) :=

∫
Ω

kt(·, y)gt(u0(y), . . . , u−d(y))dy + ht

under the following standing assumptions for all t ∈ N0 :

• the kernel kt : Ω
2 → R is continuous and satisfies supx∈Ω

∫
Ω
|kt(x, y)|dy < ∞,

• ht : Ω
2 → R is continuous,

• there exists a l̃t ≥ 0 such that the growth function gt : I
d+1 → I satisfies

|gt(z0, . . . , z−d)− gt(z̄0, . . . , z̄−d)| ≤ l̃t max
−d≤i≤0

|zi − z̄i|

for all z0, . . . , z−d, z̄0, . . . , z̄−d ∈ I and gt(0, . . . , 0) = 0 .

We provide two concrete examples of such IDEs with Ricker and Beverton–Holt growth functions. Using the
Nyström method with the trapezoidal quadrature rule (having 100 nodes), the solutions to those equations are
illustrated in Figure 1-2.

Example 3.5 (Delay Ricker) The delay IDE with Ricker growth function

ut+1(x) = at

∫ 2

−2

1

2
e−|x−y|ut−d(y)e

−ut−d(y)dy + cos(
πx

4
) (3.2)

fits into our setting with Ω = [−2, 2] , I := R+ , the cone

D = {u ∈ C[−2, 2] : u(x) ≥ 0 for all x ∈ [−2, 2]}

and

Ft(u0, . . . , u−d)(x) := at

∫
Ω

kt(x, y)u−d(y)e
−u−d(y)dy + ht(x),

with
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• the Laplace kernel kt(x, y) :=
1
2e

−|x−y| ,

• the Ricker growth function gt(z0, . . . , z−d) := atz−de
−z−d with positive coefficients at ∈ R ,

• the inhomogeneity ht(x) := cos(πx4 ) being constant in time.

For the Lipschitz constant of the growth function one finds

|gt(z0, . . . , z−d)− gt(z̄0, . . . , z̄−d)| ≤ Cat|z−d − z̄−d|

with C := maxz≥0 ze
−z = e−1 and thus l̃t = e−1at . Hence, for the Lipschitz constant of Ft one has

∥Ft(u0, . . . , u−d)− Ft(ū0, . . . , ū−d)∥ ≤ l̃t sup
x∈Ω

∫
Ω

|kt(x, y)|dy∥u−d − ū−d∥

≤ Lt∥u−d − ū−d∥

with Lt := l̃t supx∈Ω

∫
Ω
|kt(x, y)|dy = e−1at

1−e−2 for all t ∈ N0 . We choose at = 1
2

e1

1−e−2 , then for instance
Proposition 3.2 applies with the weight sequence ωt ≡ 1 and guarantees that all forward solutions are bounded.
In Figure 1 we illustrate the behaviour of a solution to the delay Ricker IDE (3.2) with delay d = 10 or d = 20

and the initial conditions ξt(x) = − t
6x

2 + 13 for t = 0, . . . , 20 , which apparently converges.

Figure 1. The solution φ(ξ0, ξ1, . . . , ξd) to the inhomogeneous delay Ricker IDE (3.2) with d = 10 (left), d = 20 (right)
and constant inhomogeneity ht(x) = cos(πx

4
) exhibiting convergent behaviour.

In the next example we show the delay Beverton–Holt IDE. The delay Beverton–Holt equation without spatial
effects is considered in [3]. Apparently, this model coincides with the classical Beverton–Holt model for
ut−d(y) ≥ 0 . We however wanted to provide a C1 nonlinearity being bounded on R .

Example 3.6 (Delay Beverton–Holt) The delay IDE with Beverton–Holt growth function

ut+1(x) = at

∫ 2

−2

1√
π
e−(x−y)2 ut−d(y)

1 + |ut−d(y)|
dy +

1√
1 + t

sin(
tπx

4
) (3.3)

fits into our setting with Ω = [−2, 2] , I := R , D = C[−2, 2] and
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Ft(u0, . . . , u−d)(x) := at

∫
Ω

kt(x, y)
ut−d(y)

1 + |ut−d(y)|
dy + ht(x),

where

• the Gauss kernel kt(x, y) :=
1√
π
e−(x−y)2 ,

• the Beverton–Holt growth function gt(z0, . . . , z−d) := at
z−d

1+|z−d| with reals at ,

• the inhomogeneity ht(x) :=
1√
1+t

sin( tπx4 ) ,

The Lipschitz constant of the growth function is C := maxz
z

1+|z| = 1 . Therefore, one has lt = |at| and

Lt = lt supx∈Ω

∫ 2

−2
kt(x, y)dy = |at| erf(2) . We choose at = 1

2 erf(2) and depending on the decay behaviour of

(ht)t∈N0
the respective Propositions 3.2–3.4 apply. In Figure 2 we illustrate a solution to the delay Beverton–

Holt IDE (3.3) with delay d = 10 and the initial conditions ξt(x) = t for t = 0, . . . , 10 . The inhomogeneity
ht(x) =

1√
1+t

sin( tπx4 ) fits both into the setting of

• Proposition 3.3 (all solutions tend to 0 as t → ∞), as well as

• Proposition 3.4 (all solutions are p-summable with p > 2); note here that the contractivity condition
(2 + d)1/p supt≥0 Lt < 1 simplifies to supt≥0 Lt < 1 because the growth function depends only on one
variable (see Remark 2.16).

Figure 2. The solution φ(ξ0, ξ1, . . . , ξd) to the delay Beverton–Holt IDE (3.3) with d = 10 and inhomogeneity
ht(x) =

1√
1+t

sin( tπx
4
) .
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