

Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/

Turk J Math (2021) 45: 1555 – 1563 © TÜBİTAK doi:10.3906/mat-2102-114

Research Article

b-property of sublattices in vector lattices

Şafak ALPAY¹, Svetlana GOROKHOVA^{2,*}

¹Department of Mathematics, Middle East Technical University, Ankara, Turkey ²Southern Mathematical Institute of the Russian Academy of Sciences, Vladikavkaz, Russia

Received: 26.02.2021 • Accepted/Published Online: 26.04.2021	•	Final Version: 27.07.2021
--	---	----------------------------------

Abstract: We study *b*-property of a sublattice (or an order ideal) F of a vector lattice E. In particular, *b*-property of E in E^{δ} , the Dedekind completion of E, *b*-property of E in E^{u} , the universal completion of E, and *b*-property of E in $\hat{E}(\hat{\tau})$, the completion of E.

Key words: Vector lattice, universal completion, Dedekind completion, b-property, local solid vector lattice

1. Introduction and preliminaries

Vector lattices considered here are all real and Archimedean. Vector topologies are assumed to be Hausdorff.

Definition 1.1 A sublattice F of a vector lattice E is said to have b-property in E, if x_{α} is a net in F^+ and $0 \le x_{\alpha} \uparrow \le e$ for some $e \in E$, then there exists $f \in F$ with $0 \le x_{\alpha} \uparrow \le f$.

Recall that a subset F of E is said to be majorizing in E if, for each $0 < e \in E$, there exists $f \in F$ with $0 \le e \le f$.

A subset U of a vector lattice (VL) is called solid if $|u| \leq |v|$, $v \in U$, imply $u \in U$. A linear topology τ on a VL E is called locally solid if τ has a base of zero consisting of solid sets.

A locally solid VL E (LSVL) satisfies the Lebesgue property if $x_{\alpha} \downarrow 0$ in E implies $x_{\alpha} \stackrel{\tau}{\rightarrow} 0$.

A LSVL $E(\tau)$ satisfies the Fatou property if τ has a base of zero consisting of solid and order closed sets.

A sublattice F in a VL E is regular if $\inf A$ is the same as $\inf F$ and E whenever $A \subset F$ whose infimum exists in F. Ideals are regular in E.

E is called laterally σ -complete if the supremum of every disjoint sequence exists in E^+ and laterally complete if supremum of every disjoint subset in E^+ exists in E.

A vector lattice E which is both Dedekind (σ -) complete and laterally (σ -) complete is called universally (σ -) complete.

²⁰¹⁰ AMS Mathematics Subject Classification: MSC2020: 46A40, 46B42

^{*}Correspondence: lanagor71@gmail.com

Example 1.2 [1, p.198] Let X be a topological space. A function $f : X \to \mathbb{R}$ is called a step function if there exists a collection of mutually disjoint subsets $\{V_i\}$ of X such that $\bigcup_i V_i = X$, f is constant on each V_i , and $f \in C^{\infty}(X)$. Let $S^{\infty}(X)$ be the space of step functions on an extremally disconnected topological space X. Then $S^{\infty}(X)$ is a laterally complete VL.

Universal (σ -) completion of a VL E is a laterally (σ -) complete and Dedekind (σ -) complete vector lattice E^u which contains E as an order dense sublattice. Every VL E has a unique universal completion [1, Theorem 7.21].

Lateral completion E^{λ} of a VL E is defined to be the intersection of all laterally complete vector lattices between E and E^{u} .

Example 1.3 Let X be an extremally disconnected topological space. $C^{\infty}(X)$, the space of all extended continuous functions on X with the usual algebraic and lattice operations is a universally complete VL.

A net $(x_{\alpha})_{\alpha \in A}$ in a VL E is order convergent to $x \in E$ if there exists a net $(x_{\beta})_{\beta \in B}$, possibly over a different index set, such that $x_{\beta} \downarrow 0$ and, for each $\beta \in B$, there exists $\alpha_0 \in A$ with $|x_{\alpha} - x| \leq x_{\beta}$ for all $\alpha \geq \alpha_0$. In this case we write $x_{\alpha} \stackrel{o}{\to} x$.

A net x_{α} in E uo-converges to $x \in E$ if $|x_{\alpha} - x| \wedge u \xrightarrow{o} 0$ for all $u \in E^+$. In this case we write $x_{\alpha} \xrightarrow{u_{\alpha}} x$. Let $E(\tau)$ be a LSVL. A net x_{α} in E is $u\tau$ -convergent to $x \in E$ if $|x_{\alpha} - x| \wedge u \xrightarrow{\tau} 0$ for all $u \in E^+$. A net x_{α} in E is called order Cauchy (uo-Cauchy) if the doubly indexed net $(x_{\alpha} - x_{\alpha'})_{(\alpha,\alpha')}$ is order convergent (uo-convergent) to zero. $E(\tau)$ is called uo-complete if every uo-Cauchy net is uo-convergent in E.

The *b*-property of a VL *E* was defined in [2] as: a VL *E* has *b*-property if every subset *A* in *E*, which is order bounded in $(E^{\sim})^{\sim}$, remains to be order bounded in *E*. We say that a vector sublattice *F* of a VL *E* has (countable) *b*-property in *E* whenever each (sequence) net f_{α} in *F*, with $0 \leq f_{\alpha} \uparrow \leq e$ for some $e \in E$, is order bounded in *F* (cf. e.g. [2], [3, p.766]).

Example 1.4 Every perfect VL, and therefore every order dual, have the b-property. Every reflexive BL and every KB-space have b-property [2–5]. On the other hand, by considering the basis vectors e_n in c_0 , we see that c_0 does not have the b-property in l_{∞} .

Let us note that Fremlin had considered subsets of a VL E that are order bounded in the universal completion E^u of E. He proved that if E is a Dedekind σ -complete VL then E is laterally σ -complete iff Ehas the countable b-property in E^u [1, Theorem 7.38]. That is, each sequence x_n in E with $0 \le x_n \uparrow \le e$ for some $e \in E^u$ has an upper bound in E,

Example 1.5 Each projection band F in a vector lattice E has b-property in E. In particular, every band in a Dedekind complete vector lattice has b-property. An element u in a VL E is called an atom if whenever $v \wedge w = 0$, $0 \leq v \leq u$, and $0 \leq w \leq u$ imply either v = 0 or w = 0. If x is an atom in E, the principal band B_x generated by x is a projection band and therefore has b-property in E.

Example 1.6 Every majorizing sublattice F has b-property in E. Let $0 \le x_{\alpha} \uparrow \le e$ for some net $x_{\alpha} \subseteq F$, $e \in E$. As F is majorizing, there exists $f \in F$ with $e \le f$. Then $0 \le x_{\alpha} \le f$. Since it is well known that E is majorizing in the Dedekind completion E^{δ} , the lattice E has b-property in E^{δ} .

Example 1.7 Every order ideal F in a vector lattice E with b-property in E is a band of E. Indeed, let x_{α} be a net in F such that $0 \le x_{\alpha} \uparrow e \in E$, then the net x_{α} is order bounded in F, say $0 \le x_{\alpha} \uparrow \le f \in F$, by the b-property of F in E. Hence, $0 \le e \le f$ and as F is an ideal, $e \in F$.

Example 1.8 Let $E \subseteq F$ be a sublattice of F and I(E) be the ideal generated by E in F. Then E has b-property in I(E). Having b-property is transitive: if $E \subseteq F \subseteq G$ are sublattices of a VL X such that E has b-property in F and F has b-property in G, then E has b-property in G. If E has b-property in G, then E has b-property in every sublattice of G containing E as a sublattice.

Example 1.9 Let F be a norm-closed sublattice of a Banach lattice $(E, \|.\|)$ with order continuous norm. Let x_n be a sequence in F such that $0 \le x_n \uparrow \le e$ for some $e \in E$. Then x_n is norm-convergent to some $x \in E$. As F is norm-closed, $x \in F$. Since $x_n \le x$ for all n, then F has countable b-property in E. Order continuity of the ambient space is essential in this example, if one takes $E = l^{\infty}$ and $F = c_0$. Then, by considering the sequence e_n in c_0 , we see that c_0 has no b-property in l^{∞} .

Example 1.10 Generalizing Example 1.9, let $E(\tau)$ be an LSVL with Lebesgue property. Then every τ -closed order ideal F has b-property in $E(\tau)$. This is because every τ -closed ideal is a band and, as $E(\tau)$ is Dedekind complete, it is a projection band.

Example 1.11 Given a VL E, let us denote by E^{λ} its lateral completion and E^{u} its universal completion. Since X is majorizing in X^{δ} by Example 1.6, the equality $(E^{\lambda})^{\delta} = (E^{\delta})^{\lambda} = E^{u}$ (see [1, Exer.10 on p.213]) shows that E^{λ} is majorizing in E^{u} ; therefore, each laterally complete VL E has b-property in its universal completion E^{u} .

Example 1.12 If E is a laterally complete VL, then it has the band projection property and every band on E has b-property. Furthermore, a subset $A \subset E^+$ of a laterally complete VL E is order bounded in E^u iff A is order bounded in E by [1, Theorems 7.14 and 7.37].

Let us observe that all Lebesgue topologies on a LSVL $E(\tau)$ induce the same topology on order bounded subsets of E. Therefore, if F is a sublattice of E then on all subsets of F with b-property in E all Lebesgue topologies on E induce the same topology. **Example 1.13** Let F be an order dense sublattice of a vector lattice E. If F is laterally complete in its own right, then F majorizes E and therefore has b-property in E.

We refer to [1, 10] for all undefined terms.

2. Main results

Lemma 2.1 Let F be a sublattice of a LSVL $E(\tau)$. Then each b-bounded in E subset B of F is τ -bounded with respect to induced topology on F.

Proof To say that *B* is *b*-bounded in *E* is to say that *B* is order bounded in *E*. Therefore, if *U* is a neighborhood of 0 in τ then $B \subseteq \lambda U$ for some $\lambda > 0$. Then $B \subseteq \lambda U \cap F = \lambda (U \cap F)$.

Lemma 2.2 Let E be a vector lattice and F be an order dense sublattice of E. Then TFAE:

- i) F has b-property in E;
- ii) F is majorizing in E.

Proof $i \implies ii$: Let $0 \le x \in E$ be arbitrary, as F is order dense in E, there exists a net x_{α} in F such that $0 \le x_{\alpha} \uparrow x$. As x_{α} is b-bounded in E by assumption, there exists $x_0 \in F^+$ with $0 \le x_{\alpha} \le x_0$ for all α , as $x_{\alpha} \uparrow x$, we have $x \le x_0$ and F is majorizing.

 $ii) \implies i$: Let x_{α} be a net in F with $0 \le x_{\alpha} \uparrow \le x$ for some $x \in E$. Since F is assumed to be majorizing E, there exists $y \in F$ with $x \le y$. Consequently, $0 \le x_{\alpha} \uparrow \le y \in F$; hence, F has b-property in E.

This yields: E has b-property in E^u iff E is majorizing in E^u . We also have, if $E(\tau)$ is a LSVL where E is an ideal of $\hat{E}(\hat{\tau})$ and \hat{E} is the completion, that E has b-property in $\hat{E}(\hat{\tau})$.

On the other hand, if $E(\tau)$ is a LSVL with Fatou property, then every increasing τ -bounded net of E^+ is order bounded in E^u , i.e. every increasing τ -bounded net of E^+ is b-bounded in E^u by [1, Theorem 7.51].

The following property was introduced in [8] and [9].

Definition 2.3 A locally solid vector lattice $E(\tau)$ is called boundedly order bounded (BOB) if every τ -bounded net in E^+ is order bounded in E.

We show BOB is equivalent to *b*-property if the LSVL $E(\tau)$ has Fatou property.

Lemma 2.4 Let $E(\tau)$ be a LSVL with Fatou property. Then E has b-property in E^u iff E is BOB.

Proof Suppose *E* is BOB and x_{α} be a net in *E* with $0 \le x_{\alpha} \uparrow \le x_0$ for some $x_0 \in E^u$. Then, by Lemma 2.1, x_{α} is τ -bounded in *E* and, by assumption that *E* is BOB, $0 \le x_{\alpha} \le x$ for some $x \in E$.

Conversely, suppose that x_{α} is τ -bounded increasing net in E^+ , then by [1, Theorem 7.50], x_{α} is order bounded in E^u . Thus by *b*-property of E in E^u , there exists $x \in E$ with $0 \le x_{\alpha} \le x$ and $E(\tau)$ is BOB. \Box [1, Theorem 7.49] shows that, in a laterally σ -complete LSVL $E(\tau)$, every disjoint sequence in E^+ converges to zero with respect to any LS topology on E. We show a similar result. The proof is similar.

Proposition 2.5 Let $E(\tau)$ be a LSVL which has countable b-property in its lateral σ -completion. Then every disjoint sequence in E^+ converges to zero with respect to any locally solid topology on E. In particular, every locally solid topology on E has the pre-Lebesgue property.

Proof Let x_n be a disjoint sequence in E^+ . Then nx_n is also a disjoint sequence in E^+ . Then $x = \bigvee_{n=1}^{\infty} nx_n$ exists in the lateral σ -completion, and we have $0 \le x_n \le \frac{1}{n}x$ for all n. Countable b-property of E in its lateral completion yields a vector $e \in E$ with $0 \le x_n \le \frac{1}{n}e$ for all n. Thus, x_n converges to zero with respect to any locally solid topology on E.

Recall that E has a countable b-property in its lateral completion E^{λ} if, for each x_n with $0 \le x_n \uparrow \le e$ for some $e \in E^{\lambda}$, there holds $x_n \uparrow \le x \in E$.

Corollary 2.6 Let $E(\tau)$ be an LSVL with Lebesgue property. If E has countable b-property in its lateral σ -completion, then the topological completion \hat{E} of $E(\tau)$ is E^u .

Proof Under the given conditions, every disjoint sequence in E^+ is τ -convergent to zero by Proposition 2.5. Thus, the corollary follows from [1, Theorem 7.51].

Proposition 2.7 A laterally complete vector lattice E has b-property in every vector lattice which contains E as an order dense sublattice.

Proof In this case, E majorizes the vector lattice that contains it. The result now follows from [1, Theorem 7.15].

In [11, Proposition 2.22] it is proved that if $E(\tau)$ is a LSVL with Lebesgue topology, then a sublattice F of E is $u\tau$ -closed in E iff it is τ -closed. It was asked in [11, Question 2.24] whether Lebesgue assumption could be removed. The next result yields an answer utilizing b-property.

Theorem 2.8 Let F be an order ideal of an LSVL $E(\tau)$. If F has b-property in E, then F is $u\tau$ -closed iff it is τ -closed in E.

Proof As $u\tau$ is coarser than τ , the forward implication is clear.

We will show $x \in F$. Suppose that F is τ -closed and y_{α} is a net in F with $y_{\alpha} \xrightarrow{u\tau} x$ for some $x \in E$. The lattice operations are $u\tau$ -continuous so that $y_{\alpha}^{\pm} \xrightarrow{u\tau} x$. Therefore, WLOG we may assume $0 \leq y_{\alpha}$ for all α . Let $z \in E^+$ be arbitrary, then

$$|y_{\alpha} \wedge z - x \wedge z| \leq |y_{\alpha} - x| \wedge z \stackrel{\prime}{\rightarrow} 0.$$

Since $0 \le y_{\alpha} \land x \le y_{\alpha}$ for all α , and F is an order ideal, we have $y_{\alpha} \land x \in F$ for all α and $y_{\alpha} \land x \xrightarrow{\tau} x \land x$.

Take $y \in F$, then $y_{\alpha} \wedge y \xrightarrow{\tau} x \wedge y$, since F is τ -closed, we have $x \wedge y \in F$ for each $y \in F^+$. If $z \in F^d$, then $y_{\alpha} \wedge z = 0$ for all α and we have $x \wedge z = 0$. Thus, $x \in F^{dd}$. That is, x is in the band generated by F in E. Hence, there exists a net z_{β} in F^+ such that $0 \leq z_{\beta} \uparrow |x|$. Therefore, z_{β} is b-bounded in E, by b-property of F in E, $0 \leq z_{\beta} \leq x_0$ for some $x_0 \in F$ and $|x| \leq x_0$. Hence, $x \in F$ as F is an ideal. \Box

It is shown in [1, Theorem 7.39] that a Dedekind complete vector lattice is universally complete iff it is universally σ -complete and has a weak unit. In the next result, we replace universally σ -completeness with countable *b*-property of *E* in E^u .

Theorem 2.9 Let *E* be a Dedekind complete vector lattice. Then *E* has a weak order unit and possesses countable *b*-property in E^u iff $E = E^u$.

Proof If $E = E^u$ then E has b-property in E^u and has a weak order unit (cf. [1, Theorem 7.2]). Now we prove the converse. Let 0 < e be a weak order unit for E. Then E is an order ideal in E^u by [1, Theorem 1.40]. Let $0 < u \in E^u$ be arbitrary. Since e is also a weak unit for E^u (E is order dense in E^u), we have $0 < u \land ne \uparrow u$. As $u \land ne \in E$ for each n, we see that the sequence $u \land ne$ is b-bounded in E^u . Therefore, the sequence $u \land ne$ has an upper bound in E by the assumption. Thus, $0 \le u \land ne \le x$ for some $x \in E$; hence, $0 \le u \le x$. As E is an order ideal in E^u , we have $u \in E$.

It is well known that if $E(\tau)$ is a LSVL with Levi property and τ -complete order intervals, then E is Dedekind complete. In the following, we reach the same conclusion by replacing Levi property with weaker condition that E having b-property in $\hat{E}(\hat{\tau})$.

Proposition 2.10 Let $E(\tau)$ be an LSVL with τ -complete order intervals. If $E(\tau)$ has b-property in the τ -completion \hat{E} of $E(\tau)$, then $E(\tau)$ is τ -complete.

Proof The assumption on order intervals implies that $E(\tau)$ is an order dense ideal of \hat{E} by [1, Theorem 2.42]. Let $0 < \hat{x} \in \hat{E}$ be arbitrary. Since $E(\tau)$ is order dense in \hat{E} , there exists a net x_{α} such that $0 \le x_{\alpha} \uparrow \hat{x}$. By the *b*-property of $E(\tau)$ in \hat{E} , we can find $x_0 \in E$ with $0 \le x_{\alpha} \le x_0$, but then since $x_{\alpha} \uparrow \hat{x}$, we have $\hat{x} \le x_0$ and $\hat{x} \in E$ because E is an ideal in \hat{E} . Therefore, $E(\tau) = \hat{E}$ as reqired.

Proposition 2.11 Let F be a regular sublattice of a Dedekind complete VL E. Then each increasing net of elements of F which is order bounded in E is uo-Cauchy in F.

Proof Let x_{α} be a net in F such that $0 \le x_{\alpha} \uparrow \le e$ for some $e \in E^+$. Since E is Dedekind complete, $x_{\alpha} \uparrow x$ for some $x \in E^+$. Then x_{α} is *o*-Cauchy in E; hence, it is *uo*-Cauchy in E. Therefore, x_{α} is *uo*-Cauchy in F by [7, Theorem 3.2].

It was observed in [7, Theorem 3.2] for a net x_{α} in a regular sublattice F of a vector lattice E, $x_{\alpha} \xrightarrow{u_0} 0$ in F iff $x_{\alpha} \xrightarrow{u_0} 0$ in E. However, this may fail for $u\tau$ -convergence. $u\tau$ -Convergence in a sublattice may not imply $u\tau$ -convergence in the entire space. For example, the standard unit vectors e_n in l^{∞} is easily seen to be a null sequence in the unbounded norm topology of c_0 but not so in l^{∞} .

Proposition 2.12 Let F be a sublattice of an LSVL $E(\tau)$. Suppose that F has b-property in E. For a net x_{α} in F for which $x_{\alpha} \stackrel{u_{\tau}}{\to} 0$ in F, we have $x_{\alpha} \stackrel{u_{\tau}}{\to} 0$ in $E(\tau)$.

Proof Suppose $x_{\alpha} \stackrel{u_{\tau}}{\to} 0$ in F. WLOG we may suppose $0 \le x_{\alpha}$ for all α . Then $0 \le x_{\alpha} \land y \stackrel{\tau}{\to} 0$ for each $y \in F^+$. On the other hand, for each $x \in E^+$, $0 \le x_{\alpha} \land x \le x$ and the net $0 \le (x_{\alpha} \land x)$ is b-bounded in F, by the hypothesis, there exists $y \in F^+$ such that $0 \le x_{\alpha} \land x \le y$ for all α . Then

$$0 \le x_{\alpha} \land x \le x_{\alpha} \land y \xrightarrow{\tau} 0$$

from which we obtain $x_{\alpha} \wedge x \xrightarrow{\tau} 0$. As x is arbitrary $x_{\alpha} \xrightarrow{u_{\tau}} 0$ in $E(\tau)$.

Proposition 2.13 Let $E(\tau)$ be a laterally complete vector lattice, then E has b-property in $(E^{\sim})_{n}^{\sim}$.

Proof Recall that E is order dense in $(E^{\sim})_n^{\sim}$. Then E is majorizing in $(E^{\sim})_n^{\sim}$ by [1, Theorem 7.15]. Therefore, E has b-property in $(E^{\sim})_n^{\sim}$

Theorem 2.14 Let $E(\tau)$ be an LSVL with Lebesgue property. Then every order closed sublattice F of $E(\tau)$ has countable b-property in $\hat{E}(\hat{\tau})$.

Proof Let $F^+ \ni x_n \uparrow \leq \hat{x} \in \hat{E}(\hat{\tau})$. Since the topology $\hat{\tau}$ of $\hat{E}(\hat{\tau})$ is also Lebesgue [1, Theorem 3.26] and hence is pre-Lebesgue, the sequence x_n is $\hat{\tau}$ -Cauchy in $\hat{E}(\hat{\tau})$; therefore, $x_n \stackrel{\hat{\tau}}{\to} z$ for some $z \in \hat{E}(\hat{\tau})$. Since $\hat{\tau}$ is Fatou by [1, Lemma 4.2], and F being order closed is $\hat{\tau}$ -closed by [1, Theorem 4.20], $z \in F$. As $x_n \uparrow, x_n \stackrel{\hat{\tau}}{\to} z$, hence $z = \sup x_n$ by [1, Theorem 2.21], and F has countable b-property in $\hat{E}(\hat{\tau})$.

Proposition 2.15 Let F be a uo-closed sublattice of a Dedekind complete vector lattice E. Then F has b-property in E.

Proof Let x_{α} be a net in F with $0 \le x_{\alpha} \uparrow \le x$ for some $x \in E$. As E is Dedekind complete, $x_{\alpha} \uparrow \hat{x}$ for some $\hat{x} \in E$. Then $x_{\alpha} \xrightarrow{o} \hat{x}$, consequently $x_{\alpha} \xrightarrow{uo} \hat{x}$ in E as F is uo-complete, $\hat{x} \in F$.

Notice that Theorem 2.14 follows from Proposition 2.15 under an additional assumption that $\hat{E}(\hat{\tau})$ is Dedekind complete.

Theorem 2.16 Let E be a vector lattice admitting a minimal topology τ . Let x_n be an increasing sequence of elements of E order bounded in E^u . Then x_n is τ -Cauchy in E.

Proof Let x_n be such that $0 \le x_n \uparrow \le x^u$ for some $x^u \in E^u$. Since E^u is Dedekind complete, x_n being order bounded in E^u , has a supremum in E^u , let it be x. Therefore $x_n \xrightarrow{o} x$, it follows that x_n is *uo*-Cauchy in E^u . Since E is order dense in E^u , and order dense sublattices are regular, E is regular in E^u and by [7, Theorem 3.2], x_n is *uo*-Cauchy in E. As every minimal topology is Lebesgue, τ is Lebesgue and x_n is $u\tau$ -Cauchy. As τ is unbounded, it follows that x_n is τ -Cauchy on E.

Definition 2.17 A locally solid vector lattice $E(\tau)$ is called boundedly uo-complete if every τ -bounded uo-Cauchy net in $E(\tau)$ is uo-convergent.

Proposition 2.18 A boundedly uo-complete LSVL $E(\tau)$ has b-property in E^u .

Proof Let $0 \le x_{\alpha} \uparrow \le x^{u}$, where $x^{u} \in E^{u}$, be a net in E. As x_{α} is a *b*-bounded subset of E, it is τ -bounded by Lemma 2.1. We show x_{α} has an upper bound in E. As E^{u} is Dedekind complete, $\sup x_{\alpha}$ exists in E^{u} . Let this supremum be x. Then $0 \le x_{\alpha} \uparrow x$ in E^{u} . Thus, $x_{\alpha} \xrightarrow{o} x$. It follows that x_{α} is *uo*-Cauchy in E as E is order dense and a regular sublattice of E^{u} . Thus, x_{α} being *uo*-Cauchy and τ -bounded, x_{α} *uo*-converges to some $x' \in E$, but as $x_{\alpha} \xrightarrow{o} x$ we have x = x'.

Definition 2.19 A Banach lattice is monotonically complete (has the Levy property) if every norm bounded increasing net in E^+ has supremum.

We now show that every boundedly *uo*-complete Banach lattice E has *b*-property in $(E_n^{\sim})_n^{\sim}$. The proof uses an idea of [6] in that $(E_n^{\sim})_n^{\sim}$ is monotonically complete and the canonical map $J: E \to (E_n^{\sim})_n^{\sim}$ maps a bounded increasing net in E^+ to a net in $(E_n^{\sim})_n^{\sim}$ with similar properties.

Theorem 2.20 Let E be a boundedly uo-complete Banach lattice with E_n^{\sim} separating points of E. If x_{α} is an increasing net in E^+ which is order bounded in $(E_n^{\sim})_n^{\sim}$, then x_{α} is order bounded in E.

Proof Since the net x_{α} is order bounded in $(E_n^{\sim})_n^{\sim}$, it is norm bounded in $(E_n^{\sim})_n^{\sim}$ and hence norm bounded in E by Lemma 2.1.

Let $J: E \to (E_n^{\sim})_n^{\sim}$ be the natural embedding, where J(x)(f) = f(x) for each $x \in E$ and $f \in E_n^{\sim}$. The map J is a vector lattice isomorphism and the range J(E) in $(E_n^{\sim})_n^{\sim}$ is order dense in $(E_n^{\sim})_n^{\sim}$ by [1, Theorem 1.43]. Therefore, J(E) is a regular sublattice of $(E_n^{\sim})_n^{\sim}$.

By [10, 2.4.19], $(E_n^{\sim})_n^{\sim}$ is a monotonically complete Banach lattice. Thus, the increasing net $J(x_{\alpha})$ has a supremum in $(E_n^{\sim})_n^{\sim}$ say x. Therefore, $J(x_{\alpha}) \uparrow x$ and $J(x_{\alpha})$ is order Cauchy in $(E_n^{\sim})_n^{\sim}$. It follows that $J(x_{\alpha})$ is uo-Cauchy in $(E_n^{\sim})_n^{\sim}$ and in the regular sublattice J(E). As J is 1-1 and onto J(E) is lattice isomorphism, x_{α} is uo-Cauchy in E. Since E is boundedly uo-complete, $x_{\alpha} \stackrel{uo}{\to} x_1$ for some $x_1 \in E$. On the other hand, $0 \leq x_{\alpha} \uparrow$ implies $x_{\alpha} \uparrow x_1$; hence, the net x_{α} is order bounded in E.

ALPAY and GOROKHOVA/Turk J Math

References

- Aliprantis CD, Burkinshaw O. Locally Solid Riesz Spaces with Applications to Economics. 2nd ed. Mathematical Surveys and Monographs, 2003; 105. American Mathematical Society, Providence, RI. doi: 10.1090/surv/105
- [2] Alpay Ş, Altın B, Tonyali C. On property b of vector lattices. Positivity 2003; 7: 135-139. doi: 10.1023/A:1025840528211
- [3] Alpay Ş, Altın B, Tonyali C. A note on Riesz spaces with property b. Czechoslovak Mathematical Journal 2006; 56 (131): 765-772. doi: 10.1007/s10587-006-0054-0
- [4] Alpay S, Emelyanov E, Gorokhova S. Bibounded uo-convergence and bbuo-duals of vector lattices. arXiv:2009.07401
- [5] Alpay Ş, Ercan Z. Characterizations of Riesz spaces with b-property. Positivity 2009; 13: 21-30. doi: 10.1007/s11117-008-2227-6
- [6] Gao N, Leung D, Xanthos, F. Dual representation of risk measures on Orlicz spaces. arXiv:1610.08806
- [7] Gao N, Troitsky V, Xanthos F. Uo-convergence and its applications to Cesáro means in Banach lattices. Israel Journal of Mathematics 2017; 220: 649-689. doi: 10.1007/s11856-017-1530-y
- [8] Labuda I. Completeness type properties of locally solid Riesz spaces. Studia Mathematica 1984; 77: 349-372. doi: 10.4064/sm-77-4-349-372
- [9] Labuda I. On boundedly order-complete locally solid Riesz spaces. Studia Mathematica 1985; 81: 245-258. doi: 10.4064/sm-81-3-245-258
- [10] Meyer-Nieberg P. Banach Lattices. Berlin, Germany: Springer-Verlag, 1991. doi: 10.1007/978-3-642-76724-1
- [11] Taylor MA. Unbounded Convergences in Vector Lattices, MSc. University of Alberta. doi: 10.7939/r3-vq30-xr62