
Turk J Math
(2021) 45: 1555 – 1563
© TÜBİTAK
doi:10.3906/mat-2102-114

Turkish Journal of Mathematics

http :// journa l s . tub i tak .gov . t r/math/

Research Article

b-property of sublattices in vector lattices

Şafak ALPAY1, Svetlana GOROKHOVA2,∗
1Department of Mathematics, Middle East Technical University, Ankara, Turkey

2Southern Mathematical Institute of the Russian Academy of Sciences, Vladikavkaz, Russia

Received: 26.02.2021 • Accepted/Published Online: 26.04.2021 • Final Version: 27.07.2021

Abstract: We study b -property of a sublattice (or an order ideal) F of a vector lattice E . In particular, b -property of
E in Eδ , the Dedekind completion of E , b -property of E in Eu , the universal completion of E , and b -property of E

in Ê(τ̂) , the completion of E .
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1. Introduction and preliminaries

Vector lattices considered here are all real and Archimedean. Vector topologies are assumed to be Hausdorff.

Definition 1.1 A sublattice F of a vector lattice E is said to have b-property in E , if xα is a net in F+

and 0 ≤ xα ↑≤ e for some e ∈ E , then there exists f ∈ F with 0 ≤ xα ↑≤ f .

Recall that a subset F of E is said to be majorizing in E if, for each 0 < e ∈ E , there exists f ∈ F

with 0 ≤ e ≤ f .
A subset U of a vector lattice (VL) is called solid if |u| ≤ |v| , v ∈ U , imply u ∈ U . A linear topology τ

on a VL E is called locally solid if τ has a base of zero consisting of solid sets.

A locally solid VL E (LSVL) satisfies the Lebesgue property if xα ↓ 0 in E implies xα
τ→ 0 .

A LSVL E(τ) satisfies the Fatou property if τ has a base of zero consisting of solid and order closed
sets.

A sublattice F in a VL E is regular if inf A is the same as in F and E whenever A ⊂ F whose infimum
exists in F . Ideals are regular in E .

E is called laterally σ -complete if the supremum of every disjoint sequence exists in E+ and laterally
complete if supremum of every disjoint subset in E+ exists in E .

A vector lattice E which is both Dedekind (σ -) complete and laterally (σ -) complete is called universally
( σ -) complete.
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Example 1.2 [1, p.198] Let X be a topological space. A function f : X → R is called a step function if there
exists a collection of mutually disjoint subsets {Vi} of X such that

∪
i Vi = X , f is constant on each Vi , and

f ∈ C∞(X) . Let S∞(X) be the space of step functions on an extremally disconnected topological space X .
Then S∞(X) is a laterally complete VL.

Universal (σ -) completion of a VL E is a laterally (σ -) complete and Dedekind (σ -) complete vector
lattice Eu which contains E as an order dense sublattice. Every VL E has a unique universal completion [1,
Theorem 7.21].

Lateral completion Eλ of a VL E is defined to be the intersection of all laterally complete vector lattices
between E and Eu .

Example 1.3 Let X be an extremally disconnected topological space. C∞(X) , the space of all extended
continuous functions on X with the usual algebraic and lattice operations is a universally complete VL.

A net (xα)α∈A in a VL E is order convergent to x ∈ E if there exists a net (xβ)β∈B , possibly over
a different index set, such that xβ ↓ 0 and, for each β ∈ B , there exists α0 ∈ A with |xα − x| ≤ xβ for all

α ≥ α0 . In this case we write xα
o→ x .

A net xα in E uo -converges to x ∈ E if |xα−x|∧u
o→ 0 for all u ∈ E+ . In this case we write xα

uo→ x .

Let E(τ) be a LSVL. A net xα in E is uτ -convergent to x ∈ E if |xα−x|∧u
τ→ 0 for all u ∈ E+ . A net

xα in E is called order Cauchy ( uo -Cauchy ) if the doubly indexed net (xα − xα′)(α,α′) is order convergent
(uo -convergent) to zero. E(τ) is called uo -complete if every uo -Cauchy net is uo -convergent in E .

The b -property of a VL E was defined in [2] as: a VL E has b -property if every subset A in E , which
is order bounded in (E∼)∼ , remains to be order bounded in E . We say that a vector sublattice F of a VL E

has (countable) b -property in E whenever each (sequence) net fα in F , with 0 ≤ fα ↑≤ e for some e ∈ E , is
order bounded in F (cf. e.g. [2], [3, p.766]).

Example 1.4 Every perfect VL, and therefore every order dual, have the b-property. Every reflexive BL and
every KB -space have b-property [2–5]. On the other hand, by considering the basis vectors en in c0 , we see
that c0 does not have the b-property in l∞ .

Let us note that Fremlin had considered subsets of a VL E that are order bounded in the universal
completion Eu of E . He proved that if E is a Dedekind σ -complete VL then E is laterally σ -complete iff E

has the countable b -property in Eu [1, Theorem 7.38]. That is, each sequence xn in E with 0 ≤ xn ↑≤ e for
some e ∈ Eu has an upper bound in E ,

Example 1.5 Each projection band F in a vector lattice E has b-property in E . In particular, every band
in a Dedekind complete vector lattice has b-property. An element u in a VL E is called an atom if whenever
v ∧ w = 0 , 0 ≤ v ≤ u , and 0 ≤ w ≤ u imply either v = 0 or w = 0 . If x is an atom in E , the principal band
Bx generated by x is a projection band and therefore has b-property in E .
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Example 1.6 Every majorizing sublattice F has b-property in E . Let 0 ≤ xα ↑≤ e for some net xα ⊆ F ,
e ∈ E . As F is majorizing, there exists f ∈ F with e ≤ f . Then 0 ≤ xα ≤ f . Since it is well known that E

is majorizing in the Dedekind completion Eδ , the lattice E has b-property in Eδ .

Example 1.7 Every order ideal F in a vector lattice E with b-property in E is a band of E . Indeed, let xα

be a net in F such that 0 ≤ xα ↑ e ∈ E , then the net xα is order bounded in F , say 0 ≤ xα ↑≤ f ∈ F , by the
b-property of F in E . Hence, 0 ≤ e ≤ f and as F is an ideal, e ∈ F .

Example 1.8 Let E ⊆ F be a sublattice of F and I(E) be the ideal generated by E in F . Then E has
b-property in I(E) . Having b-property is transitive: if E ⊆ F ⊆ G are sublattices of a VL X such that E has
b-property in F and F has b-property in G , then E has b-property in G . If E has b-property in G , then E

has b-property in every sublattice of G containing E as a sublattice.

Example 1.9 Let F be a norm-closed sublattice of a Banach lattice (E, ∥.∥) with order continuous norm. Let
xn be a sequence in F such that 0 ≤ xn ↑≤ e for some e ∈ E . Then xn is norm-convergent to some x ∈ E .
As F is norm-closed, x ∈ F . Since xn ≤ x for all n , then F has countable b-property in E . Order continuity
of the ambient space is essential in this example, if one takes E = l∞ and F = c0 . Then, by considering the
sequence en in c0 , we see that c0 has no b-property in l∞ .

Example 1.10 Generalizing Example 1.9, let E(τ) be an LSVL with Lebesgue property. Then every τ -closed
order ideal F has b-property in E(τ) . This is because every τ -closed ideal is a band and, as E(τ) is Dedekind
complete, it is a projection band.

Example 1.11 Given a VL E , let us denote by Eλ its lateral completion and Eu its universal completion.
Since X is majorizing in Xδ by Example 1.6, the equality (Eλ)δ = (Eδ)λ = Eu (see [1, Exer.10 on p.213])
shows that Eλ is majorizing in Eu ; therefore, each laterally complete VL E has b-property in its universal
completion Eu .

Example 1.12 If E is a laterally complete VL, then it has the band projection property and every band on E

has b-property. Furthermore, a subset A ⊂ E+ of a laterally complete VL E is order bounded in Eu iff A is
order bounded in E by [1, Theorems 7.14 and 7.37].

Let us observe that all Lebesgue topologies on a LSVL E(τ) induce the same topology on order bounded
subsets of E . Therefore, if F is a sublattice of E then on all subsets of F with b -property in E all Lebesgue
topologies on E induce the same topology.
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Example 1.13 Let F be an order dense sublattice of a vector lattice E . If F is laterally complete in its own
right, then F majorizes E and therefore has b-property in E .

We refer to [1, 10] for all undefined terms.

2. Main results
Lemma 2.1 Let F be a sublattice of a LSVL E(τ) . Then each b-bounded in E subset B of F is τ -bounded
with respect to induced topology on F .

Proof To say that B is b -bounded in E is to say that B is order bounded in E . Therefore, if U is a
neighborhood of 0 in τ then B ⊆ λU for some λ > 0 . Then B ⊆ λU ∩ F = λ(U ∩ F ) . 2

Lemma 2.2 Let E be a vector lattice and F be an order dense sublattice of E . Then TFAE:

i) F has b-property in E ;

ii) F is majorizing in E .

Proof i) =⇒ ii) : Let 0 ≤ x ∈ E be arbitrary, as F is order dense in E , there exists a net xα in F such
that 0 ≤ xα ↑ x . As xα is b -bounded in E by assumption, there exists x0 ∈ F+ with 0 ≤ xα ≤ x0 for all α ,
as xα ↑ x , we have x ≤ x0 and F is majorizing.

ii) =⇒ i) : Let xα be a net in F with 0 ≤ xα ↑≤ x for some x ∈ E . Since F is assumed to be
majorizing E , there exists y ∈ F with x ≤ y . Consequently, 0 ≤ xα ↑≤ y ∈ F ; hence, F has b -property in
E . 2

This yields: E has b-property in Eu iff E is majorizing in Eu . We also have, if E(τ) is a LSVL where
E is an ideal of Ê(τ̂) and Ê is the completion, that E has b -property in Ê(τ̂) .

On the other hand, if E(τ) is a LSVL with Fatou property, then every increasing τ -bounded net of E+

is order bounded in Eu , i.e. every increasing τ -bounded net of E+ is b-bounded in Eu by [1, Theorem 7.51].
The following property was introduced in [8] and [9].

Definition 2.3 A locally solid vector lattice E(τ) is called boundedly order bounded (BOB) if every τ -bounded
net in E+ is order bounded in E .

We show BOB is equivalent to b -property if the LSVL E(τ) has Fatou property.

Lemma 2.4 Let E(τ) be a LSVL with Fatou property. Then E has b-property in Eu iff E is BOB.

Proof Suppose E is BOB and xα be a net in E with 0 ≤ xα ↑≤ x0 for some x0 ∈ Eu . Then, by Lemma 2.1,
xα is τ -bounded in E and, by assumption that E is BOB, 0 ≤ xα ≤ x for some x ∈ E .

Conversely, suppose that xα is τ -bounded increasing net in E+ , then by [1, Theorem 7.50], xα is order
bounded in Eu . Thus by b -property of E in Eu , there exists x ∈ E with 0 ≤ xα ≤ x and E(τ) is BOB. 2
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[1, Theorem 7.49] shows that, in a laterally σ -complete LSVL E(τ) , every disjoint sequence in E+

converges to zero with respect to any LS topology on E . We show a similar result. The proof is similar.

Proposition 2.5 Let E(τ) be a LSVL which has countable b-property in its lateral σ -completion. Then every
disjoint sequence in E+ converges to zero with respect to any locally solid topology on E . In particular, every
locally solid topology on E has the pre-Lebesgue property.

Proof Let xn be a disjoint sequence in E+ . Then nxn is also a disjoint sequence in E+ . Then x =
∨∞

n=1 nxn

exists in the lateral σ -completion, and we have 0 ≤ xn ≤ 1
nx for all n . Countable b-property of E in its lateral

completion yields a vector e ∈ E with 0 ≤ xn ≤ 1
ne for all n . Thus, xn converges to zero with respect to any

locally solid topology on E . 2

Recall that E has a countable b -property in its lateral completion Eλ if, for each xn with 0 ≤ xn ↑≤ e

for some e ∈ Eλ , there holds xn ↑≤ x ∈ E .

Corollary 2.6 Let E(τ) be an LSVL with Lebesgue property. If E has countable b-property in its lateral
σ -completion, then the topological completion Ê of E(τ) is Eu .

Proof Under the given conditions, every disjoint sequence in E+ is τ -convergent to zero by Proposition 2.5.
Thus, the corollary follows from [1, Theorem 7.51]. 2

Proposition 2.7 A laterally complete vector lattice E has b-property in every vector lattice which contains E

as an order dense sublattice.

Proof In this case, E majorizes the vector lattice that contains it. The result now follows from [1, Theorem
7.15]. 2

In [11, Proposition 2.22] it is proved that if E(τ) is a LSVL with Lebesgue topology, then a sublattice
F of E is uτ -closed in E iff it is τ -closed. It was asked in [11, Question 2.24] whether Lebesgue assumption
could be removed. The next result yields an answer utilizing b -property.

Theorem 2.8 Let F be an order ideal of an LSVL E(τ) . If F has b-property in E , then F is uτ -closed iff
it is τ -closed in E .

Proof As uτ is coarser than τ , the forward implication is clear.

We will show x ∈ F . Suppose that F is τ -closed and yα is a net in F with yα
uτ→ x for some x ∈ E .

The lattice operations are uτ -continuous so that y±α
uτ→ x . Therefore, WLOG we may assume 0 ≤ yα for all

α . Let z ∈ E+ be arbitrary, then

|yα ∧ z − x ∧ z| ≤ |yα − x| ∧ z
τ→ 0.
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Since 0 ≤ yα ∧ x ≤ yα for all α , and F is an order ideal, we have yα ∧ x ∈ F for all α and yα ∧ x
τ→ x ∧ x .

Take y ∈ F , then yα ∧ y
τ→ x ∧ y , since F is τ -closed, we have x ∧ y ∈ F for each y ∈ F+ . If z ∈ F d ,

then yα ∧ z = 0 for all α and we have x ∧ z = 0 . Thus, x ∈ F dd . That is, x is in the band generated by F in
E . Hence, there exists a net zβ in F+ such that 0 ≤ zβ ↑ |x| . Therefore, zβ is b -bounded in E , by b -property
of F in E , 0 ≤ zβ ≤ x0 for some x0 ∈ F and |x| ≤ x0 . Hence, x ∈ F as F is an ideal. 2

It is shown in [1, Theorem 7.39] that a Dedekind complete vector lattice is universally complete iff it is
universally σ -complete and has a weak unit. In the next result, we replace universally σ -completeness with
countable b-property of E in Eu .

Theorem 2.9 Let E be a Dedekind complete vector lattice. Then E has a weak order unit and possesses
countable b-property in Eu iff E = Eu .

Proof If E = Eu then E has b-property in Eu and has a weak order unit (cf. [1, Theorem 7.2]). Now we
prove the converse. Let 0 < e be a weak order unit for E . Then E is an order ideal in Eu by [1, Theorem
1.40]. Let 0 < u ∈ Eu be arbitrary. Since e is also a weak unit for Eu (E is order dense in Eu ), we have
0 < u∧ne ↑ u . As u∧ne ∈ E for each n , we see that the sequence u∧ne is b -bounded in Eu . Therefore, the
sequence u ∧ ne has an upper bound in E by the assumption. Thus, 0 ≤ u ∧ ne ≤ x for some x ∈ E ; hence,
0 ≤ u ≤ x . As E is an order ideal in Eu , we have u ∈ E . 2

It is well known that if E(τ) is a LSVL with Levi property and τ -complete order intervals, then E is
Dedekind complete. In the following, we reach the same conclusion by replacing Levi property with weaker
condition that E having b -property in Ê(τ̂) .

Proposition 2.10 Let E(τ) be an LSVL with τ -complete order intervals. If E(τ) has b-property in the
τ -completion Ê of E(τ) , then E(τ) is τ -complete.

Proof The assumption on order intervals implies that E(τ) is an order dense ideal of Ê by [1, Theorem 2.42].
Let 0 < x̂ ∈ Ê be arbitrary. Since E(τ) is order dense in Ê , there exists a net xα such that 0 ≤ xα ↑ x̂ . By
the b -property of E(τ) in Ê , we can find x0 ∈ E with 0 ≤ xα ≤ x0 , but then since xα ↑ x̂ , we have x̂ ≤ x0

and x̂ ∈ E because E is an ideal in Ê . Therefore, E(τ) = Ê as reqired. 2

Proposition 2.11 Let F be a regular sublattice of a Dedekind complete VL E . Then each increasing net of
elements of F which is order bounded in E is uo-Cauchy in F .

Proof Let xα be a net in F such that 0 ≤ xα ↑≤ e for some e ∈ E+ . Since E is Dedekind complete, xα ↑ x

for some x ∈ E+ . Then xα is o -Cauchy in E ; hence, it is uo -Cauchy in E . Therefore, xα is uo -Cauchy in F

by [7, Theorem 3.2]. 2

It was observed in [7, Theorem 3.2] for a net xα in a regular sublattice F of a vector lattice E , xα
uo→ 0

in F iff xα
uo→ 0 in E . However, this may fail for uτ -convergence. uτ -Convergence in a sublattice may not
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imply uτ -convergence in the entire space. For example, the standard unit vectors en in l∞ is easily seen to be
a null sequence in the unbounded norm topology of c0 but not so in l∞ .

Proposition 2.12 Let F be a sublattice of an LSVL E(τ) . Suppose that F has b-property in E . For a net
xα in F for which xα

uτ→ 0 in F , we have xα
uτ→ 0 in E(τ) .

Proof Suppose xα
uτ→ 0 in F . WLOG we may suppose 0 ≤ xα for all α . Then 0 ≤ xα ∧ y

τ→ 0 for each
y ∈ F+ . On the other hand, for each x ∈ E+ , 0 ≤ xα ∧ x ≤ x and the net 0 ≤ (xα ∧ x) is b -bounded in F ,
by the hypothesis, there exists y ∈ F+ such that 0 ≤ xα ∧ x ≤ y for all α . Then

0 ≤ xα ∧ x ≤ xα ∧ y
τ→ 0

from which we obtain xα ∧ x
τ→ 0 . As x is arbitrary xα

uτ→ 0 in E(τ) . 2

Proposition 2.13 Let E(τ) be a laterally complete vector lattice, then E has b-property in (E∼)∼n .

Proof Recall that E is order dense in (E∼)∼n . Then E is majorizing in (E∼)∼n by [1, Theorem 7.15].
Therefore, E has b -property in (E∼)∼n 2

Theorem 2.14 Let E(τ) be an LSVL with Lebesgue property. Then every order closed sublattice F of E(τ)

has countable b-property in Ê(τ̂) .

Proof Let F+ ∋ xn ↑≤ x̂ ∈ Ê(τ̂) . Since the topology τ̂ of Ê(τ̂) is also Lebesgue [1, Theorem 3.26] and hence

is pre-Lebesgue, the sequence xn is τ̂ -Cauchy in Ê(τ̂) ; therefore, xn
τ̂→ z for some z ∈ Ê(τ̂) . Since τ̂ is Fatou

by [1, Lemma 4.2], and F being order closed is τ̂ -closed by [1, Theorem 4.20], z ∈ F . As xn ↑ , xn
τ̂→ z , hence

z = supxn by [1, Theorem 2.21], and F has countable b-property in Ê(τ̂) . 2

Proposition 2.15 Let F be a uo-closed sublattice of a Dedekind complete vector lattice E . Then F has
b-property in E .

Proof Let xα be a net in F with 0 ≤ xα ↑≤ x for some x ∈ E . As E is Dedekind complete, xα ↑ x̂ for
some x̂ ∈ E . Then xα

o→ x̂ , consequently xα
uo→ x̂ in E as F is uo -complete, x̂ ∈ F . 2

Notice that Theorem 2.14 follows from Proposition 2.15 under an additional assumption that Ê(τ̂) is
Dedekind complete.

Theorem 2.16 Let E be a vector lattice admitting a minimal topology τ . Let xn be an increasing sequence of
elements of E order bounded in Eu . Then xn is τ -Cauchy in E .
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Proof Let xn be such that 0 ≤ xn ↑≤ xu for some xu ∈ Eu . Since Eu is Dedekind complete, xn being order
bounded in Eu , has a supremum in Eu , let it be x . Therefore xn

o→ x , it follows that xn is uo -Cauchy in Eu .
Since E is order dense in Eu , and order dense sublattices are regular, E is regular in Eu and by [7, Theorem
3.2], xn is uo -Cauchy in E . As every minimal topology is Lebesgue, τ is Lebesgue and xn is uτ -Cauchy. As
τ is unbounded, it follows that xn is τ -Cauchy on E . 2

Definition 2.17 A locally solid vector lattice E(τ) is called boundedly uo-complete if every τ -bounded uo-
Cauchy net in E(τ) is uo-convergent.

Proposition 2.18 A boundedly uo-complete LSVL E(τ) has b-property in Eu .

Proof Let 0 ≤ xα ↑≤ xu , where xu ∈ Eu , be a net in E . As xα is a b -bounded subset of E , it is τ -bounded
by Lemma 2.1. We show xα has an upper bound in E . As Eu is Dedekind complete, supxα exists in Eu .
Let this supremum be x . Then 0 ≤ xα ↑ x in Eu . Thus, xα

o→ x . It follows that xα is uo -Cauchy in E as E

is order dense and a regular sublattice of Eu . Thus, xα being uo -Cauchy and τ -bounded, xα uo -converges
to some x′ ∈ E , but as xα

o→ x we have x = x′ . 2

Definition 2.19 A Banach lattice is monotonically complete (has the Levy property) if every norm bounded
increasing net in E+ has supremum.

We now show that every boundedly uo -complete Banach lattice E has b -property in (E∼
n )∼n . The proof

uses an idea of [6] in that (E∼
n )∼n is monotonically complete and the canonical map J : E → (E∼

n )∼n maps a
bounded increasing net in E+ to a net in (E∼

n )∼n with similar properties.

Theorem 2.20 Let E be a boundedly uo-complete Banach lattice with E∼
n separating points of E . If xα is

an increasing net in E+ which is order bounded in (E∼
n )∼n , then xα is order bounded in E .

Proof Since the net xα is order bounded in (E∼
n )∼n , it is norm bounded in (E∼

n )∼n and hence norm bounded
in E by Lemma 2.1.

Let J : E → (E∼
n )∼n be the natural embedding, where J(x)(f) = f(x) for each x ∈ E and f ∈ E∼

n . The
map J is a vector lattice isomorphism and the range J(E) in (E∼

n )∼n is order dense in (E∼
n )∼n by [1, Theorem

1.43]. Therefore, J(E) is a regular sublattice of (E∼
n )∼n .

By [10, 2.4.19], (E∼
n )∼n is a monotonically complete Banach lattice. Thus, the increasing net J(xα) has a

supremum in (E∼
n )∼n say x . Therefore, J(xα) ↑ x and J(xα) is order Cauchy in (E∼

n )∼n . It follows that J(xα)

is uo -Cauchy in (E∼
n )∼n and in the regular sublattice J(E) . As J is 1 -1 and onto J(E) is lattice isomorphism,

xα is uo -Cauchy in E . Since E is boundedly uo -complete, xα
uo→ x1 for some x1 ∈ E . On the other hand,

0 ≤ xα ↑ implies xα ↑ x1 ; hence, the net xα is order bounded in E . 2
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