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Abstract: In this paper, we consider the inverse boundary value problem for a partial differential equation of third order
with nonlocal boundary conditions, including an integral condition. Using analytical and operator-theoretic methods, as
well as the Fourier method, the existence and uniqueness of the classical solution of this problem is proved.
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1. Introduction
For the equation

uttt(x, t) + uxx(x, t) = a(t)u(x, t) + f(x, t) (1.1)

in the region DT = {(x, t) : 0 ≤ x ≤ 1, 0 ≤ t ≤ T} , we consider the inverse boundary value problem under the
conditions

u(x, 0) = φ0(x), ux(0, t) = 0, du(1, t) +

1∫
0

u(x, t)dx = 0, 0 ≤ t ≤ T, (1.2)

ut(x, 0) = φ1(x), utt(x, T ) = φ2(x), 0 ≤ x ≤ 1, (1.3)

u(0, t) = h(t), 0 ≤ t ≤ T, (1.4)

where d > 0 is a given number, f(x, t) and φi(x), i = 0, 1, 2, are given functions, u(x, t) and a(t) are the
required functions.

It is known [9] that when mathematical modeling of various processes of physics, chemistry, ecology,
and biology is performed, problems frequently arise, when, instead of classical boundary conditions, a certain
connection is established between the values of the unknown function at the boundary of the domain and inside
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it. Problems of this type are called nonlocal problems, and the study of such problems is caused not only
by theoretical interests, but also by practical necessity. A systematic study of nonlocal initial-boundary value
problems was first carried out in [5]. In particular, spatially nonlocal problems for a certain class of elliptic
equations were posed and investigated. Subsequently, in [8, 10] the problem formulated in [5] was called the
Bitzadze–Samarsky problem, and methods were proposed for solving problems of this type for general elliptic
equations. It should be noted that boundary value problems with nonlocal conditions also arise in the study of
certain inverse problems (see [26, 27]).

From the point of view of physical applications, third-order partial differential equations are of great
interest. These equations are considered when solving problems of the theory of nonlinear acoustics and in the
hydrodynamic theory of cosmic plasma, modeling fluid filtration in porous media. Studies of wave propagation
in cold plasma and magnetohydrodynamics also reduce to the partial differential equations of third order
(see[6, 24, 32]). To the study of nonlocal boundary value problems (including integral conditions) for partial
differential equations of the third order are devoted large number of works (see, for example, [4, 7, 18, 25, 35]
and the bibliography therein).

It should be noted that boundary value problems with integral conditions are of particular interest.
From physical considerations, the integral conditions are completely natural, and they arise in mathematical
modeling in cases where it is impossible to obtain information about the process occurring at the boundary of
the region of its flow using direct measurements or when it is possible to measure only some averaged (integral)
characteristics of the desired quantity.

Problem (1.1)–(1.4) arises when studying the issues of fluid filtration in porous media [3, 24, 35], heat
transfer in a heterogeneous medium [31, 36], moisture transfer in soil [6, 24], propagation of acoustic waves
in a weakly inhomogeneous medium [32]. Note that in studying moisture transfer in soils, u(x, t) means soil
moisture in fractions of a unit at a depth of x at time t , and the integral in (1.2) is the moisture content in the
active soil layer from 0 to 1 .

The inverse boundary value problems for a partial differential equations in various formulation were
considered in many papers (see, for example, [1, 2, 11–13, 19–23, 26–30, 33, 34, 37]). These problems for
elliptic equations with non-local boundary conditions were investigated in [20, 22], for parabolic equations
were investigated in [12, 13, 17, 23, 29, 30, 37], for hyperbolic equations were investigated in [1, 21]. The
inverse boundary value problems for a partial differential equations of third order with integral condition were
investigated only in [2, 23]. In [2], the initial conditions and the condition for redefining the desired function
include integrals of the desired function over the time and spatial variables, and in [23], the integral of the
desired function over the spatial variable is zero. In these works, when expanding the solution, the well-known
systems of functions are used, which form bases in the space L2(0, 1) . Note that problem (1.1)–(1.4) is related
to a second-order spectral problem with an integral condition, which is equivalent to a spectral problem with a
spectral parameter in the boundary conditions. The system of eigenfunctions of this spectral problem forms a
basis in L2(0, 1) after removing any function.

The purpose of this paper is to prove the existence and uniqueness of the classical solution of the inverse
boundary value problem for a partial differential equation (1.1) with nonlocal boundary conditions (1.2)–(1.4)
(with integral boundary condition of the second kind (1.3).

The paper is organized as follows: In Section 2 the problem (1.1)–(1.4) reduces to an equivalent problem.
In Section 3, we consider the spectral problem for an ordinary differential operator of second order with a
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spectral parameter in the boundary condition. We study the basis properties of the system of eigenfunctions
of this problem, and using these properties help us obtain some inequalities that we need in the sequel. Here,
we also introduced the necessary functional spaces. In Section 4 the existence and uniqueness of the solution of
inverse problem (1.1)–(1.4) is proved by using the Fourier method.

2. Reduction of problem (1.1)–(1.4) to an equivalent problem

The classical solution of the inverse boundary value problem (1.1)–(1.4) is a pair {u(x, t), a(t)} of functions
u(x, t) and a(t)having the following properties:

A1. The function u(x, t) is continuous in DT with all its derivatives entering into equation (1.1) and
boundary conditions (1.2) and (1.3);

A2. The function a(t) is continuous on [0, T ] ;
A3. All conditions (1.1)–(1.4) are satisfied in the usual sense.
Consider the problem

y′′′(t) = a(t)y(t), 0 ≤ t ≤ T, (2.1)

y(0) = y′(0) = y′′(T ) = 0, (2.2)

where a(t) ∈ C[0, T ] .

Lemma 2.1 Let the condition
2a0T

3
/
3 < 1 (2.3)

holds. Then problem (2.1), (2.2) has only the trivial solution.

Proof Note that problem
y′′′(t) = 0, 0 ≤ t ≤ T,

y(0) = y′(0) = y′′(T ) = 0,

has only a trivial solution. Then the boundary value problem (2.1), (2.2) is equivalent to the following integral
equation

y(t) =

T∫
0

K(t, τ)a(τ)y(τ)dτ, (2.4)

where K(x, t) is the Green’s function of the differential expression ℓ(h) = h′′′ under the boundary conditions
(2.2), which has the form

K(t, τ) =

{
− t2

2 if t ∈ [0, τ ],

−tτ + τ2

2 if t ∈ [τ, T ].
(2.5)

Denote:

Ay(t) =

T∫
0

K(t, τ)a(τ)y(τ)dτ. (2.6)
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From the properties of the function K(x, t) and the continuity of the function a(t) , it follows that the operator
A : C[0, T ] → C[0, T ] is continuous. By (2.4), (2.6), problem (2.1), (2.2) can be written in the following
equivalent form

y(t) = Ay(t), t ∈ [0, T ]. (2.7)

For any y(t), v(t) ∈ C[0, T ] , we have

||Av(t)−Ay(t)||∞ ≤ ||a(t)||∞||y(t)− v(t)||∞ max
t∈ [0,T ]

|
T∫
0

|K(t, τ)|dτ ≤

≤ 2
3T

3a0||y(t)− v(t)||∞,

(2.8)

since by virtue of (2.5)

T∫
0

|K(t, τ)|dτ =

t∫
0

(
tτ +

τ2

2
+

(
Tt− t2

2

)
τ

)
dτ +

T∫
t

t2

2
dτ =

1

6
t3 +

1

2
Tt2

and the function g(t) = 1
6 t

3 + 1
2Tt

2 attains its maximum at the point t = T and g(T ) = 2
3T

3 . Hence, taking
(2.3) into account, we find from (2.8) that the operator A is a contraction in the space C[0, T ] . Therefore, in
the space C[0, T ] the operator A has a unique fixed point. Thus, equation (2.7) has a unique solution in the
space C[0, T ] . Since y ≡ 0 is a solution of problem (2.1), (2.2), then it is unique. 2

Along to the inverse boundary value problem (1.1)–(1.4), we consider the following auxiliary inverse
boundary value problem: it is required to determine the pair {u(x, t), a(t)} of functions u(x, t) and a(t)

possessing properties A1 and A2, satisfying conditions (1.1)–(1.3) and the relation

h′′′(t) + uxx(0, t) = a(t)h(t) + f(0, t), 0 ≤ t ≤ T. (2.9)

Lemma 2.2 Let φi(x) ∈ C[0, 1] , i = 0, 1, 2 , f(x, t) ∈ C(DT ) , h(t) ∈ C3[0, T ] , h(t) ∈ C3[0, T ] for t ∈ [0, T ]

and the following matching conditions are satisfied:

φ0(0) = h(0), φ1(0) = h′(0), φ2(0) = h′′(T ). (2.10)

Then the following assertions hold:
i) Every classical solution {u(x, t), a(t)} of problem (1.1)–(1.4) is also a solution of the problem (1.1)–

(1.3), (2.9);
ii) Every solution {u(x, t), a(t)} of problem (1.1)–(1.3), (2.9) such that (2.3) holds is a classical solution

of (1.1)–(1.4).

Proof Let {u(x, t), a(t)} be the classical solution {u(x, t), a(t)} of problem (1.1)–(1.4). Assuming h(t) ∈
C3[0, T ] and differentiating (1.4) three times, we obtain

u′′′
t3(0, t) = h′′′(t), 0 ≤ t ≤ T. (2.11)

By virtue of (1.1), we have

uttt(0, t) + uxx(0, t) = a(t)u(0, t) + f(0, t), 0 < t < T. (2.12)
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Taking into account (2.11) and (1.4), we obtain from (2.12) that (2.9) is satisfied.
Now let {u(x, t), a(t)} be a solution of problem (1.1)–(1.3), (2.9) such that condition (2.3) is satisfied.

Then it follows from (2.9) and (2.11) that

d

dt3
(u(0, t)− h(t)) = a(t) (u(0, t)− h(t)) , 0 < t < T. (2.13)

Next, by virtue of (1.2) and (2.10), we have

u(0, 0)− h(0) = φ0(0)− h(0) = 0, (2.14)

ut(0, 0)− h′(0) = φ1(0)− h′(0) = 0, (2.15)

utt(0, T )− h′′(T ) = φ2(0)− h′′(T ) = 0, (2.16)

From (2.13)–(2.16), by Lemma 2.1, we conclude that (1.4) is satisfied. 2

3. Some properties of the corresponding spectral problems and the introduction of certain nec-
essary spaces

We consider the following eigenvalue problem

y′′(x) + λy(x) = 0, 0 ≤ x ≤ 1, (3.1)

y′(0) = 0, y′(1) = dλy(1), (3.2)

where λ is a spectral parameter, d is a real constant such that d > 0 . It is easy to verify that problem (3.1),
(3.2) has only the eigenfunctions

yk(x) =
√
2 cos

√
λkx, k = 0, 1, . . . ,

with nonnegative eigenvalues λk, k = 0, 1, . . . , determined by the equation

tan
√
λ = −

√
λ .

By solving the homogeneous problem corresponding to problem (1.1)–(1.3) by the method of separation
of variables, we arrive at the spectral problem for equation (3.1) with boundary conditions

y′(0) = 0, dy(1) +

1∫
0

y(x)dx = 0. (3.3)

The system of eigenfunctions of this problem is the system {yk(x)}∞k=1 , which is obtained from the system of
eigenfunctions of problem (3.1), (3.2) without the function y0(x) corresponding to the eigenvalue λ0 .

Following the corresponding arguments in [14–16], we verify the validity of the following assertions.
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Lemma 3.1 The system {zk(x)}∞k=1 adjoint to the system {yk(x)}∞k=1 is given by the relation

zk(x) =
√
2
cos

√
λkx− cos

√
λk

1 + d cos2
√
λk

. (3.4)

Theorem 3.2 The system {yk(x)}∞k=1 forms a basis in the space Lp(0, 1), 1 < p < ∞ ( forms a Riesz basis in
L2(0, 1) ) .

Lemma 3.3 If g(x) ∈ W 1
2 (0, 1) and J(g) ≡ dg(1) +

1∫
0

g(x)dx = 0 , then

( ∞∑
k=1

(
√
λk |gk|)2

) 1
2

≤ M ∥g′(x)∥L2
; (3.5)

if g(x) ∈ W 2
2 (0, 1), J(g) = 0, g′(0) = 0 , then

( ∞∑
k=1

(λk |gk|)2
) 1

2

≤ 2m0 |g′(1)|+
√
2M ∥g′′(x)∥L2

; (3.6)

and if g(x) ∈ W 3
2 (0, 1), J(g) = 0, g′(0) = 0, g′(1) + dg′′(1) = 0 , then

( ∞∑
k=1

(λk

√
λk |gk|)2

)1/2

≤ M ∥g′′′(x)∥L2
, (3.7)

where M =
(
N(1 +N) + 2 + 1

9d2

) 1
2 , m0 = 1

d

( ∞∑
k=1

1
λk

) 1
2

and || · ||L2
is the norm of L2(0, 1) .

Denote by B
3/2
2,T the set of all functions u(x, t) of the form u(x, t) =

∞∑
k=1

uk(t)yk(x) , (x, t) ∈ DT , such

that uk(t) ∈ C[0, T ] and the following relation holds:

{ ∞∑
k=1

(λk

√
λk ∥uk(t)∥C[0,T ])

2

}1/2

< +∞.

On this set, we define the norm as follows:

∥u(x, t)∥
B

3/2
2,T

=

{ ∞∑
k=1

(
λk

√
λk ∥uk(t)∥∞

)2} 1
2

. (3.8)

It is obvious that B
3/2
2,T is a Banach space with norm (3.8).

The function u(x, t) , as an element of the space B
3/2
2,T , in particular, has the following properties:

u(x, t), ux(x, t), uxx(x, t) ∈ C(DT ), uxxx(x, t) ∈ C([0, T ];L2(0, 1)),
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ux(0, t) = 0, du(1, t) +

1∫
0

u(x, t)dx = 0, 0 ≤ t ≤ T.

We denote by E
3/2
T the Banach space consisting of the topological product B

3/2
2,T ×C[0, T ] , equipped with

the norm ||z||
E

3/2
T

= ∥u(x, t)∥
B

3/2
2,T

+ ∥a(t)∥∞ , where z = {u, a} .

4. The existence and uniqueness of the classical solution of the inverse boundary value problem

The first component u(x, t) of the solution {u(x, t), a(t)} of problem (1.1)–(1.3), (2.9) will be sought in the
form

u(x, t) =

∞∑
k=1

uk(t)yk(x), (4.1)

where

uk(t) =

1∫
0

u(x, t)zk(x)dx, k = 1, 2, . . . , yk(x) =
√
2 cos

√
λkx,

zk(x) =

√
2
(
cos

√
λkx− cos

√
λk

)
1 + d cos2

√
λk

.

To determine the unknown functions uk(t), k = 1, 2, . . . , applying the method of separation of
variables from (1.1) and (1.2), we obtain

u′′′
k (t)− λkuk(t) = Fk(t; a, u), k = 1, 2, . . . ; 0 ≤ t ≤ T, (4.2)

uk(0) = φ0, k, u′
k(0) = φ1, k, u′′

k(T ) = φ2, k, k = 1, 2, . . . , (4.3)

where

Fk(t;u, a) = fk(t) + a(t)uk(t), fk(t) =

1∫
0

f(x, t)zk(x)dx,

φi, k =

1∫
0

φi(x)zk(x)dx, i = 0, 1, 2, k = 1, 2, . . . .

Solving problem (4.2), (4.3), we find that

uk(t) =

(
√
3e

3
2λ

1
3
k T + 2

√
3 cosλ

1
3

k

√
3

2
T

)−1{
2φ0, k

[
−eλ

1
3
k t sin

(√
3

2
λ

1
3

k T − π

3

)
+

e
1
2λ

1
3
k (3T−t) cos

(√
3

2
λ

1
3

k t−
π

6

)
− e

1
2λ

1
3
k t sin

(√
3

2
λ

1
3

k (T − t)− 2π

3

)]
+
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2

λ
1
3

k

φ1k

[
−eλ

1
3
k t sin

(√
3

2
λ

1
3

k T − 2π

3

)
+ e

1
2λ

1
3
k (3T−t) sin

√
3

2
λ

1
3

k t+ (4.4)

e−
1
2λ

1
3
k t sin

(√
3

2
λ

1
3

k (T − t)− 2π

3

)]
+

√
3

λ
1
3

k

φ2, k

[
eλ

1
3
k (

T
2 +t) −

2e
1
2λ

1
3
k (T−t) cos

(√
3

2
λ

1
3

k t−
π

3

)]}
+

T∫
0

Gk(t, τ)Fk(τ ;u, a)dτ,

where

Gk(t, τ) =

{
αk (T, t, τ) if t ∈ [0, τ ],
βk (T, t, τ) if t ∈ [τ, T ],

αk (T, t, τ) = − 1

3λ
2
3

k

(
√
3e

3
2λ

1
3
k T + 2

√
3 cos

√
3

2
λ

1
3

k T

)−1

{
eλ

1
3
k (

3
2T+t−τ) − 2eλ

1
3
k (

3
2T− t

2−τ) cos

(√
3

2
λ

1
3

k t−
π

3

)
+ 2 cos

√
3

2
λ

1
3

k (T − τ) ·

(
eλ

1
3
k (t+

τ
2 ) − 2e−

1
2λ

1
3
k (t−τ) cos

(√
3

2
λ

1
3

k t−
π

3

))}
,

βk (T, t, τ) = − 1

3λ
2
3

k

(
√
3e

3
2λ

1
3
k T + 2

√
3 cos

√
3

2
λ

1
3

k T

)−1

{
−2eλ

1
3
k (

3
2T− t

2−τ) cos

(√
3

2
λ

1
3

k t−
π

3

)
+ 2 cos

√
3

2
λ

1
3

k (T − τ) ·

(
eλ

1
3
k (t+

τ
2 ) − 2e−

1
2λ

1
3
k (t−τ) cos

(√
3

2
λ

1
3

k t−
π

3

))
+

2e
1
2λ

1
3
k (3T−(t−τ)) sin

(√
3

2
λ

1
3

k (t− τ) +
π

6

)
−

−2 cos

√
3

2
λ

1
3

k T

(
eλ

1
3
k (t−τ) − 2e−

1
2λ

1
3
k (t−τ) sin

(√
3

2
λ

1
3

k (t− τ) +
π

6

))}
.

After substituting the expressions from (4.4) into (4.1), to determine the components of the classical solution
of problem (1.1)–(1.3), (2.9), we obtain

u(x, t) =

∞∑
k=1


(
√
3e

3
2λ

1
3
k T + 2

√
3 cos

√
3

2
λ

1
3

k T

)−1{
2φ0, k

[
−eλ

1
3
k t sin

(√
3

2
λ

1
3

k T − π

3

)
+
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e
1
2λ

1
3
k (3T−t) cos

(√
3

2
λ

1
3

k t−
π

6

)
− e

1
2λ

1
3
k t sin

(√
3

2
λ

1
3

k (T − t)− 2π

3

)]
+

2

λ
1
3

k

φ1k

[
−eλ

1
3
k t sin

(√
3

2
λ

1
3

k T − 2π

3

)
+ e

1
2λ

1
3
k (3T−t) sin

√
3

2
λ

1
3

k t + (4.5)

e−
1
2λ

1
3
k t sin

(√
3

2
λ

1
3

k (T − t)− 2π

3

)]
+

√
3

λ
1
3

k

φ2k

[
eλ

1
3
k (

T
2 +t) −

2e
1
2λ

1
3
k (T−t) cos

(√
3

2
λ

1
3

k t−
π

3

)]}
+

T∫
0

Gk(t, τ)Fk(τ ;u, a)dτ

 yk(x).

Now taking into account (4.1), from (2.9) we find

a(t) = (h(t))
−1

{
h′′′(t)− f(0, t)−

√
2

∞∑
k=1

λkuk(t)

}
. (4.6)

In order to obtain the equation for the second component of the solution of problem (1.1)–(1.3), (2.9),
substituting expression (4.4) in (4.6), we get

a(t) = h−1(t) {h′′(t)− f(0, t)−

−
√
2

∞∑
k=1

λk

(√3e
3
2λ

1
3
k T + 2

√
3 cosλ

1
3

k

√
3

2
T

)−1{
2φ0, k

[
−eλ

1
3
k t sin

(√
3

2
λ

1
3

k T − π

3

)
+

e
1
2λ

1
3
k (3T−t) cos

(√
3

2
λ

1
3

k t−
π

6

)
− e

1
2λ

1
3
k t sin

(√
3

2
λ

1
3

k (T − t)− 2π

3

)]
+

2

λ
1
3

k

φ1,k

[
−eλ

1
3
k t sin

(√
3

2
λ

1
3

k T − 2π

3

)
+ e

1
2λ

1
3
k (3T−t) sin

√
3

2
λ

1
3

k t+

e−
1
2λ

1
3
k t sin

(√
3

2
λ

1
3

k (T − t)− 2π

3

)]
+

√
3

λ
1
3

k

φ2,k

[
eλ

1
3
k (

T
2 +t) − (4.7)

− 2e
1
2λ

1
3
k (T−t) cos

(√
3

2
λ

1
3

k t−
π

3

)]}
+

T∫
0

Gk(t, τ)Fk(τ ;u, a)dτ


Thus, the solution of problem (1.1)–(1.3), (2.9) is reduced to the solution of (4.5), (4.7) with respect to

the unknown functions u(x, t) and a(t) .
To study the uniqueness problem for the solution of problem (1.1)–(1.3), (2.9), the following lemma plays

an important role.
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Lemma 4.1 If {u(x, t), a(t)} is any solution of problem (1.1)–(1.3), (2.9), then the functions uk(t) =

1∫
0

u(x, t)zk(x)dx, k = 1, 2, . . . , satisfy on [0, T ] system (4.4).

Proof Let {u(x, t), a(t)} be any solution of problem (1.1)–(1.3), (2.9). Then it is obvious that

2

1∫
0

uttt(x, t)zk(x)dx =
d3

dt3

1∫
0

u(x, t)zk(x)dx = u′′′
k (t), k = 1, 2, . . . . (4.8)

Next, using twice the formula integration of parts and taking into account the boundary condition (1.3), we
obtain

1∫
0

uxx(x, t)zk(x)dx =

√
2

αk

1∫
0

uxx(x, t)
(
cos
√

λkx− cos
√
λk

)
dx =

−
√
2

αk

dλku(1, t) cos
√

λk + λk

1∫
0

uxx(x, t) cos
√

λkxdx

 =

−
√
2

αk

λkdu(1, t) +

1∫
0

u(x, t)dx

 cos
√
λk+ (4.9)

λk

1∫
0

u(x, t)
(
cos(

√
λkx)− cos

√
λk

)
dx

 = −λkuk(t),

where αk = 1 + d cos2
√
λk > 1 .

Now, multiplying both sides of equation (1.1) by the function zk(x), k = 1, 2, . . . , integrating the
resulting equality over x in the range from 0 to 1 and using (4.8), (4.9) we obtain (4.2).

Similarly, from (1.1) we obtain that the conditions (4.3) are satisfied.
Thus, uk(t), k = 1, 2, . . . is a solution of problem (4.2), (4.3); therefore, the functions uk(t), k =

1, 2, . . . satisfy system (4.4) on [0, T ] . 2

Corollary 4.2 Let system (4.5), (4.7) have a unique solution. Then problem (1.1)–(1.3), (2.9), can not have
more than one solution, i.e. if problem (1.1)–(1.3), (2.9), has a solution, then it is unique.

We consider in the space E
3/2
T the operator Φ defined by

Φ(u, a) = {Φ1(u, a),Φ2(u, a)}

where

Φ1(u, a) = ũ(x, t) ≡
∞∑
k=1

ũk(t) sinλkx, Φ2(u, a) = ã (t)

and ũk(t), k = 1, 2, . . . , and a(t) are equal to the right-hand sides of (3.4) and (4.3), respectively.
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It follows from the inequality

cosx ≥ −1

4
ex for x ≥ 0

that

e
3
2λ

1
3
k T + 2 cos

√
3

2
λ

1
3

k T ≥ 1

2
e

3
2λ

1
3
k T . (4.10)

By virtue of inequality (4.10), we have

chρkt

ch2ρkT + cos 2ρkT
≤ 2,

chρk(2T − t)

ch2ρkT + cos 2ρkT
≤ 2, 0 ≤ t ≤ T,

e
1
2λ

1
3
k t

e
3
2λ

1
3
k T + 2 cosλ

1
3

k

√
3
2 T

≤ 2,
e−

1
2λ

1
3
k t

e
3
2λ

1
3
k T + 2 cosλ

1
3

k

√
3
2 T

≤ 2, 0 ≤ t ≤ T,

e
1
2λ

1
3
k (T−t)

e
3
2λ

1
3
k T + 2 cosλ

1
3

k

√
3
2 T

≤ 2,
eλ

1
3
k (

T
2 +t)

e
3
2λ

1
3
k T + 2 cosλ

1
3

k

√
3
2 T

≤ 2, 0 ≤ t ≤ T,

eλ
1
3
k (

3
2T+t−τ)

e
3
2λ

1
3
k T + 2 cosλ

1
3

k

√
3
2 T

≤ 2,
eλ

1
3
k (

3
2T− t

2−τ)

e
3
2λ

1
3
k T + 2 cosλ

1
3

k

√
3
2 T

≤ 2, 0 ≤ t ≤ τ ≤ T,

eλ
1
3
k (t+

τ
2 )

e
3
2λ

1
3
k T + 2 cosλ

1
3

k

√
3
2 T

≤ 2,
e−

1
2λ

1
3
k (t−τ)

e
3
2λ

1
3
k T + 2 cosλ

1
3

k

√
3
2 T

≤ 2, 0 ≤ t ≤ τ ≤ T,

eλ
1
3
k (

3
2T− t

2−τ)

e
3
2λ

1
3
k T + 2 cosλ

1
3

k

√
3
2 T

≤ 2,
eλ

1
3
k (t+

τ
2 )

e
3
2λ

1
3
k T + 2 cosλ

1
3

k

√
3
2 T

≤ 2, 0 ≤ τ ≤ t ≤ T,

eλ
1
3
k (

3
2T− t

2−τ)

e
3
2λ

1
3
k T + 2 cosλ

1
3

k

√
3
2 T

≤ 2,
e−

1
2λ

1
3
k (t−τ)

e
3
2λ

1
3
k T + 2 cosλ

1
3

k

√
3
2 T

≤ 2, 0 ≤ τ ≤ t ≤ T,

e
1
2λ

1
3
k (3T−(t−τ))

e
3
2λ

1
3
k T + 2 cosλ

1
3

k

√
3
2 T

≤ 2,
eλ

1
3
k (t−τ)

e
3
2λ

1
3
k T + 2 cosλ

1
3

k

√
3
2 T

≤ 2, 0 ≤ τ ≤ t ≤ T.

Taking these relations into account, we find that

( ∞∑
k=1

(λk

√
λk ∥ũk(t)∥∞)2

) 1
2

≤ 12
√
2

( ∞∑
k=1

(
λk

√
λk |φ0,k|

)2) 1
2

+

12
√
2

( ∞∑
k=1

(
λk

√
λk |φ1,k|

)2) 1
2

+ 6
√
5

( ∞∑
k=1

(λk |φ2k|)2
) 1

2

+ (4.11)
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16
√
5T

 T∫
0

∞∑
k=1

(λk |fk(τ)|)2dτ


1
2

+ 16
√
5T ∥a(t)∥C[0,T ]

( ∞∑
k=1

(
λk

√
λk ∥uk(t)∥∞

)2) 1
2

,

∥ã(t)∥∞ ≤
∥∥∥[h(t)]−1

∥∥∥
∞

{∥h′′′(t)− f(0, t)∥∞ +

( ∞∑
k=1

λ−1
k

) 1
2

4√3

( ∞∑
k=1

(λk

√
λk |φ0k|)2

) 1
2

+

4
√
3

( ∞∑
k=1

(
λk

√
λk |φ1,k|

)2) 1
2

+ 6

( ∞∑
k=1

(λk |φ2,k|)2
) 1

2

+ (4.12)

16
√
T

 T∫
0

∞∑
k=1

(λk |fk(τ)|)2 dτ


1
2

+ 16T ∥a(t)∥∞

( ∞∑
k=1

(
λk

√
λk ∥uk(t)∥∞

)2) 1
2

 .

Suppose that the data of problem (1.1)–(1.3), (2.9) satisfy the following conditions:

(i) φi(x) ∈ C2[0, 1], φ′′′
i (x) ∈ L2(0, 1), dφi(1) +

1∫
0

φi(x)dx = 0, φ′
i(0) = 0,

φ′
i(1) + dφ′′

i (1) = 0, i = 0, 1;

(ii) φ2(x) ∈ C1[0, 1], φ′′
2(x) ∈ L2(0, 1), dφ2(1) +

1∫
0

φ2(x)dx = 0, φ′
2(0) = 0;

(iii) f(x, t), fx(x, t) ∈ C(DT ), fxx(x, t) ∈ L2(DT ), df(1, t) +
1∫
0

f(x, t)dx = 0,

fx(1, t) = 0, 0 ≤ t ≤ T,

(iv) h(t) ∈ C3[0, T ], h(t) ̸= 0, 0 ≤ t ≤ T .

Then, taking into account (3.6) and (3.7), from (4.11) and (4.12), we obtain, respectively,

∥ũ(x, t)∥
B

3/2
2,T

≤ A1(T ) +B1(T ) ∥a(t)∥∞ ∥u(x, t)∥
B

3/2
2,T

, (4.13)

∥ã(t)∥∞ ≤ A1(T ) +B2(T ) ∥a(t)∥∞ ∥u(x, t)∥
B

3/2
2,T

, (4.14)

where
A1(T ) = 12

√
2M ∥φ′′′

0 (x)∥L2
+ 12

√
2M ∥φ′′′

1 (x)∥L2
+ 6

√
5 (2m0 |φ′′

2(1)|+

+
√
2M ∥φ′′

2(x)∥L2

)
+ 16

√
5T
(
2m0 ∥fx(1, t)∥∞ +

√
2M ∥fxx(x, t)∥L2(DT )

)
,

B1 (T ) = 16
√
5T,

A2(T ) =
∥∥∥[h(t)]−1

∥∥∥
C[0,T ]

∥h′′′(t)− f (0, t)∥C[0,T ] +
√
2

( ∞∑
k=1

λ−1
k

)1/2 [
4
√
3M ∥φ′′′

0 (x)∥L2(0,1)
+
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4
√
3M ∥φ′′′

1 (x)∥L2(0,1)
+ 16

(
2m0 |φ′

2(1)|+
√
2M ∥φ′′

2(x)∥L2

)
+

+ 16
√
T
(
m0 ∥fx(1, t)∥∞ +

√
2M ∥fxx(x, t)∥L2(DT )

)]}
,

B2(T ) = 16
√
2

( ∞∑
k=1

λ−1
k

)∥∥∥(h(t))−1
∥∥∥
∞

T.

From the inequalities (4.13) and (4.14), we conclude that

∥ũ(x, t)∥
B

3/2
2,T

+ ∥a(t)∥∞ ≤ A(T ) +B(T ) ∥a(t)∥∞ ∥u(x, t)∥
B

3
2
2,T

, (4.15)

where A(T ) = A1(T ) +A2(T ), B(T ) = B1(T ) +B2(T ) .

We denote by BR the closed ball in the space E
3/2
T of radius R centered at the origin.

Theorem 4.3 Let conditions (i)-(iv) and the following condition be satisfied:

(A(T ) + 2)2B(T ) < 1. (4.16)

Then problem (1.1)–(1.3), (2.9), has a unique solution in the ball BR ⊂ E
3/2
T , where R = A(T ) + 2 .

Proof In the space E
3/2
T we consider equation

z = Φz, (4.17)

where z = {u, a} , the components Φ1 and Φ2 of the operator Φ are defined by the right-hand sides of equations
(4.5) and (4.7), respectively.

We consider the operator Φ in the ball BR ⊂ E
3/2
T . Analogously to (4.15), we obtain that for any

z = {u, a}, z1 = {u1, a1}, z2 = {u2, a2} ∈ BR are valid assessments

∥Φz∥
E

3/2
T

≤ A(T ) +B(T ) ∥a(t)∥∞ ∥u(x, t)∥
B

3/2
2,T

, (4.18)

∥Φz1 − Φz2∥E3/2
T

≤ 2B (T )R
(
∥a1(t)− a2(t)∥∞ + ∥u1 (x, t)− u2 (x, t)∥B3/2

2,T

)
. (4.19)

Then, taking into account (4.16), from estimates (4.18), (4.19) we obtain that the operator Φ acts on the ball
BR and is contractive. Consequently, in the ball BR the operator Φ has a unique fixed point {u, a} , which is
a solution of equation (4.17), i.e. is a unique solution of system (4.5), (4.7) in the ball BR .

The function u(x, t) as an element of the space B
3/2
2,T is continuous and has continuous derivatives of

ux(x, t) and uxx(x, t) in DT .
Taking (3.5) into account from (4.2), we obtain

( ∞∑
k=1

(
√
λk ∥u′′′

k (t)∥C[0,T ])
2

) 1
2

≤
√
3

( ∞∑
k=1

λ−1
k

) 1
2


( ∞∑

k=1

(λk

√
λk ∥uk(t)∥∞)2

) 1
2

+
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+ ∥∥fx(x, t)∥∞∥
L2

+ ∥a(t)∥∞ ∥u(x, t)∥
B

3
2
2,T

}
,

which implies that uttt(x, t) is continuous in DT .
It is easy to verify that equation (1.1) and conditions (1.2), (1.3) and (2.9) are satisfied in the usual

sense. Consequently, {u(x, t), a(t)} is a solution of problem (1.1)–(1.3), (2.9). By Corollary 4.2, this solution is
unique. 2

Using Lemma 2.2 and Theorem 4.3, we can prove the following

Theorem 4.4 Let all the conditions of Theorem 4.3, the condition

2

3
(A(T ) + 2)T 3 < 1

and the matching conditions
φ0(0) = h(0), φ1(0) = h′(0), φ2(0) = h′′(T )

are satisfied. Then problem (1.1)–(1.4) has a unique classical solution in the ball BR ⊂ E
3/2
T .

5. Conclusion
In this paper, investigated the inverse boundary value problem for a partial differential equation of third order
with an integral condition. This problem arises when studying the issues of fluid filtration in porous media,
heat transfer in a heterogeneous medium , moisture transfer in soil , propagation of acoustic waves in a weakly
inhomogeneous medium. Using analytical and operator-theoretic methods, as well as the method of separation
of variables, the existence and uniqueness of the classical solution of this problem is proved.
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