
Turk J Math
(2021) 45: 1887 – 1898
© TÜBİTAK
doi:10.3906/mat-2011-82

Turkish Journal of Mathematics

http :// journa l s . tub i tak .gov . t r/math/

Research Article

On Sense of Yamakawa family of meromorphic bi-univalent and bi-subordinate
functions

Fethiye Müge SAKAR∗

Department of Management, Faculty of Economics and Administrative Sciences, Dicle University,
Diyarbakır, Turkey

Received: 24.11.2020 • Accepted/Published Online: 22.06.2021 • Final Version: 27.07.2021

Abstract: This study offers three different univalent function families of bi-meromorphic and bi-subordinate functions
defined on ∆ = {z : z ∈ C, 1 < |z| < ∞} . The estimations of the first three coefficients |b0| , |b1| , |b2| and extra
|b0b1 + 2b2| are obtained for the functions of these families. We also point out some closely related cases for our results.
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1. Introduction
One of the major branches of complex analysis is univalent function theory: the study of one-to-one analytic
functions. Analytical functions are widely used in thermodynamics, electricity and magnetism and also quantum
physics. In electricity, current and impedance equations can be expressed in a complex plane, and basic
electrical relationships become complex functions [10]. There are numerous mathematical descriptions of the
electromagnetic field. The subordination results are interpreted in the context of electromagnetic cloaking for
possible practical applications. By the Riemann mapping theorem, both the regions are equivalent to conformal
maps on the unit disc ⊔ [12].

Let A indicate the family of functions written as

F (z) = z +

∞∑
k=2

akz
k, (1.1)

which are analytic in the open unit disk ⊔ = {z ∈ C : |z| < 1}. Also S shows the subfamily of the normalized
analytic function family A covering all univalent functions in ⊔ .

Since univalent functions are one-to-one, they are invertible and these functions do not need to be defined
on the all unit disk ⊔ . Actually, the Koebe on-quarter theorem [3] confirms that the image of ⊔ includes a disk
of radius 1/4 for every univalent function F ∈ S . Therefore, every function F ∈ S has an F−1 defined by

F−1(F (z)) = z, (z ∈ ⊔)
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and

F
(
F−1(w)

)
= w

(
|w| < r0(F ); r0(F ) ≥

1

4

)
.

A function F in A is considered as bi-univalent in the open unit disk ⊔ if both the function and its inverse
are univalent in ⊔ . A function F ∈ A is said to be bi-univalent in the open unit disk ⊔ if both the inverse
of function and itself are univalent in ⊔ . Let σ show the family of bi-univalent functions in ⊔ presented by
Taylor–Maclaurin expansion in (1.1). One can see [20] for a brief history and some examples of functions in
σ . Actually, the review of various subfamilies of the bi-univalent function family σ was essentially made by
Srivastava et al.[20] in recent years. This was followed by papers published by Frasin and Aouf [6], Srivastava
et al. [21],[19], Xu et al. [23],[24] and others (see also,[7], [4], [2], [11], [1], [15]). In current study, the notion of

bi-univalency is enlarged to the family of meromorphic functions defined on ∆ = {z : z ∈ C, 1 < |z| <∞} . All
meromorphic and univalent function familes in ∆ is denoted by Σ′ and the family of g functions

g(z) = z + b0 +

∞∑
k=1

bk
zk
. (1.2)

Every univalent function g with an inverse g−1 satisfies the following expansion

g−1(w) = h(w) = w +D0 +

∞∑
k=1

Dk

wk
, (1.3)

where 0 < M < |w| <∞ . Similar to the bi-univalent functions, a function g ∈ Σ′ is considered as meromorphic
and bi-univalent if both of g and g−1 are univalent meromorphic in ∆ as given by (1.2). The family of all
meromorphic and bi-univalent functions are shown by Σ′

σ . An elementary calculation gives h(w) as expressed:

h(w) = g−1(w) = w − b0 −
b1
w

− b2 + b0b1
w2

− b3 + 2b0b2 + b20b1 + b21
w3

+ · · · . (1.4)

Examples of the meromorphic bi-univalent functions are as follows:

z +
1

z
, z − 1, − 1

log
(
1− 1

z

) .
Coefficient estimates on the inverses of meromorphic univalent functions were frequently investigated in

the studies. For instance, it was shown by Schiffer [16] that if g given by (1.2) is in Σ′ with b0 = 0 , then
|b2| ≤ 2/3 . The inequality |bn| ≤ 2/(n+ 1) for g ∈ Σ′ with bk = 0 , 1 ≤ k < n/2 was calculated by Duren [5]
in 1971. It was also shown by Springer [18] that the following expression holds for g−1 .

|D3| ≤ 1 and |D3 +
1

2
D2

1| ≤
1

2
,

and following inequality was also conjuctered

|D2n−1| ≤
(2n− 2)!

n!(n− 1)!
(n = 1, 2, · · · ).
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It was confirmed by Kubota [9] in 1977 that the Springer conjecture is valid for n = 3, 4, 5 and Schober
[17] later achieved sharp bounds for D2n−1 , (1 ≤ n ≤ 7) .

The coefficient estimates for inverses of meromorphic starlike functions with positive order α were recently
obtained by Kapoor and Mishra [8].

Motivated by the work of [22] and [14], the main aim of current investigation is to introduce certain families
of meromorphic bi-univalent function families Σ′ , sense of Yamakawa, and obtain estimates for coefficients |b0| ,
|b1| and |b2| and extra |b0b1 + 2b2| belonging to these families.

The current coefficients were obtained from the positive real part of functions. An analytic function p in
the form of p(z) = 1 + c1z + c2z

2 + · · · is known that a function with positive real part in ⊔ if Rep(z) > 0 for
all z ∈ ⊔ . The family of all functions having positive real part is denoted by P . The following lemma [13] is
required to derive our main results.

Lemma 1.1 If φ(z) ∈ P , the family of analytic functions in ⊔ with positive real part, given by:

φ(z) = 1 + c1z + c2z
2 + c3z

3 + · · · (z ∈ ⊔),

then |cn| ≤ 2 for each n ∈ N .

2. Main results
Firstly, lets consider Yamakawa’s family T (n, α) (for the case of p = 1 in [22]).

Definition 2.1 [22] A function F ∈ T (n) is said to be a member of the family T (n, α) if it holds the
inequality

Re

{
F (z)

zF ′(z)

}
> α (z ∈ ⊔; 0 ≤ α ≤ 1).

where F (z) = z −
∑∞

k=n+1 akz
k (ak ≥ 0;n ∈ N = 1, 2, 3, ...) . Since

Re

{
F (z)

zF ′(z)

}
> α⇒ Re

{
zF ′(z)

F (z)

}
> 0 (z ∈ ⊔; 0 ≤ α ≤ 1).

T (n, α) is a subfamily of T0(n) .

We call T Σ′
σ(α) the family of meromorphically bi-univalent functions sense of Yamakawa defined as

follows:
Definition 2.2 A function g ∈ Σ′

σ given by (1.2) is said to be in the family T Σ′
σ(α) , (0 < α ≤ 1) if the

inequalities are satisfied.

∣∣∣∣arg( g(z)

zg′(z)

)∣∣∣∣ < απ

2
(z ∈ ∆; 0 < α ≤ 1),

and (2.1)∣∣∣∣arg( h(w)

zh′(w)

)∣∣∣∣ < απ

2
(w ∈ ∆; 0 < α ≤ 1)
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where h is an extension of g−1 to ∆ given in (1.4).

We now derive the estimates on coefficients for meromorphically bi-univalent function family T Σ′
σ(α)

defined in Definition 2.2.

Theorem 2.1 Let the function g given by (1.2) be in the function family T Σ′
σ(α) , 0 < α ≤ 1 . Then

|b0| ≤ 2α (2.2)

|b1| ≤ α (2.3)

|b2| ≤
4

9
α(α− 1)(α− 2) +

2

3
α(2α− 1) + α2 (2.4)

|b0b1 + 2b2| ≤
8

9
α(α− 1)(α− 2) + 4α(2α− 1) (2.5)

Proof
It follows from (2.1) that

g(z)

zg′(z)
= [s(z)]α and

h(w)

zh′(w)
= [t(w)]α (z, w ∈ ∆), (2.6)

respectively, where s(z) and t(z) are functions having positive real part in ∆ and have the forms

s(z) = 1 +
s1
z

+
s2
z2

+ · · · , (2.7)

and

t(w) = 1 +
t1
w

+
t2
w2

+ · · · , (2.8)

Now, upon equating the coefficient in (2.6), we get

b0 = αs1 (2.9)

2b1 =
α(α− 1)

2
s21 + αs2 (2.10)

b0b1 + 3b2 =
α(α− 1)(α− 2)

6
s31 + α(α− 1)s1s2 + αs3 (2.11)

and
−b0 = αt1 (2.12)

−2b1 =
α(α− 1)

2
t21 + αt2 (2.13)

−2b0b1 − 3b2 =
α(α− 1)(α− 2)

6
t31 + α(α− 1)t1t2 + αt3. (2.14)
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From (2.9) and (2.12)
s21 = t21 (2.15)

2b20 = α2(s21 + t21). (2.16)

We subtract (2.12) from (2.9) to obtain first coefficient inequalities

2b0 = α(s1 − t1). (2.17)

Hence, applying Lemma 1.1,
|b0| ≤ 2α. (2.18)

Also, from (2.10) and (2.13) and using (2.15) we obtain

4b1 =
α(α− 1)

2
(s21 − t21) + α(s2 − t2). (2.19)

Hence, applying Lemma 1.1,
|b1| ≤ α. (2.20)

From the equalities (2.11) and (2.14) we get,

3b0b1 + 6b2 =
α(α− 1)(α− 2)

6
(s31 − t31) + α(α− 1)(s1s2 − t1t2) + α(s3 − t3). (2.21)

When we use the equalities (2.17) and (2.19) we obtain,

6b2 =
α(α− 1)(α− 2)

6
(s31 − t31) + α(α− 1)(s1s2 − t1t2) + α(s3 − t3)

(2.22)

−3α2(α− 1)

16
(s21 − t21)(s1 − t1) +

3α2

8
(s1 − t1)(s2 − t2). (2.23)

Hence, applying Lemma 1.1,

|b2| ≤
4

9
α(α− 1)(α− 2) +

2

3
α(2α− 1) + α2. (2.24)

Also, from the equality (2.11), we can easily get

|b0b1 + 2b2| ≤
8

9
α(α− 1)(α− 2) + 4α(2α− 1).

So, we reached the expected inequalities. 2

We call T Σ′
σ(β) the family of meromorphically bi-univalent functions sense of Yamakawa defined as

follows:
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Definition 2.3 A function g ∈ Σ′
σ given by (1.2) is said to be in the family T Σ′

σ(β) if the conditions
given below are satisfied:

ℜ
(
g(z)

zg′(z)

)
> β (z ∈ ∆; 0 ≤ β < 1),

and

ℜ
(
h(w)

zh′(w)

)
> β (w ∈ ∆; 0 ≤ β < 1)

where h is an extension of g−1 to ∆ in (1.4).

Following theorem gives us the estimates on coefficients for meromorphically bi-univalent function family
T Σ′

σ(β) defined in Definition 2.3.

Theorem 2.2 Let the function g given by the series expansion (1.2) be in the function family T Σ′
σ(β) ,

0 ≤ β < 1 . Then
|b0| ≤ 2(1− β) (2.25)

|b1| ≤ (1− β) (2.26)

|b2| ≤ (1− β)(β − 1

3
). (2.27)

|b0b1 + 2b2| ≤
4

3
(1− β). (2.28)

Proof Let g ∈ T Σ′
σ(β) . Then from Definition 2.3 we can write the equalities as follows:

g(z)

zg′(z)
= β + (1− β)s(z) and

h(w)

zh′(w)
= β + (1− β)t(w) (z, w ∈ ∆), (2.29)

respectively, where s(z) and t(z) are functions with positive real part in ∆ and have the forms in (2.7)and
(2.8).

Now, when we equate the coefficient in (2.29), we get

b0 = (1− β)s1 (2.30)

2b1 = (1− β)s2 (2.31)

b0b1 + 3b2 = (1− β)s3 (2.32)

and
−b0 = (1− β)t1 (2.33)

−2b1 = (1− β)t2 (2.34)
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−2b0b1 − 3b2 = (1− β)t3. (2.35)

From (2.30) and (2.33), we obtain
s1 = −t1 (2.36)

and
2b20 = (1− β)2(s21 + t21). (2.37)

Applying Lemma 1.1 for the coefficients s1 and t1 , we directly have

|b0| ≤ 2(1− β).

This gives the bound on |b0| as asserted in Theorem 2.2. Next, to have the bound on |b1| , by using the equation
(2.31) and (2.34), we obtain

4b1 = (1− β)(s2 − t2). (2.38)

Applying Lemma 1.1 one again,
|b1| ≤ (1− β).

Lastly, to obtain the bound on |b2| , by using the equation (2.32) and (2.35), we obtain

3b0b1 + 6b2 = (1− β)(s3 − t3). (2.39)

substituting b0 and b1 given by (2.37) and (2.38)in (2.39), we obtain

6b2 = (1− β)(s3 − t3)−
(1− β)2

8
(s2 − t2)

√
s21 + t21

2
.

Applying Lemma 1.1 we obtain,

|b2| ≤ (1− β)(β − 1

3
).

Also from the equality (2.39), we can easily get

|b0b1 + 2b2| ≤
4

3
(1− β).

So, the proof is completed. 2

We know that s(z) ∈ P (z ∈ ⊔) ⇔ s( 1z ) ∈ P (z ∈ ∆) .
Define the functions s and t in P given by

s(z) =
1 + k(z)

1− k(z)
= 1 +

s1
z

+
s2
z2

+ · · ·

and

t(z) =
1 + l(z)

1− l(z)
= 1 +

t1
z

+
t2
z2

+ · · · ,
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where k(z) = 1 + a1

z + a2

z2 + · · · + an

zn + · · · , |k(z)| < 1, (z ∈ ∆) and l(z) = 1 + d1

z + d2

z2 + · · · + dn

zn + · · · ,
|l(z)| < 1, (z ∈ ∆) are Schwarz functions [13]. It follows that

k(z) =
s(z)− 1

s(z) + 1
=
s1
2

1

z
+

1

2

(
s2 −

s21
2

)
1

z2
+ · · ·

and

l(z) =
t(z)− 1

t(z) + 1
=
t1
2

1

z
+

1

2

(
t2 −

t21
2

)
1

z2
+ · · · .

An analytic function g is subordinate to an analytic function h , written by g ≺ h , provided that there is an
analytic function w defined on ⊔ = {z ∈ C : |z| < 1}. with w(0) = 0 and |w(z)| < 1 satisfying F (z) = g(w(z)) .
After that, it is supposed that ψ is an analytic function having positive real part in ⊔ , satisfying ψ(0) = 1 ,
ψ′(0) > 0 , and ψ(⊔) is symmetric with respect to the real axis. Such a function is known to be real with the
series expansion ψ(z) = 1 + Λ1z + Λ2z

2 + Λ3z
3 + · · · where Λ1, Λ2 are real and Λ1 > 0 .

We call T Σ′
σ(φ) the family of meromorphically bi-subordinate functions sense of Yamakawa defined as

follows:
Definition 2.4 A function g ∈ Σ′

σ given by (1.2) is said to be in the family T Σ′
σ(φ) if conditions given

below are satisfied:
g(z)

zg′(z)
≺ φ(z) (z ∈ ∆),

and

h(w)

zh′(w)
≺ φ(w) (w ∈ ∆)

where the function h is an extension of g−1 to ∆ in (1.4).

We now derive the estimates on the coefficients for meromorphically bi-subordinate function family
T Σ′

σ(φ) defined in Definition 2.4.

Theorem 2.3 Let the function g given by (1.2) be in the function family T Σ′
σ(ψ) . Then,

|b0| ≤ Λ1 (2.40)

|b1| ≤
Λ1

2
(2.41)

|b2| ≤ Λ1 + 2Λ2 + Λ3 (2.42)

|b0b1 + 2b2| ≤
2

3
(Λ1 + Λ2 + Λ3) (2.43)

Proof Let T Σ′
σ(ψ) . Then, there are analytic functions k, l : ∆ → C with k(∞) = l(∞) = 0 , satisfying

g(z)

zg′(z)
= ψ(k(z)) (z ∈ ∆) and

g(w)

wg′(w)
= ψ(l(w)) (w ∈ ∆).
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Then, equating the coefficients in (2)
b0 = Λ1a1 (2.44)

2b1 = Λ1a2 + Λ2a
2
1 (2.45)

b0b1 + 3b2 = Λ1a3 + 2Λ2a1a2 + Λ3a
3
1 (2.46)

and
−b0 = Λ1d1 (2.47)

−2b1 = Λ1d2 + Λ2d
2
1 (2.48)

−2b0b1 − 3b2 = Λ1d3 + 2Λ2d1d2 + Λ3d
3
1 (2.49)

Now, considering (2.44) and (2.47), we get
a21 = d21,

and
2b20 = Λ2

1(a
2
1 + d21),

in the light of inequalities |an| ≤ 1 and |dn| ≤ 1 and taking modulus it yields

|b0| ≤ Λ1.

Since, we reach the desired first estimate on |b0| given in (2.40). In addition, comparing the coefficients of
(2.45) and (2.49), we get

4b1 = Λ1(a2 − d2) + Λ2(a
2
1 − d21),

from a21 = d21 , applying inequalities |an| ≤ 1 and |dn| ≤ 1 , and taking modulus it yields

|b1| ≤
Λ1

2

which is the bound on |b1| .
Next, to find the bound on |b2| , by further computations from (2.46) and (2.49), we get

3b2 = Λ1(2a3 + d3) + 2Λ2(2a1a2 + d1d2) + Λ3(2a
3
1 + d31).

Applying inequalities |an| ≤ 1 and |dn| ≤ 1 , and taking modulus it yields

|b2| ≤ Λ1 + 2Λ2 + Λ3

Furthermore, when we subtract (2.49) from (2.46)

3b0b1 + 6b2 = Λ1(a3 − d3) + 2Λ2(a1a2 − d1d2) + Λ3(a
3
1 − d31)

Applying inequalities |an| ≤ 1 and |dn| ≤ 1 , and taking modulus it yields

|b0b1 + 2b2| ≤
2

3
(Λ1 + Λ2 + Λ3).

2
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3. Conclusion
Example 3.1 For the function

ψ(z) =

(
1 + 1

z

1− 1
z

)θ

= 1 +
2θ

z
+

2θ2

z2
+

2θ3

z3
+ · · · , (0 < θ ≤ 1, z ∈ ∆),

we have the family T Σ′
σ(ψ) = T Σ′

σ

(
1+ 1

z

1− 1
z

)θ
and the following corollary:

Corollary 3.1 Let g given by (1.2) be in the family T Σ′
σ

(
1+ 1

z

1− 1
z

)θ
, 0 < θ ≤ 1 . Then

|b0| ≤ 2θ

|b1| ≤ θ

|b2| ≤ 2θ + 4θ2 + 2θ3

|b0b1 + 2b2| ≤
4θ

3
(1 + θ + θ2).

Remark 3.3 For the special cases of θ = 1 we get function ψ(z) =
(

1+ 1
z

1− 1
z

)
= 1 + 2

z + 2
z2 + 2

z3 + · · · , z ∈ ∆),

and following coefficients
|b0| ≤ 2

|b1| ≤ 1

|b2| ≤ 8

|b0b1 + 2b2| ≤ 4.

Example 3.4 For the function

ψ(z) =

(
1 + 1−2ξ

z

1− 1
z

)
= 1 +

2(1− ξ)

z
+

2(1− ξ)

z2
+

2(1− ξ)

z3
+ · · · , (0 ≤ ξ < 1, z ∈ ∆),

we have the family T Σ′
σ(ψ) = T Σ′

σ

(
1+ 1−2ξ

z

1− 1
z

)
and the following corollary:

Corollary 3.2 Let g given by (1.2) be in the family T Σ′
σ

(
1+ 1−2ξ

z

1− 1
z

)
, 0 ≤ ξ < 1 . Then

|b0| ≤ 2(1− ξ)

|b1| ≤ (1− ξ)

|b2| ≤ 8(1− ξ)

|b0b1 + 2b2| ≤ 4(1− ξ).
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Example 3.5 For the function

ψ(z) =
1 + K

z

1 + L
z

= 1 +
K − L

z
− L(K − L)

z2
+
L2(K − L)

z3
+ · · · , (−1 ≤ K ≤ L < 1, z ∈ ∆),

we have the family T Σ′
σ(ψ) = T Σ′

σ

(
1+K

z

1+L
z

)
and the following corollary:

|b0| ≤ K − L

|b1| ≤
K − L

2

|b2| ≤ (K − L)(1− 2L+ L2)

|b0b1 + 2b2| ≤
2

3
(K − L)(1− L+ L2).
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