Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/
Research Article

Turk J Math
(2021) 45: 1757 - 1766
© TÜBİTAK
doi:10.3906/mat-2101-103

C_{11}-modules via left exact preradicals

Ramazan YAŞAR* ${ }^{\text {(B) }}$
Ankara Chamber of Industry, 1st Organized Industrial Zone Vocational School, Hacettepe University, Ankara, Turkey

| Received: 23.01.2021 | Accepted/Published Online: 30.05.2021 | Final Version: 27.07 .2021 |
| :--- | :--- | :--- | :--- | :--- |

Abstract

In this article, we study modules with the condition that every image of a submodule under a left exact preradical has a complement which is a direct summand. This new class of modules properly contains the class of C_{11}-modules (and hence also $C S$-modules). Amongst other structural properties, we deal with direct sums and decompositions with respect to the left exact preradicals of this new class of modules. It is obtained a decomposition such that the image of the module itself is a direct summand for the left exact radical, which enjoys the new condition.

Key words: Left exact preradical, complement submodule, Goldie torsion submodule, $C S$-module, C_{11}-module

1. Introduction

Throughout this paper, all rings are associative with identity and all modules are unitary right modules. Let R be a ring and let M be an R-module. A submodule N of M is essential (or large) in M if for every $0 \neq K$ submodule of M, we have $N \cap K \neq 0$. Given a submodule C of M, by a complement (submodule) of C in M, we mean a submodule D of M, maximal with respect to the property $C \cap D=0$. A submodule, which is a complement of a submodule in M is called a complement in M. Let N be a submodule of M. A complement (submodule) K in M is called the closure of N in M provided that N is essentially contained in K. Note that, a closure of a submodule need not be unique. However, if the module is nonsingular then every submodule has a unique-closure (see, $[6,14]$).

Recall that a module is said to be $C S$ (or extending) or said to satisfy the C_{1} condition if every submodule is essential in a direct summand. Equivalently, every complement is a direct summand (see, [4, 14]). Extending modules and their generalizations play an important role in modules and rings. To this end, several generalizations of $C S$ notion have been worked out extensively by many authors (see, for example [1, $5,8-$ $10,12-14]$). This kind of investigations are traced back to the theory of C_{11}-modules as well as C_{11}-rings. A module M is called C_{11}-module (or satisfies C_{11}) if every submodule has a complement in M which is a direct summand of M [9, 10]. In this trend, as the first attempt, Tercan [13] defined $E S$-module notion as a generalization of $C L S$-modules (so, $C S$-modules) in terms of left exact preradicals, for a ring R [13]. M is called an $E S$-module provided that every exact submodule is a direct summand of M. Since left exact preradicals are main tools in this work, it would be better to give some information about them. Recall that a functor r from the category of right R-modules to itself is called a left exact preradical if it has the following

[^0]properties:
(i) $r(M)$ is a submodule of M for every right R-module M,
(ii) $r(N)=N \cap r(M)$ for every submodule N of a right R-module M, and
(iii) $\varphi(r(M)) \subseteq r\left(M^{\prime}\right)$ for every homomorphism $\varphi: M \rightarrow M^{\prime}$, for right R-modules M, M^{\prime}.

Let r be a left exact preradical in the category of R-modules. Amongst foregoing properties, $r\left(M_{1} \oplus\right.$ $\left.M_{2}\right)=r\left(M_{1}\right) \oplus r\left(M_{2}\right)$ holds true for all right R-modules M_{1}, M_{2}. Furthermore, r is called a radical if $r(M / r(M))=0$ for every right R-module M. It is clear that the singular submodule and socle are left exact preradicals, and the second singular submodule (or Goldie torsion submodule) is a radical. For an excellent treatment of left exact preradicals, the reader is referred to [11].

In this paper, first of all we mention some basic information on $E S$-modules and some related modules in literature. Then, we define $r C_{11}$-modules and investigate their structural properties. In particular, we think of direct sums and direct decompositions of such modules for a left exact preradical in the category of right R-modules. We reduce our consideration for a left exact radical whenever we need to have additional properties. Since any result including a left exact preradical in the category of right R-modules constructs a framework, our results can be applied directly to a right module with its fundamental submodules like socle, Goldie torsion submodule, etc.

We use r to signify a left exact preradical in the category of right R-modules. Moreover, let M be a right R-module. Then $N \leq M, S o c M$ and $Z_{2}(M)$ will denote N is a submodule of M, socle of M and second singular submodule (or Goldie torsion submodule) of M, respectively. For any other terminology or unexplained definitions, we refer to $[4,6,11,14,15]$.

2. Some remarks on $E S$-modules

In this section, we deal with basic observations on $E S$-modules and related concepts. Let r be a left exact radical in the category of right R-modules and let M be any R-module. Let us call $M r_{c}$-module if every exact submodule of M is a complement in M. In other words, for every submodule N of $M, r(M / N)=0$ implies that N is a complement in M. For example, if $r=S o c$ then r_{c}-module and C-module definitions coincide (see [5]). Then, we have the following straightforward observation.

Lemma 2.1 If M_{R} is a r_{c}-module with $C S$ property then M is an $E S$-module.
Proof Let N be any exact submodule of M. By hypothesis, N is a complement and hence a direct summand of M.

Modified proof of [5, Proposition 3.11] gives the subsequent general result on r_{c}-modules.

Proposition $2.2 r_{c}$-modules are closed under quotients.
Proof Let M be a r_{c}-module and N a submodule of M. Let us show that M / N is a r_{c}-module. For this aim, assume that there is an exact submodule K / N in M / N, which is not complement in M / N where $N \leq K \leq M$. Then, $r((M / N) /(K / N)) \cong r(M / K)=0$, and there is a submodule L / N in M / N such that K / N is essential in L / N where $K \leq L \leq M$. Since M is an r_{c}-module and $r(M / K)=0, K$ is a complement

YAŞAR/Turk J Math

in M. In consideration of K / N is essential in $L / N, K$ is an essential submodule of L, a contradiction. It follows that M / N is a r_{c}-module.

Corollary 2.3 Suppose that M_{1}, M_{2} are r_{c}-modules with $C S$ property. If M is a direct sum $M_{1} \oplus M_{2}$ of M_{1}, M_{2} such that M_{1} is M_{2}-injective then M is an $E S$-module.

Proof By Lemma 2.1, M_{1} and M_{2} are $E S$-modules. Now [13, Theorem 6] yields that M is an $E S$-module.
It has come to our attention that the following general results in [13, Lemma 4, Theorem 9] has been missed out by the some other authors (see $[1,5]$). It seems that there is no direct way to achieve the latter paper. To this end, it is better to mention these results in [13] without their proofs for preserving the completeness of future works.

Lemma 2.4 ([13, Lemma 4]) Any direct summand of an ES-module is an ES-module.
Theorem 2.5 ([13, Theorem 9]) Let R be a ring and let r be the left exact radical for a stable hereditary torsion theory for the category of right R-modules. Then, a right R-module M is an ES-module if and only if $M=r(M) \oplus M^{\prime}$ for some submodule M^{\prime} of M and both $r(M)$ and M^{\prime} are ES-modules.

By the aforementioned results, as special cases [5, Proposition 3.9 and Theorem 3.12] can be obtained. We give the following easy example which shows that $C S$ property does not imply the condition worked as d-extending in [5].

Example 2.6 Let D be a commutative ring with $S o c R=0$ and let M be a left faithful simple D-module. Let R be the trivial extension ring of D with M, i.e.

$$
R=\left[\begin{array}{lll}
D & & M \\
& \searrow & \\
0 & & D
\end{array}\right]=\left\{\left[\begin{array}{cc}
d & m \\
0 & d
\end{array}\right]: d \in D, m \in M\right\}
$$

Then, R is a commutative ring. Since M is a left faithful D-module, R is an indecomposable uniform R module. Hence R is a right $C S$-module. Now, let $r=$ Soc. So SocR $=\left[\begin{array}{cc}0 & M \\ 0 & 0\end{array}\right]$. Define $\varphi: R \rightarrow D$ by $\varphi\left(\left[\begin{array}{cc}d & m \\ 0 & d\end{array}\right]\right)=d$. It is easy to check that φ is an epimorphism with ker $\varphi=$ SocR. It follows that $R / \operatorname{Soc} R \cong D$. Thus $\operatorname{Soc}(R / S o c R)=0$. Since R is indecomposable, SocR is not a direct summand of R.

In a pattern by Example 2.6, we may get several same type examples.

3. $r C_{11}$-Modules

We introduce and investigate the $r C_{11}$-modules. To do this, we restrict our consideration on the definition of C_{11}-modules to a special type of submodules namely the class of submodules which consists of images of all submodules under a left exact preradical r in the category of right R-modules.

Definition 3.1 A module M satisfies $r C_{11}$ (or $r C_{11}$-module) if for each submodule N of M, there exists a direct summand K of M such that K is a complement of $r(N)$ in M.

YAŞAR/Turk J Math

Lemma 3.2 Let N be a submodule of M and let K be a direct summand of M. Then, K is a complement of N in M if and only if $K \cap N=0$ and $K \oplus N$ is essential in M.

Proof Immediate by definitions.
Combining Definition 3.1 together with the previous lemma, we have the following useful characterization of $r C_{11}$-modules for a left exact preradical in the category of right R-modules.

Proposition 3.3 The following conditions are equivalent.
(i) M satisfies $r C_{11}$.
(ii) For any submodule N of M there exists a direct summand K of M such that $r(N) \cap K=0$ and $r(N) \oplus K$ is essential in M.

Proof It follows from Lemma 3.2.
It is clear from Proposition 3.3 that any C_{11}-module satisfies $r C_{11}$. In particular $C S$-modules (and hence uniform or injective modules) satisfy $r C_{11}$. It is well-known that any indecomposable module with C_{11} is uniform (see [10]). In contrast there are indecomposable $r C_{11}$-modules which are not uniform as the following example illustrates. This example also makes it clear that the class of C_{11}-modules is properly contained in the class of $r C_{11}$-modules.

Example 3.4 (i) The Specker group $\prod_{i=1}^{\infty} \mathbb{Z}$ does not satisfy C_{11} but it satisfies $r C_{11}$. Let $r=$ Soc and let $M_{\mathbb{Z}}=\prod_{i=1}^{\infty} \mathbb{Z}$. Then M does not satisfy C_{11} [10, Lemma 3.4]. Note that $M_{\mathbb{Z}}$ is nonsingular from [6, Proposition 1.12]. Hence [6, Corollary 1.26] yields that $S o c M_{\mathbb{Z}}=0 . S o M_{\mathbb{Z}}$ is a $r C_{11}$-module.
(ii) Let R be a principal ideal domain. If R is not a complete discrete valuation ring, then there exists an indecomposable torsion-free R-module M of rank 2 [7, Theorem 19]. For M, SocM $=0$. Hence M satisfies $r C_{11}$ with respect to $r=S o c$. However, M_{R} has uniform dimension 2. It follows that M does not satisfy C_{11}. (iii) Let \mathbb{R} be the real field and S the polynomial ring $\mathbb{R}[x, y, z]$. Then the ring $R=S / S s$, where $s=$ $x^{2}+y^{2}+z^{2}-1$, is a commutative Noetherian domain. Moreover, the free R-module $M=R \oplus R \oplus R$ contains a direct summand K which does not satisfy C_{11} [9]. Note that K_{R} is indecomposable with uniform dimension 2. Since $\operatorname{Soc} M=0, \operatorname{Soc}\left(K_{R}\right)=0$. It follows that K_{R} is a $r C_{11}$-module with respect to $r=S o c$.

In a similar vein to Example 3.4(iii) we may have abundance of examples as follows. If $n \geq 3$ is any odd integer, S is the polynomial ring $\mathbb{R}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ in the indeterminates $x_{1}, x_{2}, \ldots, x_{n}$ over \mathbb{R}, $s=x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}-1$, and R is the commutative Noetherian domain $S / S s$, then the free module $M=\underset{i=1}{\oplus} R$ has an indecomposable direct summand K with uniform dimension $n-1$ and $\operatorname{Soc}\left(K_{R}\right)=0$ (see also [14]).

Recall that, in contrast to $C S$-modules, any direct sum of modules with C_{11} is also a C_{11}-module [10, Theorem 2.4]. Natural question arises whether a direct sum of modules with $r C_{11}$ is a $r C_{11}$-module. However, the left exact preradicals bring a framework which forces to take into account different types of submodules have the common property. Of course if $r(M)=0$ then trivially M satisfies $r C_{11}$. So, we have the following fact.

YAŞAR/Turk J Math

Theorem 3.5 Any direct sum of $r C_{11}$-modules with essential image under a left exact preradical satisfies $r C_{11}$.
Proof Let $M_{\lambda}(\lambda \in \Lambda)$ be a non-empty collection of modules, each satisfying $r C_{11}$ and having essential $r\left(M_{\lambda}\right)$. Let $\lambda \in \Lambda$. Let N be a submodule of M_{λ}. Note that $r(N)=N \cap r\left(M_{\lambda}\right)$ is essential in N. By $r C_{11}$, there exists a direct summand K of M_{λ} such that $r(N) \cap K=0$ and $r(N) \oplus K$ is essential in M_{λ}. Now, we have that $r(N) \oplus K \leq N \oplus K \leq M_{\lambda}$. Since $r(N) \oplus K$ is essential in $M_{\lambda}, N \oplus K$ is essential in M_{λ}. It follows that each $M_{\lambda}(\lambda \in \Lambda)$ satisfies C_{11}. Then, by [10, Theorem 2.4], $\underset{\lambda \in \Lambda}{\oplus} M_{\lambda}$ satisfies $r C_{11}$.

One might expect that whether submodules of a $r C_{11}$-module need to be $r C_{11}$-module. However, any module, which does not satisfy $r C_{11}$ (see, Example 3.9) is contained in a $r C_{11}$-module, namely its injective hull. Our next result and its corollary gather up certain classes of submodules of a $r C_{11}$-module, which satisfy $r C_{11}$ property.

Proposition 3.6 Let M be a rCC_{11}-module and X a submodule of M. If the intersection of X with any direct summand of M is a direct summand of X, then X is a $r C_{11-m o d u l e . ~}^{\text {- }}$

Proof Let X be a submodule of M and let Y be a submodule of X. Now $r(Y)$ is a submodule of M. Then, there exists a direct summand D of M such that $r(Y) \cap D=0$ and $r(Y) \oplus D$ is essential in M. By assumption, $X \cap D$ is a direct summand of X. Note that $r(Y) \cap(X \cap D)=0$ and $X \cap(r(Y) \oplus D)$ is essential in X. By the modular law, $X \cap(r(Y) \oplus D)=r(Y) \oplus(X \cap D)$. It follows that X is a $r C_{11}$-module.

Corollary 3.7 Let M_{R} be a rCC_{11}-module. If N is a submodule of M such that $f(N) \subseteq N$ where $f^{2}=f \in$ $\operatorname{End}\left(M_{R}\right)$, then N is a $r C_{11}$-module.

Proof Let N be a submodule of M such that $f(N) \subseteq N$ where $f^{2}=f \in \operatorname{End}\left(M_{R}\right)$. Let K be a direct summand of M. Consider $\pi: M \rightarrow K$ the canonical projection. Then, $\pi(r(N)) \subseteq r(N) \cap K$ is a direct summand of N. Hence N is a $r C_{11}$-module, by Proposition 3.6.

It is obvious that Corollary 3.7 holds, in particular whenever we replace projection invariant submodule with fully invariant submodule in M.

Lemma 3.8 Let M be a module which satisfies $r C_{11}$. Then $M=M_{1} \oplus M_{2}$ where M_{1} and M_{2} are submodules such that $r\left(M_{1}\right)$ is essential in M_{1} and $r\left(M_{2}\right)=0$.

Proof By Proposition 3.3, there exist submodules M_{1}, M_{2} of M such that $M=M_{1} \oplus M_{2}, r(M) \cap M_{2}=0$, and $r(M) \oplus M_{2}$ is an essential submodule of M. Since r is left exact, it follows that $r\left(M_{2}\right)=M_{2} \cap r(M)=0$. Let $\pi: M \rightarrow M_{1}$ denote the canonical projection. Then, $\pi(r(M)) \subseteq r\left(M_{1}\right)$. For any $0 \neq m \in M_{1}$, there exists $t \in R$ such that $0 \neq m t \in r(M) \oplus M_{2}$, and, hence, $0 \neq m t=\pi(m t) \in \pi(r(M)) \subseteq r\left(M_{1}\right)$. It follows that $r\left(M_{1}\right)$ is an essential submodule of M_{1}.

The converse of Lemma 3.8 is not true in general. On using $r=S o c$ and $r=Z_{2}$, we provide two examples, which are as follows:

Example 3.9 (i) Let R be the trivial extension of the ring \mathbb{Z} with the finite direct sum of \mathbb{Z}-module, $\stackrel{i}{i=1}_{\stackrel{\sim}{\mathbb{Z}}}^{\mathbb{Z}}$ where $n \geq 1$, i.e. $R=\left[\begin{array}{cc}\mathbb{Z} & \stackrel{n}{\oplus} \mathbb{Z} \\ & \stackrel{i=1}{\mathbb{Z}} \\ 0 & \mathbb{Z}\end{array}\right]=\left\{\left[\begin{array}{ll}n & m \\ 0 & n\end{array}\right]: n \in \mathbb{Z}, m \in \underset{i=1}{\oplus} \mathbb{Z}\right\}$. Now let $M_{1}=R$ and $M_{2}=R / I$ where $I=\operatorname{Soc}(R)=\left[\begin{array}{cc}0 & \stackrel{n}{\oplus} \mathbb{Z} \\ 0 & 0\end{array}\right]$. Let $M=M_{1} \oplus M_{2}$ and $r=$ Soc. Then $\operatorname{Soc}\left(M_{1}\right)$ is essential in M_{1} and $\operatorname{Soc}\left(M_{2}\right)=0$. However it is easy to see that M is not $r C_{11}$-module.
(ii) [3, Example 1.6]. Let $R=\left[\begin{array}{lll}\mathbb{Z} & & \mathbb{Z}_{2} \oplus \mathbb{Z}_{2} \\ & \backslash & \\ 0 & \mathbb{Z}\end{array}\right]$ be the trivial extension of \mathbb{Z} and the \mathbb{Z}-module $\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}$. Let $I=\left\{\left[\begin{array}{cc}4 n & 0 \\ 0 & 4 n\end{array}\right]: n \in \mathbb{Z}\right\}$ and $J=\left\{\left[\begin{array}{ll}0 & x \\ 0 & 0\end{array}\right]: x \in \mathbb{Z}_{2} \oplus \mathbb{Z}_{2}\right\}$. Set $M=M_{1} \oplus M_{2}$ where $M_{1}=R / I$ and $M_{2}=R / J$. Note that $M_{1}=Z_{2}\left(M_{1}\right)$ and M_{1} is indecomposable. Furthermore, $Z_{2}\left(M_{2}\right)=0$ and M_{2} is uniform. Since M is not a C_{11}-module, M_{1} is not a C_{11}-module (see [3, Example 1.6]). It follows that there exists a submodule Y in M_{1} such that there is no any direct summand of M_{1} which is a complement of Y in M_{1}. Observe that $Y=Z_{2}(Y)$ which gives that M_{1} is not a $r C_{11}$-module. Thus M is not a $r C_{11}$-module.

Observe that Lemma 3.8 provides a direct summand of a $r C_{11}$-module, which enjoys the property. However, by Example 3.4(iii) with $r=Z$, the property $r C_{11}$ is not inherited by direct summands.

Even for a special case like $r(M)$ is a direct summand of M, it is not clear when $r(M)$ has $r C_{11}$ property. Obviously, not all preradicals are of relevance in our aim, since $r(M)$ will be zero in many cases. For instance, the only preradicals of interest are those, which are subgenerated by some submodule K of M and the related class of radical modules is just the class of $\sigma[K]$ in which case any $r(M)$ is of the form $\operatorname{Tr}(\sigma[K], M)$. For more details, see [15].

The next objective is to obtain when $r(M)$ has $r C_{11}$ for an R-module M with $r C_{11}$. For our purpose let us consider the following property for a left exact preradical r in the category of right R-modules which is interesting in its own right. Let M be a right R-module.
(Y) For each submodule, N and each direct summand D of $M, r(N) \oplus D$ has a complement, which is a direct summand of M.

It can be seen easily that the following implications hold.

$$
C_{11} \Rightarrow(Y) \Rightarrow r C_{11}
$$

Furthermore the conditions (Y) and $r C_{11}$ are equivalent for indecomposable modules. Therefore, Example 3.9 also shows that the class of C_{11}-modules are properly contained in the class of modules which satisfy the property (Y). However, we could not settle whether $r C_{11}$ implies (Y) at this time. Perhaps it would be helpful to provide an example which has non-zero socle and satisfy the property (Y). Let R be the ring as in $[6$, Example 3.2], i.e.
$R=\left[\begin{array}{cc}\mathbb{Z}_{2} & \mathbb{Z}_{2} \\ 0 & \mathbb{Z}\end{array}\right]$ be the split null extension ring. Let $r=$ Soc. Since \mathbb{Z}_{2} is a faithful left \mathbb{Z}_{2}-module, Soc $R_{R}=$ $\left[\begin{array}{cc}0 & \mathbb{Z}_{2} \\ 0 & 0\end{array}\right]$. Note that $\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$ and $\left[\begin{array}{ll}0 & 0 \\ 0 & \mathbb{Z}\end{array}\right]$ are the only direct summands of R which has zero intersection with
socle. However, Soc_{R} is simple and not essential in R. It follows that $\operatorname{Soc} R_{R} \oplus\left[\begin{array}{ll}0 & 0 \\ 0 & \mathbb{Z}\end{array}\right]=\left[\begin{array}{ll}0 & \mathbb{Z}_{2} \\ 0 & \mathbb{Z}\end{array}\right]$, which is essential in R. Hence, $\operatorname{Soc}_{R} \oplus\left[\begin{array}{ll}0 & 0 \\ 0 & \mathbb{Z}\end{array}\right]$ has a complement $\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$. So R_{R} satisfies (Y).

We are in a position to prove that a module, which satisfies property (Y) can be decomposed into two C_{11}-modules in terms of a left exact preradical r in such a way that one piece has zero image and the other has essential image under r. First, we need to have the following basic lemma on closure submodules in a module.

Lemma 3.10 Let N be a submodule of a module M such that N has a unique closure K in M. Then, K is the sum of all submodules L of M containing N and such that N is essential in L.

Proof It is straightforward.

Theorem 3.11 Let R be a ring, r a left exact preradical for the category of right R-modules, and M a right R-module such that $r(M)$ has a unique closure in M. If M has the property (Y) then $M=M_{1} \oplus M_{2}$ is a direct sum of $r C_{11}$-modules M_{1} and M_{2} such that $r\left(M_{1}\right)$ is essential in M_{1} and $r\left(M_{2}\right)=0$. In this case, M has $r C_{11}$.

Proof Suppose M has (Y). By Lemma 3.8, $M=M_{1} \oplus M_{2}$ with $r\left(M_{1}\right)$ is essential in M_{1} and $r\left(M_{2}\right)=0$. Note that $r(M)=r\left(M_{1}\right) \oplus r\left(M_{2}\right)=r\left(M_{1}\right)$, so M_{1} is the (unique) closure of $r(M)$ in M. Let $\pi: M \rightarrow M_{1}$ denote the canonical projection. It is clear that M_{2} has $r C_{11}$.

Let N be any submodule of M_{1}. By assumption, there exist submodules K, K^{\prime} of M such that $M=K \oplus K^{\prime},\left(r(N) \oplus M_{2}\right) \cap K=0$, and $r(N) \oplus M_{2} \oplus K$ is essential in M. Since $K \cap M_{2}=0$, it follows that $K \cong \pi(K)$. Note that because r is left exact, $r(\pi(K))=\pi(K) \cap r\left(M_{1}\right)$ is essential in $\pi(K)$. Hence, $r(K)$ is essential in K and, in addition, $r(M)=r(K) \oplus r\left(K^{\prime}\right)$ is essential in $K \oplus r\left(K^{\prime}\right)$. By Lemma 3.10, $K \oplus r\left(K^{\prime}\right) \subseteq M_{1}$ and, in particular, $K \subseteq M_{1}$. Now, $M_{1}=K \oplus\left(M_{1} \cap K^{\prime}\right)$, and $r(N) \oplus K=\left(r(N) \oplus M_{2} \oplus K\right) \cap M_{1}$, by the modular law. It follows that $r(N) \oplus K$ is essential in M_{1}. By Proposition 3.3, M_{1} satisfies $r C_{11}$. The second part follows from Theorem 3.5.

Since a direct summand of a module M is a complement in M and any complement in M has itself own closure in M, Theorem 3.11 applies in the case where $r(M)$ is a complement of M and, in particular, when $r(M)$ is a direct summand of M. Thus, Theorem 3.11 gives the following consequence, which is a fundamental result in the theory of C_{11}-modules (see [10, Theorem 2.9]).

Corollary 3.12 A nonsingular module M satisfies C_{11} if and only if $M=M_{1} \oplus M_{2}$ where M_{1} is a module satisfying C_{11} and having essential socle and M_{2} is a module satisfying C_{11} and having zero socle.

Proof The sufficiency is clear by [10, Theorem 2.4]. Conversely, suppose that M satisfies C_{11}. It can be checked that M satisfies (Y). Since $r=S o c$ is a left exact preradical in the category of right R-modules, Theorem 3.11 yields the result.

Following [11, p.152], a hereditary torsion theory is called stable if the class of torsion modules is closed under injective envelopes. From [11, Proposition 7.3, p.153], the Goldie torsion theory is stable. Thus, the following result provides a useful decomposition into $r C_{11}$-modules.

Corollary 3.13 Let R be a ring and r the left exact radical for a stable hereditary torsion theory for the category of right R-modules. If M satisfies (Y), then $M=r(M) \oplus K$ for some submodule K and both $r(M)$ and K satisfy $r C_{11}$.

Proof Suppose M satisfies (Y). By Lemma 3.8, $M=M_{1} \oplus M_{2}$ such that $r\left(M_{1}\right)$ is essential in M_{1} and $r\left(M_{2}\right)=0$. By hypothesis, $r\left(M_{1}\right)=M_{1}$. Moreover, $r(M)=r\left(M_{1}\right) \oplus r\left(M_{2}\right)=M_{1}$, and hence $M=r(M) \oplus K$ where $K=M_{2}$. Now, the result follows from Theorem 3.11.

Corollary 3.13 has the following special case, which is the very important characterization of modules with C_{11} property.

Corollary 3.14 A module M satisfies C_{11} if and only if $M=Z_{2}(M) \oplus K$ for some (nonsingular) submodule K of M and both $Z_{2}(M)$ and K satisfy C_{11}.

Proof The sufficiency is clear by [10, Theorem 2.4]. The necessity follows from Theorem 3.11 because M satisfies (Y), $r=Z_{2}$ is a left exact radical and the Goldie torsion theory is stable.

In the rest of this paper, we focus on when direct summands of a $r C_{11}$-module are also $r C_{11}$-modules.
Proposition 3.15 Let $M=M_{1} \oplus M_{2}$. Then M_{1} satisfies $r C_{11}$ if and only if for every submodule N of M_{1}, there exists a direct summand K of M such that $M_{2} \subseteq K, K \cap r(N)=0$, and $K \oplus r(N)$ is an essential submodule of M.

Proof Suppose M_{1} satisfies $r C_{11}$. Let N be any submodule of M_{1}. By Proposition 3.3, there exists a direct summand L of M_{1} such that $r(N) \cap L=0$ and $r(N) \oplus L$ is essential in M_{1}. It is clear that $\left(L \oplus M_{2}\right) \cap r(N)=0$ and $\left(L \oplus M_{2}\right) \oplus r(N)$ is essential in M. Conversely, suppose that M_{1} has the stated property. Let H be any submodule of M_{1}. By hypothesis, there exists a direct summand K of M such that $M_{2} \subseteq K, K \cap r(H)=0$, and $K \oplus r(H)$ is an essential submodule of M. Now, $K=K \cap\left(M_{1} \oplus M_{2}\right)=\left(K \cap M_{1}\right) \oplus M_{2}$ so that $K \cap M_{1}$ is a direct summand of M, and hence also of $M_{1}, r(H) \cap\left(K \cap M_{1}\right)=0$, and $r(H) \oplus\left(K \cap M_{1}\right)=M_{1} \cap(r(H) \oplus K)$, which is an essential submodule of M_{1}. It follows that M_{1} satisfies $r C_{11}$.

The next result applies in the case that M is a $r C_{11}$-module satisfying condition C_{3}. Recall that a module M has C_{3} provided that if M_{1} and M_{2} are direct summands of M such that $M_{1} \cap M_{2}=0$, then $M_{1} \oplus M_{2}$ is a direct summand of M (see, [4, 14]).

Theorem 3.16 Let $M=M_{1} \oplus M_{2}$ be a $r C_{11}$-module such that for every direct summand K of M with $K \cap M_{2}=0, K \oplus M_{2}$ is a direct summand of M. Then M_{1} is a $r C_{11}$-module.

Proof Let N be any submodule of M_{1}. By hypothesis, there exists a direct summand K of M such that $\left(r(N) \oplus M_{2}\right) \cap K=0$ and $r(N) \oplus M_{2} \oplus K$ is an essential submodule of M by Proposition 3.3. Moreover, $M_{2} \oplus K$ is a direct summand of M. Now, the result follows from Proposition 3.15.

Corollary 3.17 Let M be a module, which satisfies $r C_{11}$ and C_{3}. Then every direct summand of M satisfies $r C_{11}$ and C_{3}.

Proof C_{3} property is inherited by direct summands (see, for example [14]). Then, the result follows by the Theorem 3.16.

YAŞAR/Turk J Math

Proposition 3.18 Let M be a $r C_{11}$-module and K a direct summand of M such that M / K is K-injective. Then K satisfies $r C_{11}$.

Proof There exists a submodule K^{\prime} of M such that $M=K \oplus K^{\prime}$, and by hypothesis, K^{\prime} is K-injective. Let L be a direct summand of M such that $L \cap K^{\prime}=0$. By Lemma 7.5 in [4], there exists a submodule H of M such that $H \cap K^{\prime}=0, M=H \oplus K^{\prime}$, and $L \subseteq H$. Now, L is a direct summand of H, and hence $L \oplus K^{\prime}$ is a direct summand of $M=H \oplus K^{\prime}$. By Theorem 3.16, K satisfies $r C_{11}$.

Corollary 3.19 Let M be a module, which satisfies $r C_{11}$. Let N be a direct summand of M such that M / N is an injective module. Then N satisfies $r C_{11}$.

Proof Since M / N is N-injective, N satisfies $r C_{11}$ by Proposition 3.18.

Corollary 3.20 Let $M=M_{1} \oplus M_{2}$ be a direct sum of a submodule M_{1} and an injective submodule M_{2}. If M satisfies $r C_{11}$ then M_{1} satisfies $r C_{11}$.

Proof If M satisfies $r C_{11}$ then M_{1} satisfies $r C_{11}$ by Proposition 3.18.
Notice that conditions $r C_{11}$ and (Y) are equivalent for indecomposable modules. The author thinks that $r C_{11}$ does not imply (Y). But he does not have any counter example at this time. It turns out that the following problem is reasonable for future work.

Open Problem

Investigate the class of modules such that the conditions $r C_{11}$ and (Y) are equivalent for a left exact preradical r in the category of right modules.

Acknowledgments

The author would like to express his appreciation to the referee(s) for their careful reading and valuable suggestions.

References

[1] Abed MM. A new view of closed-CS-module. Italian Journal of Pure and Applied Mathematics 2020; 43: 65-72.
[2] Birkenmeier GF, Kim JY, Park JK. When is the cs condition hereditary? Commun Algebra 1999; 27 (8): 3875-3885.
[3] Dauns J, Zhou Y. Type submodules and direct sum decompositions of modules. Rocky Mountain Journal of Mathematics 2005; 35 (1): 83-104.
[4] Dung NV, Huynh D, Smith PF, Wisbauer R. Extending Modules. Harlow: Longman 1994.
[5] Durğun Y. D-extending modules. Hacettepe Journal of Mathematics and Statistics 2020; 49 (3): 914-920.
[6] Goodearl KR. Ring Theory: Nonsingular Rings and Modules. New York, NY, USA: Dekker, 1976.
[7] Kaplansky I. Infinite Abelian Groups. Ann Arbor, MI, USA: University of Michigan Press 1969.
[8] Kara Y, Tercan A. When some complement of a z-closed submodule is a summand. Commun Algebra 2018; 46 (7): 3071-3078.
[9] Smith PF, Tercan A. Direct summands of modules which satisfy (C_{11}). Algebra Colloquium 2004; 11 (2):231-237.
[10] Smith PF, Tercan A. Generalizations of CS-modules. Commun Algebra 1993; 21(6):1809-1847.
[11] Stenström B. Rings of Quotients. New York, NY, USA: Springer-Verlag 1975.
[12] Tercan A. On CLS-modules. Rocky Mountain Journal of Mathematics 1995; 25 (4):1557-1564.
[13] Tercan A. Modules whose exact submodules are direct summands. Analele Stiintifice ale Universitatii Ovidius Constanta 2000; 8 (2): 143-150.
[14] Tercan A, Yücel CC. Module Theory, Extending Modules and Generalizations. Basel, Switzerland: Birkhäuser 2016.
[15] Wisbauer R. Foundations of Module and Ring Theory. Philadelphia, PA, USA: Gordon and Breach 1991.

[^0]: *Correspondence: yasaramazan@gmail.com
 2010 AMS Mathematics Subject Classification: 16D10, 16D80.

