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Abstract: In this paper, fractional Sturm–Liouville problems of high-order are studied. A simple and efficient approach
is presented to determine more eigenvalues and eigenfunctions than other approaches. Existence and uniqueness of
solutions of a fractional high-order differential equation with initial conditions is addressed as well as the convergence
of the proposed approach. This class of eigenvalue problems is important in finding solutions to linear fractional partial
differential equations (LFPDE). This method is illustrated by three examples to signify the efficiency and reliability of
the proposed numerical approach.
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1. Introduction
The Sturm-Liouville problems play an important role in applied mathematics, physics, and engineering. Al-
though the second order Sturm–Liouville equations describe many physical phenomena mathematically such as
classical and quantum mechanics (see [8, 25, 31, 42]), higher order Sturm–Liouville problems can be used in
mathematical modeling of more important phenomena. For example, fourth order Sturm–Liouville problem is
modeling the free vibration analysis of beam structures (see[14, 16, 34]), and a variety of fluid mechanics models
are governed by high-order Sturm–Liouville problems. For instance, when the ordinary convection arises from
heating the beneath layer of the fluid regarding the action of rotation, an eight order Sturm–Liouville problem
can model the instability of moleculas. On the other hand, the marginal state is delineated by sixth order
Sturm–Liouville problem (see [12, 13, 17, 34]). The governed differential equation would be ten and twelfth
order Sturm–Liouville boundary value problems provided that a uniform magnetic field was applied across the
fluid in some direction as gravity (see [12, 13, 18, 35]). However, not much work has been done for higher order
Sturm–Liouville problems and it is still a challenging task for scientists.

Adomian decomposition method (ADM), variational iteration method (VIM), Chebyshev spectral collo-
cation method (CSCM), and modified Adomian decomposition method are numerical or semi-analytic schemes
available on this subject (see [6, 33, 34]).
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The non-singular high order Sturm–Liouville problem is in the following form.

(−1)m(pm(x)y(m)(x))(m) + (−1)(m−1)(pm−1(x)y
(m−1)(x))(m−1) + · · ·

+(p2(x)y
′′(x))′′ − (p1(x)y

′(x))′ + p0(x)y(x)

= λw(x)y(x), a = 0 < x < b, (1.1)

subject to some 2m specified conditions at the boundary points x ∈ {a, b} on

uk = y(k−1), 1 ⩽ k ⩽ m,

v1 = p1y
′ − (p2y

′′)′ + (p3y
′′′)′′ + · · ·+ (−1)m−1(pmy(m))(m−1),

v2 = p2y
′′ − (p3y

′′′)′ + (p4y
(4))′′ + · · ·+ (−1)m−2(pmy(m))(m−2),

...

vk = pky
(k) − (pk+1y

(k+1))′ + (pk+2y
(k+2))′′ + · · ·+ (−1)m−k(pmy(m))(m−k),

...

vm = pmy(m), (1.2)

where all coefficients pi(x), i = 0, · · · ,m are real valued functions. The interval (a, b) is finite; the coefficient

functions pi(x) (0 ≤ i ≤ m) , the weight function w(x) , and 1

pm(x)
are in L1(a, b) ; pm(x) and w(x) are both

positive.
The fractional-order SLP is a generalization of the integer-order SLP and this paper considers the high

order fractional Sturm–Liouville equation where integer-order derivatives are replaced by fractional-order ones.
Without loss of gerality and for the sake of simplicity, this paper focuses on the following nth -order

fractional Sturm–Liouville eigenvalue problem,

Dα
0+y(x) +

n−2∑
j=0

qj(x)y
(j)(x) = λy(x), 0 ≤ x ≤ b, (1.3)

where qj(x) , j = 0, 1, 2, · · · , n − 2 , are integrable functions over the closed interval [0, b] , Dα
0+ is the Caputo

fractional derivative, α is bounded by n− 1 < α ⩽ n , and n should be an even number, that will be denoted
by 2m . The separated boundary conditions are as follows:

y(i)(0) = 0, (1.4)

y(i)(b) = 0, (1.5)

for i ∈ S′ ⊂ S := {0, 1, 2, · · · , 2m− 1} , where S′ has m elements.
The fractional Sturm–Liouville problem (FSLP) (1.3)-(1.4) often appears in the separable linear fractional

partial differential equations (see [2, 3, 9, 26]). This equation has found a significant interest in engineering,
geology, economy, biology, and acoustics (see [26, 30] and references therein).
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Due to difficulties of applying analytic approaches for any FSLP, several numerical procedures have
been implemented to find approximate solutions. Almost all of these numerical methods have been proposed for
classical forms of Sturm–Liouville problems and are generalized to FSLP. Some of these approaches are as follows:
homotopy analysis method (HAM) [1], adomian decomposition method (ADM) [3, 26], fractional differential
transform method (FDTM) [15], iterative approximation method [28], and variational iteration method [24].
In order to find the eigenvalues and relevant eigenfunctions, discretizing of the fractional operator with the
composition of the left and right Caputo derivative, subjected to the mixed boundary conditions, has been
done in [11]. The combination of two techniques: the method of external excitation (MEE) and the backward
substitution method (BSM), constructed a novel method for solving fractional eigenvalue problems of the second
order [32]. Polyfractonomials as the eigenfunctions of fractional Jacobi problems have been introduced in [40]
and extended to the case with the tempered fractional derivatives [41]. In [21], a fractional-order Legendre Tau
method is devoted to approximate of the eigenvalues of a nonsingular fractional second-order Sturm–Liouville
problem.

Since Klimek and Agrawal has introduced the new fractional Sturm–Liouville operator, which is the
combination of Caputo and Riemann fractional derivative [23], many mathematicians put some tremendous
effort to find the solution of this kind of problem numerically and analytically [7, 37, 38].

There exist many articles containing the existence and uniqueness theorems of fractional differential
equations. Using fixed point theorem, the existence and approximation of solutions to initial value problems
for nonlinear fractional differential equations of arbitrary order with Riemann–Liouville derivative have been
considered in [36]. Authors in [39] examined the existence of solutions for a higher-order coupled system
of fractional differential equations with Sturm–Liouville boundary value conditions at resonance by applying
Mawhin continuation theorem.

It must be mentioned that most of the aforementioned methods have been applied only to the second-
order FSLP. To the best of our knowledge, a few studies have been carried out to find the eigenvalues of high
order FSLP and [19] is the first report in the field of eigenvalue problems of high order FSLP with variable
coefficients. Authors, in [4] utilized the fractional series solution to find eigenfunctions of fourth order FSLP
and then determined the eigenvalues by imposing the boundary conditions. We note that, despite extensive
literature on the second order FSLP and their diverse physical and engineering applications, the research on
the high order fractional problems has remained very scarce.

Therefore, we are motivated to propose an efficient approach in order to solve the high order fractional
Sturm-Liouville problem, based on fractional differential transform method. The proposed method is flexible to
solve any FSLP with an arbitrary order and we obtain more eigenvalues in our numerical results in comparison
with the examples addressed in some mentioned literature. The convergence of the proposed method has been
investigated in this paper. Moreover, we prove the existence and uniqueness of the solution of a Cauchy problem
for the high order fractional initial value problem with respect to the Caputo derivative.

The paper is organized as follows. Preliminary definitions of fractional calculus are presented in Section
2. In Section 3, the existence and uniqueness of high-order fractional differential equation with initial conditions
is considered. The fractional differential transform method and its implementation to approximate the solution
of Eq. (1.3), with respect to the initial condition (1.4), is demonstrated in Section 4. The convergence of the
proposed approach is studied in Section 5 followed by numerical examples in Section 6. Finally, the discussion
of results is stated in Section 7.
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2. Preliminary

In this section, we present some essential information about fractional calculus theory that will be used
intensively in this paper.

Definition 2.1 Let us denote by ACn(Ω) , where n = 1, 2, · · · and Ω is an interval, the space of functions
f(x) which have continuous derivatives up order n− 1 on Ω with f (n−1)(x) ∈ AC(Ω) .

Definition 2.2 The left-sided Riemann-Liouville fractional integral operator of order α is defined by

Iα0+y(x) =
1

Γ(α)

∫ x

0

(x− t)α−1y(t)dt, (2.1)

where y(x) belongs to the space L1[0, b] , Lebesgue measurable functions on the finite interval [0, b] , b > 0 , and
α ∈ R+ .

Some useful properties of the operator Iα0+ are summarized in the following lemma [27, 29, 30].

Definition 2.3 The left-sided Caputo fractional derivative of order α , n− 1 < α ⩽ n is defined by

Dα
0+y(x) := (In−α

0+ Dny)(x) =
1

Γ(n− α)

∫ x

0

y(n)dt

(x− t)α−n+1
, (2.2)

whenever the right hand side exists.

Theorem 2.4 Let n−1 < α ⩽ n . If y(x) belongs to the space ACn[0, b] , then the Caputo fractional derivative
Dα

0+y(x) exists almost everywhere on [0, b] .

Proof See [22] for more details. 2

Lemma 2.5 For α ∈ R+ , n− 1 < α ⩽ n and y ∈ L1[0, b] , we have

1.Dα
0+I

α
0+y(x) = y(x),

2.Iα0+D
α
0+y(x) = y(x)−

n−1∑
i=0

y(m)(0+)
xm

m!
,

3.Dα
0+x

r =

Γ(r + 1)

Γ(r + 1− α)
xr−α, for n ⩽ r,

0 for r < n.

3. Existence and uniqueness of solutions of High-order fractional initial value problems

Consider the following high-order fractional initial value problem

Dα
0+y(x) = f(x, y, y′, · · · , y(n−1)), x ∈ J := [0, b], (3.1)
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subject to Cauchy initial conditions

y(i)(0) = yi0, i = 0, 1, · · · , n− 1, (3.2)

where n− 1 < α ⩽ n , yi0 are known constants.

We also know f : J × ACn × ACn−1 × · · · × AC → L1 as a continuous function. The space ACn[0, b]

with the norm ∥y∥ACn = ∥y∥L1 +∥y′∥L1 + · · ·+∥y(n)∥L1 where ∥y∥L1 =
∫ b

0
|y(x)|dx , can be readily shown that

it is a Banach space.

(LC) Assume that f(x, y, y′, . . . , y(n−1)) satisfies the following Lipschitz condition

∥f(x, y, y′, · · · , y(n−1))− f(x, z, y′, · · · , y(n−1))∥ACn ⩽ K∥y − z∥ACn ,

where K > 0 .
From Lemma (2.5), it can be seen that Eq. (3.1) is equivalent to the integral equation

y(x) =

n−1∑
k=0

y(k)(0)

k!
xk +

1

Γ(α)

∫ x

0

(x− s)α−1(f(x, y, y′, · · · , y(n−1))ds.

For brevity, let us take γ = bα

Γ(α+1) and N := ∥f(x, 0, 0, · · · , 0)∥ACn .

Theorem 3.1 If the hypothesis (LC) is satisfied and if 2γK < 1 , then the high-order fractional initial value
problem (3.1)-(3.2) has a unique solution.

Proof Let Z = C(J ;ACn) . Define a mapping Φ : Z → Z by

Φy(x) =

n−1∑
k=0

y(k)(0)

k!
xk − 1

Γ(α)

∫ x

0

(x− s)α−1(f(x, y, y′, · · · , y(n−1)))ds.

We are going to show that Φ has a fixed point. Choose r ⩾ 2(
∑n−1

k=0
∥y(k)(0)∥ACn

k! + Nγ) . Then, we can show
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that ΦBr ⊆ Br , where Br := {y ∈ Z : ∥y∥ACn ⩽ r} . From the assumption, we have

∥Φy∥ACn ⩽
n−1∑
k=0

∥y(k)(0)∥ACn

k!
+

1

Γ(α)

∫ x

0

(x− s)α−1(∥f(x, y, y′, . . . , y(n−1))∥ACn)ds

⩽
n−1∑
k=0

∥y(k)(0)∥ACn

k!
+

1

Γ(α)

∫ x

0

(x− s)α−1(∥f(x, y, . . . , y(n−1))− f(x, 0, . . . , 0)∥ACn

+∥f(x, 0, . . . , 0)∥ACn)ds

⩽
n−1∑
k=0

∥y(k)(0)∥ACn

k!
+

Nbα

Γ(α+ 1)
+

1

Γ(α)

∫ x

0

(x− s)α−1K∥y∥ACnds

⩽
n−1∑
k=0

∥y(k)(0)∥ACn

k!
+Nγ +K∥y∥ACn

1

Γ(α)

∫ x

0

(x− s)α−1ds

⩽
n−1∑
k=0

∥y(k)(0)∥ACn

k!
+Nγ +Kγr

⩽ r

2
+

r

2

⩽ r.

Thus, Φ maps Br into itself. Now, for y1, y2 ∈ ACn , we have

∥Φy1 − Φy2∥ACn ⩽ 1

Γ(α)

∫ x

0

(x− s)α−1(∥f(x, y1, . . . , y(n−1)
1 )− f(x, y2, . . . , y

(n−1)
2 )∥ACn)ds

⩽ 1

Γ(α)
K∥y1 − y2∥ACn

∫ x

0

(x− s)α−1ds

⩽ Kγ∥y1 − y2∥ACn .

Since γK < 1
2 , the mapping Φ is a contraction, therefore there exists a unique fixed point y ∈ Br such

that Φy(x) = y(x) . Any fixed point of Φ is the solution of Eq. (3.1). 2

4. Fractional differential transform method
The basic definition of differential transformation is introduced in this section. Further details can be found in
Arikoglu and Ozkol [5].

By expanding the analytic function y(x) in terms of fractional power series, the following presentation
is obtained:

y(x) =

∞∑
k=0

Y (k)(x− a)
k
β , (4.1)

where β is the order of fraction and Y (k) is the fractional differential transform of y(x) . We consider the first
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N terms of series (4.1), as an approximation of the solution of Eq. (1.3), as follows

y(x;λ) ≈
N∑

k=0

Y (k;λ)(x− a)
k
β . (4.2)

Some essential theorems of DTM , which can be proved easily (see [5]), are listed as follows:

Theorem 4.1 If f(x) = g(x)± h(x) , then F (k) = G(k)±H(k) .

Theorem 4.2 If f(x) = g(x)h(x) , then F (k) =
∑k

l=0 G(l)H(k − l) .

Theorem 4.3 If f(x) = (x− a)p , then F (k) = δ(k − p) , where

δ(k) =
1 if k = 0,
0 if k ̸= 0.

Theorem 4.4 If f(x) = Dα
a [g(x)] , then F (k) =

Γ(α+ 1 + k
β )

Γ(1 + k
β )

G(k + βα) .

Subsequently, we apply fractional differential transform method to Eq. (1.3), which results in the following
equation. Taking differential transformation of Eq. (1.3) and using the aforementioned theorems, we get

Γ(1 + α+ k
β )

Γ(1 + k
β )

Y (k + αβ;λ) +

n−2∑
j=0

k∑
l=0

Γ(1 + j + k−l
β )

Γ(1 + k−l
β )

Qj(l)Y (k − l + jβ;λ)

= λ Y (k;λ), k = 0, . . . , N − αβ, (4.3)

where Y (i) , i ∈ I := {0, 1, 2, . . . , αβ − 1} are starting values and can be determined by

Y (k) =

1(
k
β

)
!

⌈
d

k
β y(x)

dx
k
β

⌉
x=a

k

β
∈ Z+,

0
k

β
/∈ Z+,

(4.4)

for k = 0, 1, 2, . . . , (αβ − 1) , where α is the order of fractional differential equation; see [5] for more details.
Simplifying Eq. (4.3) results in the following equation

Y (k + αβ;λ) =
Γ(1 + k

β )

Γ(1 + α+ k
β )

(λY (k;λ)−
n−2∑
j=0

k∑
l=0

Γ(1 + j + k−l
β )

Γ(1 + k−l
β )

×Qj(l)Y (k − l + jβ;λ)),

(4.5)

which is a recursive relation to find coefficients of FDTM, i.e., Y (k;λ) . Let’s partition the index set I into
three subsets:

• (1) J1 = {k ∈ I| k

β
/∈ Z+},
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• (2) J2 = {k ∈ I| k

β
∈ Z+,

k

β
∈ S \ S′},

• (3) J3 = {k ∈ I| k

β
∈ Z+,

k

β
∈ S′}.

Both subsets J2 and J3 have m elements. Starting values Y(k) for k ∈ J1 ∪ J3 can be easily obtained.
Let’s take m other starting values Y (k) , k ∈ J2 , identical to unknown constants ck . According to the recursive
relation (4.5), the approximate solution can be written as follows:

y(x;λ) ≈
N∑

k=0

Y (k;λ, c1 . . . , cm)(x− a)
k
β . (4.6)

By imposing m boundary conditions (1.5), y(i)(b) = 0 , into (4.6), one obtains a system of m nonlinear equa-
tions with m+ 1 unknown coefficients λ, c1, . . . , and cm .

∑N
k=0 Y (k;λ, c1 . . . , cm)(b− a)

k
β = 0 if i = 0,∑N

k=1 Y (k;λ, c1 . . . , cm)( kβ )(
k
β − 1) . . . ( kβ − (i− 1))(b− a)

k
β−i = 0 if i ∈ S′ − {0}.

(4.7)

Regarding the normalization of these coefficients, c1 can be equal to 1. Hereby, with respect to the parameter
λ , there will be m unknown coefficients that can be calculated by solving the nonlinear system (4.7).

In this paper, we use Mathematica to solve the system of nonlinear equations (4.7), numerically by
applying NSolve command.

5. Convergence of FDTM on FSLP

This section presents a convergence criterion for the fractional differential transform method in the context of
the fractional Sturm–Liouville problem.

In the following theorem, (ACn[a, b], ∥.∥ACn) denotes a Banach space consisting of all continuous func-
tions on [a, b] , with the formation norm.

Theorem 5.1 Let

Φk(x;λ, c1, · · · , cm) = Y (k;λ, c1, · · · , cm)(x− a)k/β ,

in series (4.6), then the series solution
∑∞

k=0 Φk(x;λ, c1, · · · , cm) converges if there exist a γ , 0 < γ < 1 , such
that

∥Φk+1(x;λ, c1, · · · , cm)∥ACn ⩽ γ∥Φk(x;λ, c1, · · · , cm)∥ACn , (5.1)

for all k ⩾ k0 , and some k0 ∈ N , in which λ, c1, · · · ,and cm have already been obtained from the nonlinear
system of Equations (4.7). Condition (5.1) should be ignored when Φk(x;λ, c1, · · · , cm) is zero, that happens
frequently in FDTM procedure.
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Proof The sequence {un}∞n=0 is defined as follows

un =

n∑
i=0

Φi(x;λ, c1, · · · , cm).

To prove the convergence, it is enough to show that {un}∞n=0 is a Cauchy sequence in the Banach space. To
this end, we have

∥un+1 − un∥ACn = ∥Φn+1(x;λ, c1, · · · , cm)∥ACn ⩽ γ∥Φn(x;λ, c1, · · · , cm)∥ACn

⩽ γn−p+1∥Φp(x;λ, c1, · · · , cm)∥ACn ,

where p = k0, k0 + 1, · · · . These inequalities are obtained from Eq.(5.1). For every n, l ∈ N, n ⩾ l > k0 . We
can write

∥un − ul∥ACn = ∥
n−1∑
i=l

(ui+1 − ui)∥ACn ⩽
n−1∑
i=l

∥ui+1 − ui∥ACn

⩽
n−1∑
i=l

γi−k0+1∥Φk0
(x;λ, c1, · · · , cm)∥ACn

=
1− γn−l

1− γ
γl−k0+1∥Φk0

(x;λ, c1, · · · , cm)∥ACn ,

(5.2)

which results in
limn,l→∞∥un − ul∥ACn = 0,

regarding 0 < γ < 1 . 2

Theorem 5.2 If the series solution un(x) =
∑n

k=0 Y (k;λ, c1, · · · , cm)(x − a)
k
β convergence to the solution of

problem (1.3), then the truncated error can be estimated as follows

∥y(x)−
N∑

k=0

Y (k;λ, c1, · · · , cm)(x− a)
k
β ∥ACn ⩽ 1

1− γ
γN−k0+1∥Y (k0;λ, c1, · · · , cm)(x− a)

k0
β ∥ACn ,

for some k0 ⩾ 0 , where Y (k0;λ, c1, · · · , cm) ̸= 0 .

Proof For 0 < γ < 1 , and n ⩾ N > k0 , we have (1− γn−N ) < 1 . Hence, from (5.2) we can write

∥un − uN∥ACn ⩽ 1

1− γ
γN−k0+1∥Y (k0;λ, c1, · · · , cm)(x− a)

k0
β ∥ACn .

The proof will be completed by the assumption of the Theorem (3.3), i.e., limn→∞un = y(x) . 2

6. Numerical example

Some illustrative examples will be presented in this section.
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Example 6.1 Consider the following α -order FSLP

Dα[y(x)] + y′(x) + λy(x) = 0, x ∈ (0, 1)

subject to the following boundary conditions

y′(0) = 0, y(1) = 0,

where 1 < α ≤ 2 . Applying FDTM on this example, regarding (4.5) we have

Y (k + βα) =

−Γ(1 + k
β )

[
λY (k) +

Γ(2+ k
β )

Γ(1+ k
β )
Y (k + β)

]
Γ(1 + α+ k

β )
.

For instance, when α = 1.9 we have β = 10 with starting values

Y (0) = 1, Y (1) = Y (2) = · · · = Y (18) = 0,

by means of (4.4).
The first five eigenvalues are determined by the proposed approach. These eigenvalues and those reported

in [19] and [3] for different values of α , are presented in Table 1. Three eigenvalues are just reported in [3],
while we have found the same number and the same eigenvalues as reported in [19], by an easier approach.

Table 1. First five eigenvalues in example 6.1.

α = 1.75 α = 1.9

λk FDTM [3] [19] FDTM [3] [19]
λ1 3.7921553 3.7921553 3.792145 3.648055 3.648062 3.648054

λ2 19.5210356 19.5210356 19.521342 21.215101 21.215101 21.215116

λ3 42.8785420 42.8785424 42.876382 52.999382 52.999382 52.999304

λ4 76.767607 – 76.767929 98.902684 – 98.902945

λ5 114.004 – 114.004005 157.898040 – 157.892919

α = 2

λk FDTM [3] [19]
λ1 3.623089 3.623089 3.623089

λ2 2344237 2344237 2344337

λ3 62.929723 62.929723 62.929723

λ4 122.149923 – 122.149923

λ5 201.107831 – 201.107831

Example 6.2 Consider the following α -order FSLP

Dα[y(x)] = λy(x), x ∈ (0, 1),
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Figure 1. The first four eigenfunctions of Example 6.1 for α = 1.9 are plotted by the dotted line, dot-dashed line,
dashed line, and thick line, respectively.

where 3 < α ⩽ 4 , subject to the boundary conditions

y(0) = y′′(0) = 0, y(1) = y′′(1) = 0.

Applying FDTM on this example, regarding (4.5) we have

Y (k + βα) =

Γ(1 + k
β )

[
λY (k)

]
Γ(1 + α+ k

β )
.

For instance, when α = 3.7 we have β = 10 with starting values

Y (0) = · · · = Y (9) = 0, Y (10) = 1, Y (11) = · · · = Y (29) = 0,

Y (30) = c2, Y (31) = · · · = Y (36) = 0

by means of (4.4).
The exact eigenvalues of this equation, for α = 4 , are known as λk = (kπ)4 , k ≥ 1 (see [20]). Table

2 shows the results of applying FDTM and those reported in [19]. The novelty is the number of eigenvalues,
which are more than those reported in [1], for the values α = 3.7, 3.9, and 4 , and the accuracy of the results
are notable.

Example 6.3 Consider the following α -order FSLP

Dα[y(x)] +

4∑
j=0

qj(x)y
(j)(x) + λy(x) = 0, x ∈ (0, 5),

subject to the following boundary conditions,

y(0) = y′′(0) = y(4)(0) = 0,

y(5) = y′′(5) = y(4)(5) = 0,
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Table 2. Eigenvalue results for Example 6.2.

α = 3.5 α = 3.7 α = 3.9

λk FDTM [19] FDTM [19] FDTM [19]
λ1 102.504591 102.504591 91.412292 91.412293 93.533242 93.533230

λ2 610.167030 610.167042 944.796195 944.795695 1324.156313 1324.156357

λ3 4489.429015 4489.426817 4544.318706 4544.336950 6456.132847 6456.132485

λ4 5312.582021 5312.585078 12012.662956 12012.483491 19613.917656 19613.888783

λ5 – – 29458.060993 – 42828645577 –
λ6 – – 52916.459013 – 95054.064096 –
λ7 – – 102692.701627 – 173711.520853 –
λ8 – – 149959.089170 – 291370.684659 –
λ9 – – 265355.521567 – 465226.862289 –

α = 4

FDTM [19] λ(exact)

97.409091 97.409091 97.409091

1558.545456 1558.545456 1558.545456

7890.136374 7890.136374 7890.136374

24936.727305 24936.727305 24936.727305

60880.681896 – 60880.681896

126242.181980 – 126242.181980

233879.227572 – 233879.227572

398987.636875 – 398987.636875

639101.046277 – 639101.046274

Table 3. c2 results for Example 6.2.

α = 3.5 α = 3.7 α = 3.9 α = 4

λk c2 c2 c2 c2

λ1 −2.39681 −1.95182 −1.72334 −1.64493

λ2 −6.51175 −6.76237 −6.6493 −6.57974

λ3 −20.3619 −15.8076 −14.986 −14.8044

λ4 −22.418 −26.7337 −26.495 −26.3189

λ5 – −43.4145 −41.4436 −41.1234

λ6 – −59.5856 −59.5188 −59.2176

λ7 – −85.2686 −81.085 −80.6018

λ8 – −104.634 −105.713 −105.276

λ9 – −142.445 −134.383 −133.24

where 5 < α ⩽ 6 , qj(x) , 0 ≤ j ≤ 5 are given as the following

q0(x) = −r3(x), q1(x) = r′2(x), q2(x) = r2(x)− r′′1 (x), q3(x) = −2r′1(x),

q4(x) = −r1(x), r1(x) = 0.03x2, r2(x) = 0.0003x4 − 0.08, r3(x) = 10−6x6 − 0.0014x2.
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Figure 2. The first four eigenfunctions of Example 6.2 for α = 3.9 are plotted by the dotted line, dot-dashed line,
dashed line, and thick line, respectively.

Applying FDTM on this example, regarding (4.5) we have

Y (k + βα) =
Γ(1 + k

β )

Γ(1 + α+ k
β )

[
− λY (k) + 0.03

k∑
l=0

δ(l − 2)
Γ(5 + k−l

β )

Γ(1 + k−l
β )

Y (k − l + 4β)

+0.12
Γ(4 + k

β )

Γ(1 + k
β )

Y (k + 3β) + 0.14
Γ(3 + k

β )

Γ(1 + k
β )

Y (k + 2β)

−0.0003

k∑
l=0

δ(l − 4)
Γ(3 + k−l

β )

Γ(1 + k−l
β )

Y (k − l + 2β)− 0.0012

k∑
l=0

δ(l − 3)
Γ(2 + k−l

β )

Γ(1 + k−l
β )

Y (k − l + β)

−0.0014

k∑
l=0

δ(l − 2)Y (k − l) + 10−6
k∑

l=0

δ(l − 6)Y (k − l)

]
.

For instance, when α = 5.5 we have β = 10 with starting values

Y (0) = · · · = Y (9) = 0, Y (10) = 1, Y (11) = · · · = Y (29) = 0,

Y (30) = c1, Y (31) = · · · = Y (49) = 0, Y (50) = c2, Y (51) = · · · = Y (54) = 0,

by means of (4.4).
Six eigenvalues are determined by the proposed approach. These eigenvalues and those reported in [19],

for different values of α , are presented in Table 3. Just four eigenvalues are reported in [19].

In all examples, the nth eigenfunction has exactly, n− 1 zeros in the domain of interest.

7. Conclusion
In this paper, the existence and uniqueness of high-order fractional initial value problem have been investigated.
An efficient method is implemented to calculate eigenvalues and related eigenfunctions for this kind of problems.
The proposed method is more convenient than the existing methods in the literature and is easy to use for
complex high-order fractional Sturm–Liouville problems. The proposed approach leads to a nonlinear system
of equation for which there are many mathematical packages to solve such systems.
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Table 4. Eigenvalues for Example 6.3.

α = 5.5 α = 5.7 α = 5.9

λk FDTM [19] FDTM [19] FDTM [19]
λ1 0.214799 0.239520 0.128826 0.144551 0.080281 0.091268

λ2 4.335007 4.332677 4.558590 4.572395 4.449796 4.512594

λ3 47.988457 48.049021 44.686082 44.712872 46.215498 46.230890

λ4 164.800230 164.785334 208.321324 0.699270 242.867316 1.923295

λ5 768.065438 – 759.242968 – 894.119252 –
λ6 1054.834367 – 1928.516381 – 2636.35167 –

Table 5. c2 and c3 results for Example 6.3.

α = 5.5 α = 5.7 α = 5.9

λk c2 c3 c2 c3 c2 c3

λ1 −0.0815304 0.00316322 −0.154054 0.00499523 −0.0741744 0.0021073

λ2 −0.2346 0.0246503 −0.511215 0.0493419 −0.268707 0.0236192

λ3 −0.565208 0.139746 −1.14109 0.24092 −0.592188 0.112587

λ4 −0.885778 0.341979 −1.95928 0.70757 −1.03927 0.345591

λ5 −1.55067 1.04618 −3.08474 1.75181 −1.61689 0.835696

λ6 −1.73494 1.30934 −4.27845 3.36855 −2.33279 1.73893

O
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1
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0
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1 2 3 4 5

-0.5

0.5
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Figure 3. The first four eigenfunctions of Example 6.3 for α = 5.9 are plotted by the dotted line, dot-dashed line,
dashed line, and thick line, respectively.

As the Tables show, the number of eigenvalues gained in our method is more than those reported in [19]
and [3]. Results in this paper demonstrate the high accuracy of our method to deal with high order fractional
Sturm–Liouville problems in comparison with latter references.
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