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Abstract: In this paper, we consider a regular fractal Sturm–Liouville boundary value problem. We prove the self-
adjointness of the differential operator which is generated by the Fα -derivative introduced in [32]. We obtained the Fα -
analogue of Liouville’s theorem, and we show some properties of eigenvalues and eigenfunctions. We present examples
to demonstrate the efficiency and applicability of the obtained results. The findings of this paper can be regarded as a
contribution to an emerging field.

Key words: Fractal calculus, fractal derivative, Sturm–Liouville problem, eigenvalues, eigenfunctions

1. Introduction
Sturm–Liouville problems which have been successfully applied to many fields of science, engineering, and
mathematics have shown a considerable development since they were first introduced over 180 years ago [41].

A standard form of the Sturm–Liouville differential equation is given as

− d

dx

(
p(x)

df

dx

)
+ q(x)f = λw(x)f,

where p(x) , q(x) , and w(x) are precisely defined functions based on the studies considered, and they are
required to satisfy additional conditions.

One of the most important boundary value conditions for this equation are

f(a) cosα+ f ′(a) sinα = 0,

f(b) cosβ + f ′(b) sinβ = 0

where α and β are two arbitrary real numbers.
A Sturm–Liouville problem is said to be regular if the interval [a, b] is finite, and the function q(x) in the

differential equation is summable on it. Otherwise, if [a, b] is infinite, or if q(x) is not summable on the interval,
or both, the Sturm–Liouville problem is said to be singular [26]. Much is already known about Sturm–Liouville
problems. Early developments can be found in [28].
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It is a very well-recognized fact that fractals can model many structures found in nature (see [4, 27])
and they are often too irregular to have any smooth differentiable structure defined on them, which results in
delivering the methods and techniques of ordinary calculus powerless and inapplicable. Some approaches have
been developed to deal with this inapplicability by means of fractional derivatives [6, 10, 21, 23, 24, 34, 38, 42],
fractional spaces [1, 7, 20, 35], harmonic analysis [2, 5, 8, 22, 25, 37, 39], and measure theory, non-standard
methods, and stochastic process [3, 29–31, 36, 40]. Yet, there has still been a gap in the literature on how to
develop an appropriate calculus mainly related to the disconnected fractal subsets of R .

In [32], Parvate and Gangal introduced a new calculus based on fractal subsets of the real line. In this
calculus, an integral of order α , 0 < α ≤ 1 , called Fα -integral is defined which makes it possible to integrate
functions with fractal support F of dimension α . Moreover, a derivative of order α , 0 < α ≤ 1 , called Fα -
derivative is introduced, which allows us to differentiate functions like the Cantor staircase by changing only on
a fractal set. Unlike the classical fractional derivative, the Fα -derivative is local and the Fα -calculus preserves
much of the simplicity of ordinary calculus.

Studies concerning the applications of fractal calculus have been an important area of research in recent
years. For instance, Golmankhaneh has presented a review and summary of applications in classical mechanics,
quantum mechanics and optics in [14], Golmankhaneh and Cattani have introduced the fractal Euler method
in order to solve fractal differential equations in [15], Golmankhaneh and Fernandez have defined the integral
and derivative of functions on Cantor tartan spaces of different dimensions in [13], Golmankhaneh and Tunç
have introduced the analogues of Laplace and Sumudu transforms on fractal calculus in [12], and also we may
refer to [11, 16, 17] for other relevant studies.

In this paper, we consider a regular fractal Sturm–Liouville boundary value problem consisting of the
equation

lα(f) := −(Dα
F )

2f(x) + q(x)f(x) = λf(x), x ∈ [0, π], (1.1)

together with the boundary conditions

U(f) := Dα
F f(0)− hf(0) = 0, (1.2)

V (f) := Dα
F f(π) +Hf(π) = 0. (1.3)

Here Dα
F indicates the Fα -derivative which was introduced in [32], λ is a spectral parameter, q(x) , h and H

are real, and q(x) ∈ Lα
2 (0, π) where Lα

2 (0, π) is the space of square Fα -integrable functions on (0, π) , i.e.∫ π

0

∣∣f(x)∣∣2dαf x < ∞

holds for f : [0, π] → R as Sch(f) is an α -perfect set. The space Lα
2 (0, π) is a Hilbert space associated with

the inner product 〈
f |g

〉
=

∫ π

0

f(x)g(x)dαFx.

We deal with some of the spectral properties of the boundary value problem (1.1)–(1.3). To the best of our
knowledge, no work has considered this problem in the manner of Fα -derivative.

We intend that the paper be self-contained; thus, in the next section, we initiate the paper by stating
some sufficient terminology from the fractal calculus so the reader does not need previous familiarity. Section
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3 is devoted to establish the main results of the paper. In Section 4, we provide some examples to demonstrate
the effectiveness of the obtained results, and in Section 5, we close the paper by some concluding remarks. The
findings in the paper can be regarded as a contribution to an emerging field.

2. Prelimininaries
In this section, we introduce some of Fα -calculus notations which will be used throughout the paper. We
borrow the standard notations found in [32].

Definition 2.1 (Definition 1, [32]) Let F be a fractal subset of I = [a, b] ⊂ R , then the flag function θ(F, I)

for a set and a closed interval I is given by

θ(F, I) =

{
1, if F ∩ I ̸= ∅,
0, otherwise.

Definition 2.2 (Definition 2, [32]) A subdivision P[a,b] of the interval [a, b] , a < b is a finite set of points
{a = x0, x1, x2, · · · , xn = b} , xi < xi+1 . Any interval of the form [xi, xi+1] is called a component interval or
just a component of the subdivision P . If Q is any subdivision of [a, b] and P ⊂ Q , then we say Q is a
refinement of P . If a = b , then the set {a} is the only subdivision of [a, b] .

Definition 2.3 [16] For a set F and subdivision P[a,b] , a < b , σα[F, P ] is defined as follows:

σα[F, P ] =

n−1∑
i=0

Γ(α+ 1) (xi+1 − xi)
α
θ
(
F, [xi, xi+1]

)
.

If a = b , σα[F, P ] is defined to be zero.

Now, we introduce the coarse-grained mass, which paves our way to define the mass function in the
sequel.

Definition 2.4 (Definition 4, [32]) Given δ > 0 and a ≤ b , the coarse grained mass γα
δ (F, a, b) of F ∩ [a, b]

is given by
γα
δ (F, a, b) = inf

{P[a,b]:|P |≤δ}
σα[F, P ] (2.1)

where |P | = max
0≤i≤n−1

(xi+1 − xi) for a subdivision P , and the infimum in (2.1) is taken over all subdivisions P

of [a, b] satisfying |P | ≤ δ .

The mass function is the limit of the coarse-grained mass as δ → ∞ :

Definition 2.5 (Definition 8, [32]) The mass function γα(F, a, b) is given by

γα(F, a, b) = lim
δ→0

γα
δ (F, a, b).

Here we note that since γα
δ (F, a, b) increases as δ decreases, γα(F, a, b) always exists and is a nonnegative

number which may possibly be +∞ .
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Now, we introduce one of the central notions of fractal calculus, the integral staircase function for a set F

of the order α . This function, which is a generalization of functions like the Lebesgue-Cantor staircase function,
describes how the mass of F ∩ [a, b] increases as b increases.

Definition 2.6 (Definition 15, [32]) Let a0 be an arbitrary but fixed real number. The integral staircase
function Sα

F (x) of order α for a set F is given by

Sα
F (x) =

{
γα(F, a0, x), if x ≥ a0,
−γα(F, x, a0), otherwise.

Now, we are ready to consider the sets for which the mass function γα(F, a, b) gives the most useful
information.

Definition 2.7 (Definition 17, [32]) The γ -dimension of F ∩ [a, b] denoted by dimγ

(
F ∩ [a, b]

)
is defined as

dimγ

(
F ∩ [a, b]

)
= inf {α : γα(F, a, b) = 0} = sup {α : γα(F, a, b) = ∞} .

We say that a point x is a point of change of a function f , if f is not constant over any open interval
(c, d) containing x . The set of all points of change of f is called the set of change of f and is denoted by Schf .

Let Sch(Sα
F ) be a closed set and every point of it be a limit point, then the set Sch(Sα

F ) is said to be
α -perfect.

In the following, we introduce the notation for limit and continuity using the topology of F ⊂ R with
the metric inherited from R .

Definition 2.8 (Definition 27, [32]) Let F ⊂ R , f : R → R and x ∈ F . A number l is said to be the limit
of f through the points of F , or simply F -limit of f , as y → x , if given any ϵ > 0 , there exists δ > 0 such
that y ∈ F and |y − x| < δ ⇒ |f(y)− l| < ϵ . If such a number exists, then it is denoted by l = limy→x f(y) .

This definition does not involve the values f(y) if y /∈ F . Also, F -limit is not defined at points x /∈ F .
We now introduce the notion of F -continuity which is continuity as far as the values of the function only

on the set F are concerned.

Definition 2.9 (Definition 28, [32]) A function f : R → R is said to be F -continuous at x ∈ F if
f(x) = F − lim

y→x
f(y) holds.

We note that the notion of F -continuity is not defined at x /∈ F . It is clear that continuity of f : R → R
at x ∈ F implies F -continuity at x . However, the converse is not true.

If F is an α -perfect set, then the Fα -derivative of f at the point x is defined as

Dα
F f(x) =

{
F − lim

y→x

f(y)−f(x)
Sα
F (y)−Sα

F (x) , if x ∈ F,

0, otherwise,

if the limit exists. The linearity of the Fα -derivative can be easily shown, i.e.

Dα
F (af + bg)(x) = aDα

F f(x) + bDα
F g(x)

holds for Fα -differentiable functions f, g and any arbitrary real numbers a, b .
The Fα -analogue of Leibniz rule will be needed later.
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Theorem 2.10 (Theorem 55, [32]) If the functions f, g : R → R are two Fα -differentiable functions, then
the multiplication of these two functions is also Fα -differentiable and

Dα
F (fg)(x) = Dα

F f(x) · g(x) + f(x) ·Dα
F g(x)

holds.

For a bounded function f on F ∩ [a, b] , the fractal integral is defined as g(x) =
∫ x

a
f(y)dαF y for all

x ∈ [a, b] and Dα
F g(x) = f(x)χF (x) , where χF (x) is the characteristic function of F ⊂ R .

Theorem 2.11 (Theorem 57, [32]) Let f : R → R be a continuous, Fα -differentiable function such that
Sch(f) is continuous in an α-perfect set F and h : R → R be a F -continuous such that h(x)χF (x) = Dα

F f(x) .
Then ∫ b

a

h(x)dαFx = f(b)− f(a).

The following theorem states that the Fα -integration can be performed by parts.

Theorem 2.12 (Theorem 58, [32]) Let the functions f, g : R → R functions such that u is continuous on
[a, b] and Sch(f) ⊂ F , Dα

F f exists and is Fα -continuous on [a, b] , g is continuous on [a, b] . Then,

∫ b

a

f(x)g(x)dαFx =

[
f(x)

∫ x

a

f(x′)dαFx
′
] b

a

−
∫ b

a

Dα
F f(x)

∫ x

a

g(x′)dαFx
′dαFx

holds.

3. Main results
In this section, we establish the main results of the paper. The first theorem is concerned with the self-adjointness
of the operator lα which was defined in (1.1). For a sufficient condition of an operator to be self-adjoint, one
may also refer to [18].

Theorem 3.1 The operator lα is self-adjoint in Lα
2 (0, π) .

Proof Let f = f(x, λ) and g = g(x, λ) be the solutions of the boundary value problem (1.1)–(1.3). Using
the definition of the inner product in Lα

2 (0, π) and integrating by part twice yield

〈
lαf |g

〉
=

∫
lαf(x, λ)g(x, λ)dαf x = −

∫ π

0

(
Dα

F

)2
f(x, λ)g(x, λ)dαFx+

∫ π

0
q(x)f(x, λ)g(x, λ)dαFx

= −
[
g(x, λ)Dα

F f(x, λ)|
π
0 −

∫ π

0
Dα

F f(x, λ)D
α
F g(x, λ)d

α
Fx

]
+

∫ π

0
q(x)f(x, λ)g(x, λ)dαFx

= −
[
g(x, λ)Dα

F f(x, λ)|
π
0 −

(
Dα

F g(x, λ)f(x, λ)|
π
0 −

∫ π

0

(
Dα

F

)2
g(x, λ)f(x, λ)dαFx

)]
+
∫ π

0
q(x)f(x, λ)g(x, λ)dαFx.

Since the functions f and g are the solutions of the boundary value problem (1.1)–(1.3), they satisfy the
boundary conditions (1.2), (1.3) and therefore

− g(x, λ)Dα
F f(x, λ)|

π
0 + Dα

F g(x, λ)f(x, λ)|
π
0 = 0
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holds. Thus, we have

〈
lαf |g

〉
= −

∫ π

0

(
Dα

F

)2
g(x, λ)f(x, λ)dαFx+

∫ π

0
q(x)f(x, λ)g(x, λ)dαFx.

=
∫ π

0

[
−
(
Dα

F

)2
g(x, λ) + q(x)g(x, λ)

]
f(x, λ)dαFx =

∫ π

0
f(x, λ)lαg(x, λ)dαFx =

〈
f |lαg

〉
and this completes the proof. 2

Definition 3.2 The values of the parameter λ for which boundary value problem (1.1)-(1.3) has nonzero
solutions are called the eigenvalues, and the corresponding nontrivial solutions are called eigenfunctions.

The following results are straightforward from Theorem 3.1.

Corollary 3.3 The eigenfunctions related to different eigenvalues are orthogonal in Lα
2 (0, π) .

Corollary 3.4 The eigenvalues {λn} and the eigenfunctions f(x, λn) , g(x, λn) are real.

Let f(x, λ) and g(x, λ) be the solutions of (1.1) under the initial conditions

f(0, λ) = 1, Dα
F f(0, λ) = h, g(π, λ) = 1, Dα

F g(π, λ) = −H. (3.1)

Clearly,
U(f) := Dα

F f(0)− hf(0) = 0, V (g) := Dα
F g(π) +Hg(π) = 0. (3.2)

Denote
∆(λ) = ⟨g(x, λ), f(x, λ)⟩, (3.3)

where
⟨f, g⟩ = Wα(f, g) = fDα

F g − gDα
F f

is the α -Wronskian of f and g .
Now, let us consider the fractal differential equation of second order

(Dα
F )

2f(x) + p1(x)D
α
F f(x) + p2(x)f(x) = 0. (3.4)

The following theorem will be useful in the sequel.

Theorem 3.5 (Analogue of Liouville’s Theorem) Let z1(x) and z2(x) be any solutions of (3.4). Then
the α-Wronskian of these two functions is given by

Wα(x) = Wα(x0)exp

{
−
∫ x

x0

p1(x
′)dαFx

′
}
, (3.5)

here x0 is an arbitrary number.

Proof Since z1(x) and z2(x) are the solutions of (3.4), we have

(Dα
F )

2z1(x) + p1(x)D
α
F z1(x) + p2(x)z1(x) = 0, (3.6)
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(Dα
F )

2z2(x) + p1(x)D
α
F z2(x) + p2(x)z2(x) = 0. (3.7)

We know that the α -Wronskian of the functions z1 and z2 is

Wα(x) = z1D
α
F z2 − z2D

α
F z1.

If we apply the Fα -derivative on Wα(x) , we get

Dα
FW

α(x) = Dα
F

(
z1D

α
F z2 − z2D

α
F z1

)
= z1(D

α
F )

2z2 − z2(D
α
F )

2z1. (3.8)

From equations (3.6) and (3.7), we have

(Dα
F )

2z1(x) = −p1(x)D
α
F z1(x)− p2(x)z1(x),

and
(Dα

F )
2z2(x) = −p1(x)D

α
F z2(x)− p2(x)z2(x)

, respectively. Substituting the LHS of the last two equations in the RHS of (3.8), we have

Dα
FW

α(x) = −p1(x)
(
z1D

α
F z2 − z2D

α
F z1

)
= −p1(x)W

α(x).

Thus, we have
Dα

FW
α(z1, z2)

Wα(z1, z2)
= −p1(x).

Using conjugacy between ordinary and fractal calculus [19, 33] and integrating yields

Wα(x) = Wα(x0)exp

{
−
∫ x

x0

p1(x
′)dαFx

′
}
.

This completes the proof. 2

By virtue of Theorem 3.5, ⟨g(x, λ), f(x, λ)⟩ does not depend on x . The function ∆(λ) which is defined
by Eq. (3.3) is called the characteristic function of the boundary value problem Lα . Substituting x = 0 and
x = π into (3.3), we get

∆(λ) = V (f) = −U(g). (3.9)

The function ∆(λ) is entire in λ and it has an at most countable set of zeros {λn} .

Theorem 3.6 The zeros {λn} of the characteristic function coincide with the eigenvalues of the boundary value
problem (1.1)–(1.3). The functions f(x, λn) and g(x, λn) are eigenfunctions, and there exists a sequence {βn}
such that

g(x, λn) = βnf(x, λn), βn ̸= 0. (3.10)

holds.

Proof The proof can be done similar to [9, Theorem 1.1.1, pg. 6]. Indeed, let λ0 be a zero of the characteristic
function ∆(λ) . Then, by virtue of (3.2), (3.3), and (3.9), we have g(x, λ0) = β0f(x, λ0) , and the functions
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g(x, λ0) and f(x, λ0) satisfy the boundary conditions (1.2), (1.3). Hence, λ0 is an eigenvalue, and g(x, λ0) and
f(x, λ0) are eigenfunctions related to λ0 .

Now, let λ0 be an eigenvalue of (1.1)–(1.3), and let y0 be the corresponding eigenfunction. Then
U(y0) = V (y0) = 0 holds. Clearly, y0(0) ̸= 0 . Without loss of generality, we take y0(0) = 1 . Then y′0(0) = h ,
and consequently y0(x) ≡ f(x, λ0) . Therefore, (3.9) yields ∆(λ0) = V

(
f(x, λ0)

)
= V (y0(x)) = 0 . We have also

proved that for each eigenvalue, there exists only one (up to a multiplicative constant) eigenfunction. 2

The weight numbers of the boundary value problem (1.1)–(1.3) are denoted by

αn :=

∫ π

0

f2(x, λn)d
α
Fx. (3.11)

The numbers {λn, αn} are called the spectral data of (1.1)–(1.3).

Lemma 3.7 The following relation holds:

βnαn = ∆̇(λn) (3.12)

where the numbers βn are defined by (3.10) and ∆̇(λ) represents the Fα -derivative of the characteristic function
with respect to λ .

Proof Since,
−(Dα

F )
2g(x, λ) + q(x)g(x, λ) = λg(x, λ),

−(Dα
F )

2f(x, λn) + q(x)f(x, λn) = λnf(x, λn)

we have

Dα
F ⟨g(x, λ), f(x, λn)⟩ = g(x, λ)(Dα

F )
2f(x, λn)− f(x, λn)(D

α
F )

2g(x, λ)
= g(x, λ)[q(x)f(x, λn)− λnf(x, λn)]− f(x, λn)[q(x)g(x, λ)− λg(x, λ)]
= (λ− λn)f(x, λn)g(x, λ)χF (x).

Here χF is the characteristic function of an α -perfect set F ⊂ R . Integrating this last equation from 0 to π ,
using Theorem 2.11 and taking conditions (3.1) with equation (3.9) into consideration yields

(λ− λn)
∫ π

0
g(x, λ)f(x, λn)d

α
f x = ⟨g(x, λ), f(x, λn)⟩|π0

= Dα
F f(π, λn) +Hf(π, λn) +Dα

F g(0, λ)− hg(0, λ)
= −∆(λ).

For λ → λn , this last equation yields∫ π

0

g(x, λn)f(x, λn)d
α
Fx = −∆̇(λn).

By using (3.10) and (3.11), we arrive at (3.12), which completes the proof. 2

Taking the definitions of βn and αn into consideration, we have the immediate conclusion of Lemma 3.7
as the following corollary.

Corollary 3.8 All zeros of ∆(λ) are simple, i.e. ∆̇(λn) ̸= 0 holds.
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4. Examples

In this section, we construct examples to illustrate the effectiveness of our theoretical results.

Example 4.1 Consider the following fractal Sturm–Liouville boundary value problem

−D2α
F y(x) = λy(x), (4.1)

y(0) +Dα
F y(0) = 0, y(1)−Dα

F y(1) = 0. (4.2)

If λ = 0 , then the general solution of the boundary value problem (4.1), (4.2) is

y(x) = ASα
F (x) +B,

where Sα
F (x) is the integral staircase function which was given in Definition 6, and A and B are arbitrary real

numbers. If λ < 0 , then the general solution of the boundary value problem (4.1), (4.2) is

y(x) = A exp
(√

−λSα
F (x)

)
+B exp

(
−
√
−λSα

F (x)
)
,

and if λ > 0 , then the general solution of the boundary value problem (4.1), (4.2) is

y(x) = A cos
(√

λSα
F (x)

)
+B sin

(√
λSα

F (x)
)
.

Example 4.2 Consider the following fractal Sturm–Liouville boundary value problem

D2α
F y(x) + 3Dα

F y(x) + 2y(x) + λy(x) = 0, (4.3)

y(0) = 0, y(1) = 0. (4.4)

The characteristic equation of equation (4.3) is

r2 + 3r + 2 + λ = 0,

with zeros

r1 =
−3 +

√
1− 4λ

2
, r2 =

−3−
√
1− 4λ

2
.

If λ <
1

4
, then r1 and r2 are real and distinct, so the general solution of equation (4.3) is

y(x) = A exp
(
r1S

α
F (x)

)
+B exp

(
r2S

α
F (x)

)
,

where Sα
F (x) is the integral staircase function which was given in Definition 2.6, and A and B are arbitrary

real numbers. If λ =
1

4
, then r1 = r2 = −3

2
, so the general solution of equation (4.3) is

y(x) = exp
(−3Sα

F (x)

2

)
+B exp

(
A+BSα

F (x)
)
,
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and if λ >
1

4
, then r1 = −3

2
+ iw and r2 = −3

2
− iw , where

w =

√
4λ− 1

2
, (4.5)

and the general solution of equation (4.3) is

y(x) = exp
(−3Sα

F (x)

2

)(
sin

(
nwSα

F (x)
))
, n = 1, 2, 3, · · ·

With the help of the boundary conditions and (4.5), the eigenvalues of this case can be calculated as

λn =

(
1 + 4n2π2

)
4

.

Remark 4.3 We note that if we set α = 1 , all the results lead to the standard ones.

5. Conclusion
In this paper we deal with a fractal Sturm–Liouville problem on a finite interval. We establish some of the
spectral properties of this problem, such as self-adjointness of the differential operator, orthogonality of the
eigenfunctions corresponding to different eigenvalues and realness of the eigenvalues. We present examples to
demonstrate the effectiveness of the obtained results. We believe that this paper will play an important role to
initiate studies related to fractal Sturm–Liouville problems.
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