т ̈̈вітак
http://journals.tubitak.gov.tr/math/

Turk J Math
(2021) 45: 1789 - 1800
© TÜBİTAK
doi:10.3906/mat-2104-22

Some Properties of the semigroup $P G_{Y}(X)$: Green's relations, ideals, isomorphism theorems and ranks

Worachead SOMMANEE* ${ }^{\text {(1) }}$
Department of Mathematics and Statistics, Faculty of Science and Technology, Chiang Mai Rajabhat University, Chiang Mai, Thailand

| Received: 05.04.2021 | Accepted/Published Online: 01.06 .2021 | Final Version: 27.07 .2021 |
| :--- | :--- | :--- | :--- |

Abstract

Let $T(X)$ be the full transformation semigroup on the set X. For a fixed nonempty subset Y of X, let $$
P G_{Y}(X)=\left\{\alpha \in T(X):\left.\alpha\right|_{Y} \in G(Y)\right\}
$$ where $G(Y)$ is the permutation group on Y. It is known that $P G_{Y}(X)$ is a regular subsemigroup of $T(X)$. In this paper, we give a simpler description of Green's relations and characterize the ideals of $P G_{Y}(X)$. Moreover, we prove some isomorphism theorems for $P G_{Y}(X)$. For finite sets, we investigate the cardinalities of $P G_{Y}(X)$ and of its subsets of idempotents, and we also calculate their ranks.

Key words: Green's relations, ideal, isomorphism theorem, rank

1. Introduction

The study of semigroups of full transformations has been fruitful over years. As far back in 1952, Malcev [10] determined ideals of $T(X)$. Later in 1955, Miller and Doss [3] proved that $T(X)$ is a regular semigroup and described its Green's relations. And in 1959, Hall [4] showed that every semigroup is isomorphic to a subsemigroup of $T(X)$ for some an appropriate set X. It is well-known that $T(X)$ is isomorphic to $T(Y)$ if and only if $|X|=|Y|$. In fact, each isomorphism $\Phi: T(X) \rightarrow T(Y)$ is induced by a bijection $g: X \rightarrow Y$ in the sense that $\alpha \Phi=g^{-1} \alpha g$ for every $\alpha \in T(X)$.

The rank of a semigroup S is the minimal size of a generating set of S.
For a positive integer n, let T_{n} denote the full transformation semigroup on the set $X=\{1,2, \ldots, n\}$. For $n \geq 3$, the rank of T_{n} is equal to 3 , see [6]. Let $1 \leq r \leq n$ and $K(n, r)=\left\{\alpha \in T_{n}:|X \alpha| \leq r\right\}$. Then $K(n, r)$ is an ideal of T_{n}. In 1990, Howie and McFadden [7] proved that the rank of $K(n, r)$ is $S(n, r)$, for $2 \leq r \leq n-1$ where $S(n, r)$ is the Stirling number of the second kind.

For a nonempty subset Y of X, let $S(X, Y)=\{\alpha \in T(X): Y \alpha \subseteq Y\}$. The semigroup $S(X, Y)$ was introduced and studied by Magill [9] in 1966. In 2005, Nenthein, Youngkhong and Kemprasit [11] gave a necessary and sufficient condition for $S(X, Y)$ to be regular. Later in 2011, Honyam and Sanwong [5] described Green's relations on $S(X, Y)$ and characterized its ideals.

[^0]
SOMMANEE/Turk J Math

In 1994, Umar [13] constructed the subsemigroup of $T(X)$ as follows:

$$
F_{Y}(X)=\left\{\alpha \in T(X): C(\alpha) \alpha \subseteq Y=Y \alpha \text { and }\left.\alpha\right|_{Y} \text { is injective }\right\}
$$

where $C(\alpha)=\bigcup\left\{t \alpha^{-1}: t \in X \alpha,\left|t \alpha^{-1}\right| \geq 2\right\}$. The author determined Green's relation on $F_{Y}(X)$ and proved that it is an \mathcal{R}-unipotent subsemigroup of $T(X)$. Later in 2018, Billhardt, Sanwong and Sommanee [1] modified the semigroup $F_{Y}(X)$ as follows:

$$
\begin{equation*}
F_{Y}(X)=\left\{\alpha \in T(X):\left.\alpha\right|_{Y} \in G(Y) \text { and }\left.\alpha\right|_{A_{\alpha}} \text { is injective }\right\} \tag{2.1}
\end{equation*}
$$

where $G(Y)$ is the permutation group on Y and $A_{\alpha}=\{x \in X: x \alpha \notin Y\}$. Moreover, they determined all maximal inverse subsemigroups of $F_{Y}(X)$ when $|Y| \geq 2$. And for finite sets, the authors proved when two semigroups of the type $F_{Y}(X)$ are isomorphic and described its ideals. They also computed the rank of $F_{Y}(X)$ when X is finite.

In 2016, Laysirikul [8] defined

$$
P G_{Y}(X)=\left\{\alpha \in T(X):\left.\alpha\right|_{Y} \in G(Y)\right\}
$$

The author proved that $P G_{Y}(X)$ is a regular semigroup and investigated a (left, right, completely) regular element of $P G_{Y}(X)$.

From the definitions of $S(X, Y), F_{Y}(X)$ and $P G_{Y}(X)$, we have

$$
F_{Y}(X) \subseteq P G_{Y}(X) \subseteq S(X, Y)
$$

For a fixed nonempty subset Y of a set X, let

$$
T_{(X, Y)}=\{\alpha \in T(X): Y \alpha=Y\}
$$

Then $T_{(X, Y)}$ is a subsemigroup of $T(X)$. In general, $P G_{Y}(X) \subseteq T_{(X, Y)}$. We note that if Y is finite, then $P G_{Y}(X)=T_{(X, Y)}$. In 2018, Toker and Ayik [12] studied generating sets and the rank of $T_{(X, Y)}$ when X is finite.

Here, in Section 3, we describe Green's relations on $P G_{Y}(X)$ and characterize its ideals. In Section 4, we find the cardinalities of $P G_{Y}(X)$ and of its subsets of idempotents when X is finite. In Section 5, we investigate some isomorphism theorems for $P G_{Y}(X)$. Finally, in Section 6, we calculate the rank of $P G_{Y}(X)$ when X is finite. Although the rank of $P G_{Y}(X)=T_{(X, Y)}$ was done by Toker and Ayik [12], but in this paper, we use a different technique to obtain a minimal generating set and the rank of $P G_{Y}(X)$, independently.

2. Preliminaries and notations

For all undefined notions, the reader is referred to [6].
An element e of a semigroup S is said to be idempotent if $e^{2}=e$. As usual, we denote by $E(U)$ the set of all idempotents of $U \subseteq S$. For any set $A,|A|$ means the cardinality of the set A. If A is a subset of a semigroup S, then $\langle A\rangle$ denotes the subsemigroup of S generated by A. The rank of a semigroup S is the smallest number of elements required to generate S, defined by

$$
\operatorname{rank}(S)=\min \{|A|: A \subseteq S \text { and }\langle A\rangle=S\}
$$

SOMMANEE/Turk J Math

Let X be a nonempty set and let $T(X)$ be the set of all functions from X into X. Then $T(X)$ is a semigroup under the composition of functions. We call $\alpha \in T(X)$ a transformation and $T(X)$ is called the full transformation semigroup on X. In this paper, we will multiply functions from the left to the right and use the corresponding notation for the left to right composition of functions: $x(\alpha \beta)=(x \alpha) \beta$.

For $\alpha \in T(X)$ and $x \in X$, the image of x under α is written as $x \alpha$ and the image of a subset A of X under α is denoted by $A \alpha$. If $A=X$, then $X \alpha$ is the range (image) of α. We denote by $x \alpha^{-1}$ the set of all inverse images of x under α, that is, $x \alpha^{-1}=\{z \in X: z \alpha=x\}$.

For $\alpha \in T(X)$ and $A \subseteq X$, the restriction of α to A is denoted by $\left.\alpha\right|_{A}$, that is, $\left.\alpha\right|_{A}: A \rightarrow X$ with $x\left(\left.\alpha\right|_{A}\right)=x \alpha$ for all $x \in A$. We let id_{A} denote the identity function on A. Then id_{X} is the identity element of $T(X)$. Let $G(A)$ be the set of all bijections from A onto A. We called $G(A)$ the permutation group on the set A. If A is a finite set and $|A|=n$, we write S_{n} instead of $G(A)$, and call S_{n} the symmetric group of order n. It is well-known that $\left|S_{n}\right|=n$!.

As in Clifford and Preston [2], we shall use the notation

$$
\begin{equation*}
\alpha=\binom{A_{i}}{a_{i}} \tag{2.2}
\end{equation*}
$$

to mean $\alpha \in T(X)$ and take as understood that the subscript i belongs to some (unmentioned) index set I, $X \alpha=\left\{a_{i}: i \in I\right\}$ and $A_{i}=a_{i} \alpha^{-1}$ for all $i \in I$.

We note that for any $\alpha \in T(X)$, the symbol π_{α} denotes the partition of X induced by the transformation α, namely,

$$
\pi_{\alpha}=\left\{x \alpha^{-1}: x \in X \alpha\right\}
$$

In [3], the authors gave a complete description of Green's relations on $T(X)$ as follows: For $\alpha, \beta \in T(X)$,
(1) $\alpha \mathcal{L} \beta$ if and only if $X \alpha=X \beta$;
(2) $\alpha \mathcal{R} \beta$ if and only if $\pi_{\alpha}=\pi_{\beta}$;
(3) $\alpha \mathcal{D} \beta$ if and only if $|X \alpha|=|X \beta|$;
(4) $\mathcal{D}=\mathcal{J}$.

Throughout the paper, we assume that Y is a nonempty subset of a set X and define

$$
P G_{Y}(X)=\left\{\alpha \in T(X):\left.\alpha\right|_{Y} \in G(Y)\right\}
$$

Then $P G_{Y}(X)$ is a regular subsemigroup of $T(X)$, see [8, Theorem 2.2]. It is easy to see that if $X=Y$, then $P G_{Y}(X)=G(X)$. We may regard $P G_{Y}(X)$ as a generalization of $G(X)$. For $\alpha \in P G_{Y}(X)$, we see that $Y \subseteq X \alpha \subseteq X$ and so $|Y| \leq|X \alpha| \leq|X|$. By [8, Theorem 2.3] proved that

$$
F_{Y}(X)=P G_{Y}(X) \text { if and only if }|X \backslash Y| \leq 1
$$

Let $G(X, Y)=\left\{g \in G(X):\left.g\right|_{Y} \in G(Y)\right\}$. Then $G(X, Y)$ is a subgroup of $G(X)$ and we establish the following proposition.

SOMMANEE/Turk J Math

Proposition 2.1 $G(X, Y)$ is the group of units of $P G_{Y}(X)$.
Proof Since $G(X, Y)$ is a subgroup of $P G_{Y}(X)$, it is clear that all elements of $G(X, Y)$ are units in $P G_{Y}(X)$. Let g be a unit of $P G_{Y}(X)$. Then there exists $g^{\prime} \in P G_{Y}(X)$ such that $g g^{\prime}=g^{\prime} g=\mathrm{id}_{X}$. Thus, $g: X \rightarrow X$ is bijective and so $g \in G(X)$. Since $g \in P G_{Y}(X)$, we obtain $\left.g\right|_{Y} \in G(Y)$. Hence, $g \in G(X, Y)$ and therefore $G(X, Y)$ is the group of units of $P G_{Y}(X)$.

Remark 2.1 $G(X, Y) \cong G(Y) \times G(X \backslash Y)$ via $g \mapsto\left(\left.g\right|_{Y},\left.g\right|_{X \backslash Y}\right)$.
With the notation (2.2), if $Y=\left\{a_{i}: i \in I\right\}$, then for any $\alpha \in P G_{Y}(X)$ we can write

$$
\alpha=\left(\begin{array}{cc}
A_{i} & B_{j} \tag{2.3}\\
a_{i} \sigma & b_{j}
\end{array}\right)
$$

where $\sigma \in G(Y), A_{i} \cap Y=\left\{a_{i}\right\}$ for all $i \in I, B_{j} \subseteq X \backslash Y$ and $b_{j} \in X \backslash Y$ for all $j \in J$. Notice that $Y \subseteq \bigcup_{i \in I} A_{i}$ and $\left.\alpha\right|_{Y}=\sigma \in G(Y)$.

3. Green's relations and ideals

In this section, we let $Y=\left\{a_{i}: i \in I\right\} \subseteq X$. As a consequence of Green's relations on $T(X)$, we have the following description of Green's relations on $P G_{Y}(X)$.

Theorem 3.1 Let $\alpha, \beta \in P G_{Y}(X)$. Then
(1) $\alpha \mathcal{L} \beta$ if and only if $X \alpha=X \beta$;
(2) $\alpha \mathcal{R} \beta$ if and only if $\pi_{\alpha}=\pi_{\beta}$;
(3) $\alpha \mathcal{D} \beta$ if and only if $|X \alpha|=|X \beta|$;
(4) $\mathcal{D}=\mathcal{J}$.

Proof Since $P G_{Y}(X)$ is a regular subsemigroup of $T(X)$, we have by Hall's Theorem [6, Proposition 2.4.2] that the \mathcal{L} and \mathcal{R} relations on $P G_{Y}(X)$ are the restrictions to $P G_{Y}(X)$ of the corresponding relations on $T(X)$. Thus,
$\alpha \mathcal{L} \beta$ if and only if $X \alpha=X \beta$, and $\alpha \mathcal{R} \beta$ if and only if $\pi_{\alpha}=\pi_{\beta}$.
Therefore, we obtain (1) and (2). To prove (3), it is clear that if $\alpha \mathcal{D} \beta$ on $P G_{Y}(X)$, then $\alpha \mathcal{D} \beta$ on $T(X)$, that is $|X \alpha|=|X \beta|$. Now, assume that $|X \alpha|=|X \beta|$. By (2.3), we can write

$$
\alpha=\left(\begin{array}{cc}
A_{i} & B_{j} \\
a_{i} \sigma & b_{j}
\end{array}\right) \text { and } \beta=\left(\begin{array}{cc}
C_{i} & D_{j} \\
a_{i} \delta & d_{j}
\end{array}\right)
$$

where $\sigma, \delta \in G(Y) ; A_{i} \cap Y=\left\{a_{i}\right\}=C_{i} \cap Y$ for all $i \in I ; B_{j}, D_{j} \subseteq X \backslash Y$ and $b_{j}, d_{j} \in X \backslash Y$ for all $j \in J$. Then we define

$$
\gamma=\left(\begin{array}{cc}
C_{i} & D_{j} \\
a_{i} \sigma & b_{j}
\end{array}\right)
$$

SOMMANEE/Turk J Math

Thus, $\gamma \in P G_{Y}(X)$ such that $X \alpha=X \gamma$ and $\pi_{\alpha}=\pi_{\beta}$. So, $\alpha \mathcal{L} \gamma$ and $\gamma \mathcal{R} \beta$ by (1) and (2). Hence, $\alpha \mathcal{D} \beta$ on $P G_{Y}(X)$. Now, we prove (4) by assuming that $\alpha \mathcal{J} \beta$ on $P G_{Y}(X)$. Then $\alpha \mathcal{J} \beta$ on $T(X)$ and thus $|X \alpha|=|X \beta|$. Whence, $\alpha \mathcal{D} \beta$ on $P G_{Y}(X)$ by (3). In general, $\mathcal{D} \subseteq \mathcal{J}$. Therefore, $\mathcal{D}=\mathcal{J}$.

To determine the ideals of $P G_{Y}(X)$, we need the following lemma.
Lemma 3.2 If $\alpha, \beta \in P G_{Y}(X)$ and $|X \alpha| \leq|X \beta|$, then $\alpha=\lambda \beta \mu$ for some $\lambda, \mu \in P G_{Y}(X)$.
Proof Assume that $\alpha, \beta \in P G_{Y}(X)$ and $|X \alpha| \leq|X \beta|$. Then by (2.3), we can write

$$
\alpha=\left(\begin{array}{cc}
A_{i} & B_{j} \\
a_{i} \sigma & b_{j}
\end{array}\right) \text { and } \beta=\left(\begin{array}{ccc}
C_{i} & D_{j} & E_{k} \\
a_{i} \delta & d_{j} & e_{k}
\end{array}\right)
$$

where $\sigma, \delta \in G(Y) ; A_{i} \cap Y=\left\{a_{i}\right\}=C_{i} \cap Y$ for all $i \in I ; B_{j}, D_{j}, E_{k} \subseteq X \backslash Y$ and $b_{j}, d_{j}, e_{k} \in X \backslash Y$ for all $j \in J, k \in K$. We choose and fix $d_{j_{0}} \in X \beta$ for some $j_{0} \in J$, define

$$
\lambda=\left(\begin{array}{cc}
A_{i} & B_{j} \\
a_{i} & d_{j}^{\prime}
\end{array}\right) \text { and } \mu=\left(\begin{array}{ccc}
a_{i} \delta & d_{j} & X \backslash\left(Y \cup\left\{d_{j}: j \in J\right\}\right) \\
a_{i} \sigma & b_{j} & d_{j_{0}}
\end{array}\right)
$$

where $d_{j}^{\prime} \in D_{j}$ for all $j \in J$. Then $\lambda, \mu \in P G_{Y}(X)$ and $\alpha=\lambda \beta \mu$.
Let p be any cardinal number and let

$$
p^{\prime}=\min \{q: q>p\} .
$$

Note that p^{\prime} always exits since the cardinals are well-ordered and p^{\prime} is an immediate successor of p. For the case when p is finite, we have $p^{\prime}=p+1$.

Theorem 3.3 The proper ideals of $P G_{Y}(X)$ are precisely the sets

$$
Q(k)=\left\{\alpha \in P G_{Y}(X):|X \alpha|<k\right\}
$$

where $|Y|^{\prime} \leq k \leq|X|$.
Proof Let $\alpha \in Q(k)$ where $|Y|^{\prime} \leq k \leq|X|$, and $\beta \in P G_{Y}(X)$. Then $|X \alpha|<k,|X \alpha \beta| \leq|X \alpha|<k$ and $|X \beta \alpha| \leq|X \alpha|<k$. Hence, $\alpha \beta, \beta \alpha \in Q(k)$ and so $Q(k)$ is an ideal of $P G_{Y}(X)$. Since $\left|X \mathrm{id}_{X}\right|=|X| \geq k$, $\operatorname{id}_{X} \notin Q(k)$. Thus, $Q(k)$ is proper.

Conversely, let I be a proper ideal of $P G_{Y}(X)$. Define the class of cardinal numbers as follows.

$$
C=\{q:|X \alpha|<q \text { for all } \alpha \in I\}
$$

Since $|X \alpha| \leq|X|<|X|^{\prime}$ for all $\alpha \in I$, we obtain $C \neq \emptyset$. Using the well-ordering theorem, we let k be the least element of C. That is, k is the least cardinal number such that $|X \alpha|<k$ for all $\alpha \in I$. Since $|Y| \leq|X \alpha|$ for all $\alpha \in I$, we have $|Y|<k$. We prove $I=Q(k)$. It is clear that $I \subseteq Q(k)$. Now, let $\beta \in Q(k)$. Then $|X \beta|<k$. If $|X \alpha|<|X \beta|$ for all $\alpha \in I$, then $k \leq|X \beta|$ by the property of k, a contradiction. That is, $|X \beta| \leq|X \alpha|$ for some $\alpha \in I$. Then by Lemma 3.2, there are $\lambda, \mu \in P G_{Y}(X)$ such that $\beta=\lambda \alpha \mu$. It follows from the fact that I is an ideal of $P G_{Y}(X)$ and $\alpha \in I$, we get that $\beta \in I$. Hence, $Q(k) \subseteq I$ and so $I=Q(k)$. Since $Q(k)=I$ is a proper subset of $P G_{Y}(X)$, there is $\gamma \in P G_{Y}(X) \backslash Q(k)$. This implies that $k \leq|X \gamma| \leq|X|$. Since $k>|Y|$ and $|Y|^{\prime}=\min \{q: q>|Y|\}$, we obtain $|Y|^{\prime} \leq k$. Therefore, $|Y|^{\prime} \leq k \leq|X|$.

SOMMANEE/Turk J Math

4. The finite case

In this section, let X be a finite set with n elements such that $|Y|=r \leq n$, and we write $P G_{r}(n)$ instead of $P G_{Y}(X)$.

Since $|G(Y)|=\left|S_{r}\right|=r$! and the number of all functions from $X \backslash Y$ to X is n^{n-r}, by the definition of $P G_{r}(n)$ we obtain

$$
\begin{equation*}
\left|P G_{r}(n)\right|=r!\cdot n^{n-r} \tag{4.1}
\end{equation*}
$$

For $r \leq k \leq n$, define

$$
J(k)=\left\{\alpha \in P G_{r}(n):|X \alpha|=k\right\} .
$$

Then by Theorem 3.1, we get that $J(k)$ is a \mathcal{J}-class of the semigroup $P G_{r}(n)$ such that $J(n)$ is the maximum \mathcal{J}-class of $P G_{r}(n)$. Let

$$
Q(n ; k)=J(r) \cup J(r+1) \cup \cdots \cup J(k)
$$

where $r \leq k \leq n$. It is clear that $Q(n ; k)=\left\{\alpha \in P G_{r}(n):|X \alpha| \leq k\right\}$ and $Q(n ; n)=P G_{r}(n)$.

Corollary 4.1 The ideals of $P G_{r}(n)$ are of the form

$$
Q(n ; k)=\left\{\alpha \in P G_{r}(n):|X \alpha| \leq k\right\}
$$

where $r \leq k \leq n$.
Proof It follows from Theorem 3.3 and the fact that $Q(n ; n)=P G_{r}(n)$ is an ideal of itself.

Lemma 4.2 For $r \leq k \leq n,|E(J(k))|=\binom{n-r}{k-r} k^{n-k}$.
Proof Let $r \leq k \leq n$ and $\varepsilon \in E(J(k))$. Then $|X \varepsilon|=k$ and $\left.\varepsilon\right|_{Y}=\operatorname{id}_{Y}$. If $r=k$, then the number of elements of $E(J(r))$ is equivalent to the number of functions from $X \backslash Y$ into Y. Hence, $|E(J(r))|=r^{n-r}=\binom{n-r}{k-r} k^{n-k}$. Now, assume that $r<k$. Then $X \varepsilon \cap(X \backslash Y) \neq \emptyset$ such that $|X \varepsilon \cap(X \backslash Y)|=k-r$, and $\left.\varepsilon\right|_{X \varepsilon \cap(X \backslash Y)}=\operatorname{id}_{X \varepsilon \cap(X \backslash Y)}$. Since there are $\binom{n-r}{k-r}$ ways of choosing the $(k-r)$-element subsets of $X \backslash Y$ and there are k^{n-k} functions from $X \backslash(Y \cup(X \varepsilon \cap(X \backslash Y)))$ into $Y \cup(X \varepsilon \cap(X \backslash Y))$, we obtain $|E(J(k))|=\binom{n-r}{k-r} k^{n-k}$.

Theorem 4.3 $\left|E\left(P G_{r}(n)\right)\right|=\sum_{k=r}^{n}\binom{n-r}{k-r} k^{n-k}$.
Proof It follows directly from Lemma 4.2.

5. Isomorphism theorems

Recall that the natural partial order on $E(S)$ defined by for $e, f \in E(S)$,

$$
e \leq f \text { if and only if } e=e f=f e
$$

Proposition 5.1 Let $M=\left\{\alpha \in E\left(P G_{Y}(X)\right): X \alpha=Y\right\}$. Then M is the set of all minimal idempotents in $P G_{Y}(X)$.

SOMMANEE/Turk J Math

Proof For any $\alpha \in M$ and for any $\beta \in E\left(F_{Y}(X)\right)$ where $\beta \leq \alpha$, since $x \alpha \in Y$ for all $x \in X$ and since $y \beta=y$ for all $y \in Y$, it follows that $\beta=\beta \alpha=\alpha \beta$ if and only if $x \beta=(x \alpha) \beta=x \alpha$ for all $x \in X$, or equivalently, $\alpha=\beta$. Thus, every element in M is a minimal idempotent.

On the other hand, we assume that $Y=\left\{a_{i}: i \in I\right\} \subseteq X$ and let α be a minimal idempotent of $P G_{Y}(X)$. We can write

$$
\alpha=\left(\begin{array}{cc}
A_{i} & B_{j} \\
a_{i} & b_{j}
\end{array}\right)
$$

where $A_{i} \cap Y=\left\{a_{i}\right\}$ for all $i \in I$ and $b_{j} \in B_{j} \subseteq X \backslash Y$ for all $j \in J$. Let $a_{i_{0}}$ be a fixed element of Y for some $i_{0} \in I$ and define

$$
\varepsilon=\left(\begin{array}{cc}
A_{i} & B_{j} \\
a_{i} & a_{i_{0}}
\end{array}\right)
$$

Then $\varepsilon \in E\left(F_{Y}(X)\right)$ and $X \varepsilon=Y$, that is, $\varepsilon \in M$. It is easy to see that $\varepsilon \alpha=\varepsilon=\alpha \varepsilon$. Hence, $\varepsilon \leq \alpha$ and so $\alpha=\varepsilon \in M$ by the minimality of α.

Notice that the cardinality of the set M as defined in Proposition 5.1 is equal to the cardinality of $Y^{X \backslash Y}$, the set of all functions from $X \backslash Y$ into Y, that is, $|M|=\mid Y^{X \backslash Y \mid \text {. }}$

Recall that the image set of the set of all minimal idempotents is also the set of all minimal idempotents under an isomorphism.

Theorem 5.2 Let X_{1} and X_{2} be two sets, and let Y_{1} and Y_{2} be nonempty subsets of X_{1} and X_{2}, respectively. If $P G_{Y_{1}}\left(X_{1}\right)$ is isomorphic to $P G_{Y_{2}}\left(X_{2}\right)$, then $\left|Y_{1}^{X_{1} \backslash Y_{1}}\right|=\left|Y_{2}^{X_{2} \backslash Y_{2}}\right|$.

Proof Assume that $P G_{Y_{1}}\left(X_{1}\right) \cong P G_{Y_{2}}\left(X_{2}\right)$. Then there exists an isomorphism $\Phi: P G_{Y_{1}}\left(X_{1}\right) \rightarrow P G_{Y_{2}}\left(X_{2}\right)$. Let

$$
M_{1}=\left\{\alpha \in E\left(P G_{Y_{1}}\left(X_{1}\right)\right): X_{1} \alpha=Y_{1}\right\}
$$

and

$$
M_{2}=\left\{\alpha \in E\left(P G_{Y_{2}}\left(X_{2}\right)\right): X_{2} \alpha=Y_{2}\right\}
$$

By Proposition 5.1, we get M_{1} and M_{2} are the sets of all minimal idempotents of $P G_{Y_{1}}\left(X_{1}\right)$ and $P G_{Y_{2}}\left(X_{2}\right)$, respectively. It follows that $M_{1} \Phi=M_{2}$ and whence $\left|Y_{1}^{X_{1} \backslash Y_{1}}\right|=\left|M_{1}\right|=\left|M_{2}\right|=\left|Y_{2}^{X_{2} \backslash Y_{2}}\right|$.

The converse of Theorem 5.2 is not true as shown in the following example.
Example 5.1 Let $X=\{1,2,3,4,5,6\}, Y_{1}=\{1,2\}$ and $Y_{2}=\{1,2,3,4\}$. We see that $\left|Y_{1}^{X \backslash Y_{1}}\right|=2^{6-2}=2^{4}=$ $4^{2}=4^{6-4}=\left|Y_{2}^{X \backslash Y_{2}}\right|$. While, $\left|P G_{Y_{1}}(X)\right|=2!\left(6^{6-2}\right)=2\left(6^{4}\right) \neq 24\left(6^{2}\right)=4!\left(6^{6-4}\right)=\left|P G_{Y_{2}}(X)\right|$ by (4.1). Thus, $P G_{Y_{1}}(X)$ is not isomorphic to $P G_{Y_{2}}(X)$.

Theorem 5.3 Let X_{1} and X_{2} be two sets, and let Y_{1} and Y_{2} be nonempty subsets of X_{1} and X_{2}, respectively. If $\left|Y_{1}\right|=\left|Y_{2}\right|$ and $\left|X_{1} \backslash Y_{1}\right|=\left|X_{2} \backslash Y_{2}\right|$, then $P G_{Y_{1}}\left(X_{1}\right) \cong P G_{Y_{2}}\left(X_{2}\right)$.

Proof Assume that $\left|Y_{1}\right|=\left|Y_{2}\right|$ and $\left|X_{1} \backslash Y_{1}\right|=\left|X_{2} \backslash Y_{2}\right|$. Then there exist bijective functions $\theta_{1}: Y_{1} \rightarrow Y_{2}$ and $\theta_{2}:\left(X_{1} \backslash Y_{1}\right) \rightarrow\left(X_{2} \backslash Y_{2}\right)$. Let $\theta=\theta_{1} \cup \theta_{2}$. It is clear that $\theta: X_{1} \rightarrow X_{2}$ is a bijection. Now define

$$
\Phi: P G_{Y_{1}}\left(X_{1}\right) \rightarrow P G_{Y_{2}}\left(X_{2}\right) \text { by } \alpha \Phi=\theta^{-1} \alpha \theta \text { for all } \alpha \in P G_{Y_{1}}\left(X_{1}\right)
$$

SOMMANEE/Turk J Math

Clearly $\theta^{-1} \alpha \theta \in P G_{Y_{2}}\left(X_{2}\right)$ for all $\alpha \in P G_{Y_{1}}\left(X_{1}\right)$ and $\theta \beta \theta^{-1} \in P G_{Y_{1}}\left(X_{1}\right)$ for all $\beta \in P G_{Y_{2}}\left(X_{2}\right)$. It is a routine matter to show that Φ is an isomorphism. Therefore, $P G_{Y_{1}}\left(X_{1}\right) \cong P G_{Y_{2}}\left(X_{2}\right)$.

Corollary 5.4 Let Y_{1} and Y_{2} be nonempty finite subsets of a (finite or infinite) set X. If $\left|Y_{1}\right|=\left|Y_{2}\right|$, then $P G_{Y_{1}}(X) \cong P G_{Y_{2}}(X)$.

Proof Suppose that $\left|Y_{1}\right|=\left|Y_{2}\right|$. Since Y_{1} and Y_{2} are finite subsets of X, we get $\left|X \backslash Y_{1}\right|=\left|X \backslash Y_{2}\right|$. It follows from Theorem 5.3 that $P G_{Y_{1}}(X) \cong P G_{Y_{2}}(X)$.

6. Ranks

In this section, let X be a finite set with n elements and $|Y|=r \leq n$. And, we follow the notations and some results from Section 4.

Let $F_{Y}(X)$ be as defined in (2.1), and we write $F_{r}(n)$ instead of $F_{Y}(X)$. Then the following result was shown in [1, Section 4] by Billhardt et al.

Lemma 6.1 [1, Corollary 4.2] For $1 \leq r \leq n-1$,
(1) $\operatorname{rank}\left(S_{r} \times S_{n-r}\right)=1$ if and only if $n=2$ or $n=3$.
(2) $\operatorname{rank}\left(S_{r} \times S_{n-r}\right)=2$ if and only if $n \geq 4$.

Lemma 6.2 [1, Theorem 4.8] For $1 \leq r \leq n-1$,

$$
\operatorname{rank}\left(F_{r}(n)\right)= \begin{cases}2 & \text { if } n \in\{2,3\} \\ 3 & \text { if } n \geq 4\end{cases}
$$

Notice that if $|X \backslash Y|=1$, then $P G_{Y}(X)=F_{Y}(X)$ by [8, Theorem 2.3]. So, $\operatorname{rank}\left(P G_{r}(n)\right)=\operatorname{rank}\left(F_{r}(n)\right)$ when $n-r=1$. Moreover, if $X=Y$, then $P G_{Y}(X)=G(X)$. Hence, $\operatorname{rank}\left(P G_{r}(n)\right)=\operatorname{rank}\left(S_{n}\right)$ when $n=r$.

Now, we consider the case $1 \leq r \leq n-2$ with $n \geq 3$.
It is easy to verify that $J(n)=G(X, Y)$, where $G(X, Y)$ is the group of units in $P G_{r}(n)$, see Proposition 2.1. Then by Remark 2.1, we obtain

$$
J(n)=G(X, Y) \cong G(Y) \times G(X \backslash Y)=S_{r} \times S_{n-r}
$$

Therefore, $\operatorname{rank}(J(n))=\operatorname{rank}\left(S_{r} \times S_{n-r}\right)$.
Recall that if Y_{1} and Y_{2} are nonempty finite subsets of a set X such that $\left|Y_{1}\right|=\left|Y_{2}\right|$, then $P G_{Y_{1}}(X) \cong$ $P G_{Y_{2}}(X)$ by Corollary 5.4. Thus, from now on, we assume that

$$
X=\{1,2, \ldots, n\} \text { and } Y=\{1,2, \ldots, r\}
$$

Lemma 6.3 Let $r \leq k \leq n-2$ and $\alpha \in J(k)$. Then $\alpha=\lambda \delta$ for some $\lambda, \delta \in J(k+1)$.
Proof We write

$$
\alpha=\left(\begin{array}{cccccccc}
A_{1} & A_{2} & \cdots & A_{r} & B_{r+1} & B_{r+2} & \cdots & B_{k} \\
1 \sigma & 2 \sigma & \cdots & r \sigma & b_{r+1} & b_{r+2} & \cdots & b_{k}
\end{array}\right)
$$

SOMMANEE/Turk J Math

for some $\sigma \in G(\{1,2, \ldots, r\})=S_{r}$, where $A_{i} \cap Y=\{i\}$ for all $1 \leq i \leq r ; b_{j} \in X \backslash Y$ and $B_{j} \subseteq X \backslash Y$ for all $r+1 \leq j \leq k$. Since $|X \alpha|=k \leq n-2$, we have two distinct elements $u, v \in X \backslash Y$ such that $u, v \notin X \alpha$. Let us consider two cases: (i) $A_{i} \cap(X \backslash Y)=\emptyset$ for all $1 \leq i \leq r$; (ii) $A_{j} \cap(X \backslash Y) \neq \emptyset$ for some $j \in\{1,2, \ldots, r\}$.

In the former case, we write

$$
\alpha=\left(\begin{array}{cccccccc}
1 & 2 & \cdots & r & B_{r+1} & B_{r+2} & \cdots & B_{k} \\
1 \sigma & 2 \sigma & \cdots & r \sigma & b_{r+1} & b_{r+2} & \cdots & b_{k}
\end{array}\right) .
$$

Since $\left|\pi_{\alpha}\right|=|X \alpha|=k<n,\left|B_{t}\right| \geq 2$ for some $t \in\{r+1, r+2, \ldots, k\}$. Let $x \in B_{t}$ and define

$$
\lambda=\left(\begin{array}{ccccccccccc}
1 & \cdots & r & B_{r+1} & \cdots & B_{t-1} & B_{t} \backslash\{x\} & B_{t+1} & \cdots & B_{k} & x \\
1 \sigma & \cdots & r \sigma & b_{r+1} & \cdots & b_{t-1} & b_{t} & b_{t+1} & \cdots & b_{k} & u
\end{array}\right)
$$

and

$$
\delta=\left(\begin{array}{ccccccccccc}
1 \sigma & \cdots & r \sigma & b_{r+1} & \cdots & b_{t-1} & \left\{b_{t}, u\right\} & b_{t+1} & \cdots & b_{k} & \{v\} \cup C \\
1 \sigma & \cdots & r \sigma & b_{r+1} & \cdots & b_{t-1} & b_{t} & b_{t+1} & \cdots & b_{k} & v
\end{array}\right)
$$

where $C=X \backslash(X \alpha \cup\{u, v\})$. Clearly, $\lambda, \delta \in P G_{r}(n)$ and $\alpha=\lambda \delta$ such that $|X \lambda|=k+1=|X \delta|$.
In the latter case we let $z \in A_{j} \cap(X \backslash Y)$ and define

$$
\lambda=\left(\begin{array}{ccccccccccc}
A_{1} & \cdots & A_{j-1} & A_{j} \backslash\{z\} & A_{j+1} & \cdots & A_{r} & B_{r+1} & \cdots & B_{k} & z \\
1 \sigma & \cdots & (j-1) \sigma & j \sigma & (j+1) \sigma & \cdots & r \sigma & b_{r+1} & \cdots & b_{k} & u
\end{array}\right)
$$

and

$$
\delta=\left(\begin{array}{cccccccccc}
1 \sigma & \cdots & (j-1) \sigma & \{j \sigma, u\} & (j+1) \sigma & \cdots & r \sigma & b_{r+1} & \cdots & b_{k}
\end{array}\{v\} \cup C\right)
$$

where $C=X \backslash(X \alpha \cup\{u, v\})$. Then $\lambda, \delta \in J(k+1)$ and $\alpha=\lambda \delta$.

Inductive application of Lemma 6.3 yields the following corollary.

Corollary 6.4 For $r \leq k \leq n-1, Q(n ; k)=\langle J(k)\rangle$.

We now describe the partition of X induced by transformation α in $J(n-1)$. Let

$$
\alpha=\left(\begin{array}{cccccc}
A_{1} & \cdots & A_{r} & B_{r+1} & \cdots & B_{n-1} \\
1 \sigma & \cdots & r \sigma & b_{r+1} & \cdots & b_{n-1}
\end{array}\right) \in J(n-1)
$$

where $\sigma \in S_{r}, A_{i} \cap Y=\{i\}$ for all $1 \leq i \leq r ; b_{j} \in X \backslash Y$ and $B_{j} \subseteq X \backslash Y$ for all $r+1 \leq j \leq n-1$. Then either (i) there exists unique $t \in\{1,2, \ldots, r\}$ such that $\left|A_{t}\right|=2$ and $\left|A_{i}\right|=1=\left|B_{j}\right|$ for all $1 \leq i \leq r, i \neq t$ and for all $r+1 \leq j \leq n-1$, or (ii) there exists unique $s \in\{r+1, r+2, \ldots, n-1\}$ such that $\left|B_{s}\right|=2$ and $\left|A_{i}\right|=1=\left|B_{j}\right|$ for all $1 \leq i \leq r$ and for all $r+1 \leq j \leq n-1, j \neq s$. Indeed, we can write $A_{t}=\{x, y\}$ or $B_{s}=\{z, w\}$ where $y \in Y$ and $x, z, w \in X \backslash Y$.

Remark 6.1 For $\alpha \in J(n-1)$, if there are $x, y \in C$ for some $C \in \pi_{\alpha}$ such that $x \neq y$, then $C=\{x, y\}$ since π_{α} contains exactly one element of cardinality 2.

SOMMANEE/Turk J Math

Here, we define

$$
P_{1}=\left\{\alpha \in J(n-1):\{x, y\} \in \pi_{\alpha} \text { for some } y \in Y \text { and } x \in X \backslash Y\right\},
$$

and $\quad P_{2}=\left\{\alpha \in J(n-1):\{z, w\} \in \pi_{\alpha}\right.$ for some $\left.z, w \in X \backslash Y, z \neq w\right\}$.
Notice that since $|X \backslash Y| \geq 2$, we have $P_{1} \neq \emptyset \neq P_{2}$ and $J(n-1)$ is a disjoint union of P_{1} and P_{2}. Moreover, $P_{1} \subseteq F_{r}(n)$ and $P_{2} \cap F_{r}(n)=\emptyset$.

Lemma 6.5 If $\alpha, \alpha \beta \in J(n-1)$, then $\pi_{\alpha \beta}=\pi_{\alpha}$.
Proof Assume that $\alpha, \alpha \beta \in J(n-1)$. Let $C \in \pi_{\alpha}$ and $D \in \pi_{\alpha \beta}$ such that $|C|=2=|D|$. Let $x, y \in C$ such that $x \neq y$. Then $x \alpha=y \alpha$ and so $x \alpha \beta=y \alpha \beta$. Thus, $x, y \in D$ and hence $D=\{x, y\}=C$. Since $\left|\pi_{\alpha}\right|=n-1=\left|\pi_{\alpha \beta}\right|$ and $\left|C^{\prime}\right|=1=\left|D^{\prime}\right|$ for all $C^{\prime} \in \pi_{\alpha} \backslash\{C\}$, for all $D^{\prime} \in \pi_{\alpha \beta} \backslash\{D\}$, it follows that $\pi_{\alpha}=\pi_{\alpha \beta}$.

Lemma 6.6 Let $\alpha \in J(n)$ and $i \in\{1,2\}$. Then the following statements hold:
(1) If $\alpha \beta \in J(n-1)$ and $\beta \in P_{i}$, then $\alpha \beta \in P_{i}$;
(2) If $\beta \alpha \in J(n-1)$ and $\beta \in P_{i}$, then $\beta \alpha \in P_{i}$.

Proof (i) Assume that $\alpha \beta \in J(n-1)$ and $\beta \in P_{i}$. For convenient, we write

$$
\alpha=\left(\begin{array}{cccccc}
1 & \cdots & r & r+1 & \cdots & n \\
1 \sigma & \cdots & r \sigma & (r+1) \delta & \cdots & (r+1) \delta
\end{array}\right) \in J(n)
$$

for some $\sigma \in S_{r}$ and $\delta \in G(\{r+1, \ldots, n\})=S_{n-r}$. If $\beta \in P_{1}$, then there exist $y \in Y$ and $x \in X \backslash Y$ such that $y \beta=x \beta$, that is, $\{x, y\} \in \pi_{\beta}$. Since $y \in Y$ and $x \in X \backslash Y$, there exist $y^{\prime} \in Y$ and $x^{\prime} \in X \backslash Y$ such that $y^{\prime} \sigma=y$ and $x^{\prime} \delta=x$. It follows that $y^{\prime}(\alpha \beta)=\left(y^{\prime} \alpha\right) \beta=\left(y^{\prime} \sigma\right) \beta=y \beta=x \beta=\left(x^{\prime} \delta\right) \beta=\left(x^{\prime} \alpha\right) \beta=x^{\prime}(\alpha \beta)$. Hence, $\left\{x^{\prime}, y^{\prime}\right\} \in \pi_{\alpha \beta}$ and so $\alpha \beta \in P_{1}$. Now, suppose that $\beta \in P_{2}$. Then there exist $z, w \in X \backslash Y$ such that $z \neq w$ and $z \beta=w \beta$. Since $z, w \in X \backslash Y$, there exist $z^{\prime}, w^{\prime} \in X \backslash Y$ such that $z^{\prime} \neq w^{\prime}, z^{\prime} \delta=z$ and $w^{\prime} \delta=w$. This implies that $z^{\prime}(\alpha \beta)=\left(z^{\prime} \alpha\right) \beta=\left(z^{\prime} \delta\right) \beta=z \beta=w \beta=\left(w^{\prime} \delta\right) \beta=\left(w^{\prime} \alpha\right) \beta=w^{\prime}(\alpha \beta)$. Thus, $\left\{z^{\prime}, w^{\prime}\right\} \in \pi_{\alpha \beta}$ and that $\alpha \beta \in P_{2}$.
(ii) Assume that $\beta \alpha \in J(n-1)$ and $\beta \in P_{i}$. Since $\beta, \beta \alpha \in J(n-1)$, we have $\pi_{\beta \alpha}=\pi_{\beta}$ by Lemma 6.5. This implies that $\beta \alpha \in P_{i}$.

Lemma 6.7 Let A be a generating set of $P G_{r}(n)$. Then $A \cap P_{i} \neq \emptyset$ for all $i \in\{1,2\}$.
Proof Let $i \in\{1,2\}$ and $\alpha \in P_{i}$. Then $\alpha \in J(n-1)$ and $\alpha=\alpha_{1} \alpha_{2} \cdots \alpha_{k}$ where $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k} \in A$. If $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k} \in J(n)$, then $\alpha=\alpha_{1} \alpha_{2} \cdots \alpha_{k} \in J(n)$ since $J(n)$ is a subgroup of $P G_{r}(n)$, which is a contradiction. Thus, there exists $\alpha_{t} \in A$ such that $\alpha_{t} \notin J(n)$, that is $\alpha_{t} \in Q(n ; n-1)$. If $\alpha_{t} \in Q(n ; n-2)$, we obtain $\alpha=\alpha_{1} \alpha_{2} \cdots \alpha_{k} \in Q(n ; n-2)$ since $Q(n ; n-2)$ is an ideal of $P G_{r}(n)$, a contradiction. Hence, $\alpha_{t} \in J(n-1)$. We may assume that t is the least integer among $1,2, \ldots, k$ in which $\alpha_{t} \in J(n-1)$, this means $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{t-1} \in J(n)$. Now, we write $\alpha=\gamma \alpha_{t} \lambda$ where $\gamma=\alpha_{1} \alpha_{2} \cdots \alpha_{t-1} \in J(n)$ and $\lambda=$
$\alpha_{t+1} \alpha_{t+2} \cdots \alpha_{k} \in J(n) \cup J(n-1)$. We note that $\gamma \alpha_{t} \in Q(n ; n-1)$ since $\alpha_{t} \in J(n-1)$. If $\gamma \alpha_{t} \in Q(n ; n-2)$, then $\alpha=\left(\gamma \alpha_{t}\right) \lambda \in Q(n ; n-2)$, this is a contradiction. So, $\gamma \alpha_{t} \in J(n-1)$. We consider two cases.

Case 1: $\lambda \in J(n)$. Assume that $\alpha_{t} \in P_{j}$ where $j \in\{1,2\} \backslash\{i\}$. Then by Lemma 6.6 (1) we get that $\gamma \alpha_{t} \in P_{j}$. This implies that $\alpha=\left(\gamma \alpha_{t}\right) \lambda \in P_{j}$ by Lemma 6.6 (2), this contradicts the fact that $\alpha \in P_{i}$. Thus, $\alpha_{t} \in P_{i}$.

Case 2: $\lambda \in J(n-1)$. Since $\gamma \alpha_{t},\left(\gamma \alpha_{t}\right) \lambda \in J(n-1)$, it follows from Lemma 6.5 that $\pi_{\gamma \alpha_{t}}=\pi_{\left(\gamma \alpha_{t}\right) \lambda}=\pi_{\alpha}$. Hence, $\gamma \alpha_{t} \in P_{i} \subseteq J(n-1)$ since $\alpha \in P_{i}$. If $\alpha_{t} \in P_{j}$ where $j \in\{1,2\} \backslash\{i\}$. Then by Lemma 6.6 (1) we get that $\gamma \alpha_{t} \in P_{j}$, a contradiction. So, $\alpha_{t} \in P_{i}$.

In both cases, we have $\alpha_{t} \in A \cap P_{i}$. Therefore, $A \cap P_{i} \neq \emptyset$.
Since $r \leq n-2, P G_{r}(n) \neq J(n)=\langle J(n)\rangle$. Moreover, an element of $J(n)$ can not be written as a product of some elements of $Q(n ; n-1)$ since $Q(n ; n-1)$ is an ideal. It is clear therefore that any generating set of $P G_{r}(n)$ must contain a generating set of $J(n)$. Then by Lemma 6.7, we obtain

$$
\begin{equation*}
\operatorname{rank}\left(P G_{r}(n)\right) \geq \operatorname{rank}(J(n))+2=\operatorname{rank}\left(S_{r} \times S_{n-r}\right)+2 \tag{6.1}
\end{equation*}
$$

We note that $P_{1} \cup J(n) \subseteq F_{r}(n)$. The following lemma follows immediately from [1, Lemma 4.7].
Lemma 6.8 Let ξ be any an element of P_{1}. If $\alpha \in P_{1}$, then $\alpha=\lambda \xi \mu$ for some $\lambda, \mu \in J(n)$.

Lemma 6.9 Let ζ be any an element of P_{2}. If $\alpha \in P_{2}$, then $\alpha=\lambda \zeta \mu$ for some $\lambda, \mu \in J(n)$.
Proof Assume that $\alpha \in P_{2}$. We write

$$
\zeta=\left(\begin{array}{ccccc}
1 & \cdots & r & \{t, u\} & y_{i} \\
1 \sigma & \cdots & r \sigma & b & y_{i} \zeta
\end{array}\right) \text { and } \alpha=\left(\begin{array}{ccccc}
1 & \cdots & r & \{v, w\} & x_{i} \\
1 \delta & \cdots & r \delta & c & x_{i} \alpha
\end{array}\right)
$$

where $\sigma, \delta \in S_{r} ; t, u, v, w, b, c \in X \backslash Y ; y_{i} \in(X \backslash Y) \backslash\{t, u\} ; x_{i} \in(X \backslash Y) \backslash\{v, w\} ; y_{i} \zeta \in(X \backslash Y) \backslash\{b\}$ and $x_{i} \alpha \in(X \backslash Y) \backslash\{c\}$ for all $1 \leq i \leq n-r-2$. Define

$$
\lambda=\left(\begin{array}{llllll}
1 & \cdots & r & v & w & x_{i} \\
1 & \cdots & r & t & u & y_{i}
\end{array}\right) \text { and } \mu=\left(\begin{array}{cccccc}
1 \sigma & \cdots & r \sigma & b & y_{i} \zeta & z \\
1 \delta & \cdots & r \delta & c & x_{i} \alpha & z^{\prime}
\end{array}\right)
$$

where $z \in X \backslash X \zeta$ and $z^{\prime} \in X \backslash X \alpha$. Then $\lambda, \mu \in J(n)$ and $\alpha=\lambda \zeta \mu$.

Corollary 6.10 Let $n \geq 4$ and $J(n)=\langle\mu, \rho\rangle$. Then $\{\mu, \rho, \xi, \zeta\}$ is a generating set of $P G_{r}(n)$ where ξ and ζ are any elements of P_{1} and P_{2}, respectively.

Proof We let ξ and ζ be elements of P_{1} and P_{2}, respectively. Then by Lemmas 6.8,6.9, we obtain $J(n-1) \subseteq\langle J(n) \cup\{\xi, \zeta\}\rangle=\langle\mu, \rho, \xi, \zeta\rangle$. It follows that $\langle J(n-1)\rangle \subseteq\langle\mu, \rho, \xi, \zeta\rangle$. By Corollary 6.4, we have $Q(n ; n-1)=\langle J(n-1)\rangle$. This implies that

$$
P G_{r}(n)=Q(n ; n-1) \cup J(n)=\langle J(n-1)\rangle \cup\langle\mu, \rho\rangle \subseteq\langle\mu, \rho, \xi, \zeta\rangle \subseteq P G_{r}(n)
$$

Hence, $P G_{r}(n)=\langle\mu, \rho, \xi, \zeta\rangle$.

SOMMANEE/Turk J Math

Remark 6.2 For the case $n=3$, we have $r=1$ and $J(n)=J(3)=\left\langle\left(\begin{array}{lll}1 & 2 & 3 \\ 1 & 3 & 2\end{array}\right)\right\rangle$. Then $\left\{\left(\begin{array}{lll}1 & 2 & 3 \\ 1 & 3 & 2\end{array}\right), \xi, \zeta\right\}$ is a generating set of $P G_{1}(3)$ where ξ and ζ are any elements of P_{1} and P_{2}, respectively.

Theorem 6.11 For $1 \leq r \leq n-2$,

$$
\operatorname{rank}\left(P G_{r}(n)\right)= \begin{cases}3 & \text { if } n=3 \\ 4 & \text { if } n \geq 4\end{cases}
$$

Proof It is known that $\operatorname{rank}\left(P G_{r}(n)\right) \geq \operatorname{rank}\left(S_{r} \times S_{n-r}\right)+2$ by (6.1). Then by Lemma 6.1, we get that $\operatorname{rank}\left(P G_{r}(n)\right) \geq 3$ if $n=3$, and $\operatorname{rank}\left(P G_{r}(n)\right) \geq 4$ if $n \geq 4$. An immediate consequence of Remark 6.2 and Corollary 6.10 is that $\operatorname{rank}\left(P G_{r}(n)\right)=3$ if $n=3$, and $\operatorname{rank}\left(P G_{r}(n)\right)=4$ if $n \geq 4$, as required.

Acknowledgments

The author thanks the referees for their careful reading of the manuscript and for their suggestions.

References

[1] Billhardt B, Sanwong J, Sommanee W. Some properties of Umar semigroups: isomorphism theorems, ranks and maximal inverse subsemigroups. Semigroup Forum 2018; 96 (3): 581-595. doi: 10.1007/s00233-018-9933-6
[2] Clifford AH, Preston GB. The Algebraic Theory of Semigroups, Vol II. Providence, RI, USA: American Mathematical Society, 1967.
[3] Doss CG. Certain equivalence relations in transformation semigroups. M.A., University of Tennessee, Knoxville, USA, 1955.
[4] Hall M. The theory of groups. New York, NY, USA: Macmillan, 1959.
[5] Honyam P, Sanwong J. Semigroup of transformations with invariant set. Journal of the Korean Mathematical Society 2011; 48: 289-300. doi: 10.4134/JKMS.2011.48.2.289
[6] Howie JM. Fundamentals of Semigroup Theory. New York, NY, USA: Oxford University Press, 1995.
[7] Howie JM, McFadden RB. Idempotent rank in finite full transformation semigroups, Proceedings of the Royal Society of Edinburgh. Section A. Mathematics. 1990; 114: 161-167. doi: 10.1017/S0308210500024355
[8] Laysirikul E. Semigroups of full transformations with the restriction on the fixed set is bijective. Thai Journal of Mathematics 2016; 14 (2): 497-503.
[9] Magill Jr. KD. Subsemigroups of $S(X)$. Mathematica Japonica 1966; 11: 109-115.
[10] Malcev AI. Symmetric groupoid. Matematicheskii Sbornik 1952; 73 (1): 136-151.
[11] Nenthein S, Youngkhong P, Kemprasit Y. Regular elements of some transformation semigroups. Pure Mathematics and Applications 2005; 16 (3): 307-314.
[12] Toker K, Ayik H. On the rank of transformation semigroup $T_{(n, m)}$. Turkish Journal of Mathematics 2018; 42 (4): 1970-1977. doi: 10.3906/mat-1710-59
[13] Umar A. A class of quasi-adequate transformation semigroups. Portugaliae Mathematica 1994; 51: 553-570.

[^0]: *Correspondence: worachead_som@cmru.ac.th
 2010 AMS Mathematics Subject Classification: 20M20

