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Abstract: We give a formula for the logarithmic dimension of the generalized Cantor-type set K . In the case when the
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1. Introduction
This paper is the extension of [2] and [12]. In [2], the logarithmic dimension λ0 was suggested as the Hausdorff
dimension corresponding to the function ψ(r) = 1

log 1
r

that defines the logarithmic measure. Some applications

of the logarithmic dimension to the isomorphic classification of Whitney spaces were presented. In [12], the first

author constructed bases in the spaces E(K(αn)
2 ), where the set K

(αn)
2 is obtained by the Cantor procedure

with replacing each interval by two adjacent subintervals of equal length. Here, as in [2], we consider more

general Cantor-type sets K(αn)
(Nn)

, see the definition below. In Section 2, we generalize Proposition 1 from [2],

where the logarithmic dimension was calculated for regular K(αn)
(Nn)

. In Sections 3 we discuss applications of the
logarithmic dimension to potential theory and to analysis of linear topological properties of Whitney spaces.

Section 4 is devoted to construction of an interpolating Faber basis in E(K(αn)
(Nn)

) provided λ0(K
(αn)
(Nn)

) < 1.

2. Logarithmic dimension for the generalized Cantor-type sets

Recall that a function φ : (0, b] → (0,∞), where b = bφ > 0, is said to be a dimension function if it is
nondecreasing, continuous and φ(δ) → 0 as δ → 0. Given A ⊂ R, ε > 0, let µε(A,φ) = inf{

∑
φ(δi) : A ⊂

∪Gi with diam(Gi) = δi ≤ ε} . Here, the infimum can be taken over open coverings or closed coverings without
changing the result. The value µε(A,φ) increases as ε ↘ 0 and µ(A,φ) = limε→0 µε(A,φ) is called the
Hausdorff φ− measure of A .

Logarithmic dimension is a special case of the Hausdorff dimension. Take the function ψ(r) = 1
log 1

r

cor-

responding to the logarithmic measure. Then, for any A ⊂ R there exists a critical value λ0 = λ0(A) ∈ [0,∞] ,
which we call the logarithmic dimension of A , such that for λ < λ0 the Hausdorff ψλ -measure of A is infinite,
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and for λ > λ0 it is zero. As usual, the ψλ0 -measure of A can take any value from [0,+∞].

We follow [2] to define generalized Cantor-type sets. Let (Nn)
∞
n=1 be a sequence of integers with Nn ≥ 2

for all n . Let ℓ0 := 1 and ℓ1 be such that N1 ℓ1 < ℓ0. We replace E0 = I0,1 = [0, 1] by N1 closed
intervals In,1 of length ℓ1 with N1 − 1 equal gaps of length h0. We enumerate intervals in ascending order,
so I1,1 = [0, ℓ1], IN1,1 = [1 − ℓ1, 1]. Continuing in this way, we get En for n ≥ 1 as a union of N1N2 . . . Nn

disjoint closed intervals Ik,n of length ℓn , and En+1 is obtained by replacing each interval Ik,n by Nn+1

disjoint subintervals Ij,n+1 of length ℓn+1 with Nn+1 − 1 equal gaps of length hn . The intervals Ik,n that
make up the set En are called basic intervals. The set is well-defined if for all n we have Nnℓn < ℓn−1 . Then
hn = ℓn−Nn+1ℓn+1

Nn+1−1 is a gap between To simplify the calculation of the norms, assume that for each n

hn ≥ ℓn+1. (2.1)

Thus, we get a sequence (ℓn)
∞
n=0 of positive decreasing numbers. Let α1 = 1 , and for n ≥ 2 let αn satisfy

ℓn = ℓαn
n−1 , so αn > 1 . Thus, ℓn = ℓα1 ···αn

1 . Let K(αn)
(Nn)

:=
⋂∞

n=0En . We will denote by Kα
N the case when

Nn = N and αn = α , for all indices.

Lemma 2.1 For each K
(αn)
(Nn)

we have α1 · · · αn → ∞ as n→ ∞.

Proof The sequence (α1 · · · αn)
∞
n=1 increases. If it is bounded, then αn → 1 as n → ∞. But Nnℓn < ℓn−1

implies Nnℓ
α1 ···αn−1(αn−1)
1 < 1, a contradiction. 2

We say that the Cantor-type set K(αn)
(Nn)

is regular if there exists limn
logNn

logαn
. The logarithmic dimension

of a regular Cantor-type set was given in [2] as follows:

Proposition 2.2 Suppose that for K(αn)
(Nn)

the limit λ0 = limn
logNn

logαn
, exists in the set of extended real numbers.

Then λ0 is the logarithmic dimension of K . In particular, λ0(Kα
N ) = logN

logα .

We now extend this result to the general case. The proof is adapted from [2].

Theorem 2.3 For the generalized Cantor-type set K(αn)
(Nn)

, we have

λ0(K
(αn)
(Nn)

) = lim inf
n

log(N1N2 . . . Nn)

log(α1α2 . . . αn)
.

Proof As above, ψ = 1
log 1

r

for 0 < r < 1 and, for a given λ > 0, let µ(K,ψλ) be the Hausdorff ψλ−measure

of K . For simplicity of notation and calculations, we write K instead of a fixed K
(αn)
(Nn)

and set ℓ1 = 1/e in

order to have ψ(ℓ1) = 1. Then ψλ(ℓn) = (α1α2 . . . αn)
−λ. Define λn = log(N1N2...Nn)

log(α1α2...αn)
for n ≥ 2 . Then

(α1α2 . . . αn)
λn = N1N2 . . . Nn. (2.2)

Let λ0 = lim inf
n

λn. We claim that λ0 = λ0(K).
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There are two cases to consider: finite and infinite λ0. Suppose first that 0 ≤ λ0 <∞ and λ > λ0 . Let
λ = λ0 + 2σ. We need to show that µ(K,ψλ) = 0 .

By definition, there exists nk → ∞ such that λ0 = limk λnk
so λ > λnk

+ σ for large enough k . Since
En is a covering of K by N1 . . . Nn intervals of length ℓn , by (2.2), we have

µ(K,ψλ) ≤ lim inf
n

(N1 . . . Nn)ψ
λ(ℓn) = lim inf

n

N1 . . . Nn

(α1 . . . αn)λ
=

= lim inf
n

(α1 . . . αn)
λn−λ ≤ lim inf

k
(α1 . . . αnk

)λnk
−λ ≤ lim inf

k
(α1 . . . αnk

)−σ.

By Lemma 2.1, the above limit is zero.
We now turn to the case 0 < λ0 < ∞ and λ < λ0. We aim to show µ(K,ψλ) = ∞ . Let λ0 − λ = 2σ.

There are only finitely many n with λn ≤ λ0−σ. Let ñ be such that λn > λ0−σ for n ≥ ñ . Then λn > λ+σ.

We fix ϵ > 0 and consider µϵ(K,ψ
λ). Here we use coverings of K by open intervals. Let us fix a finite

covering
⋃M

i=1Gi of K by open intervals with lengths δi < ϵ , such that

M∑
i=1

ψλ(δi) ≤ µϵ(K,ψ
λ) + 1. (2.3)

For each δi fix n = n(i) ∈ N with ℓn ≤ δi < ℓn−1 . Let n0 = mini≤M n(i) and n1 = maxi≤M n(i) . We
can assume, by decreasing ϵ if necessary, that n0 ≥ ñ+ 1 .

For 1 ≤ i ≤ M, let ki be the number of intervals from En1
that have non-empty intersection with Gi.

We follow [10] and [2], where the main idea was to estimate ki from above in terms of ψλ(δi) .
For each i we have ψλ(δi) ≥ ψλ(ℓn) = (α1α2 · · ·αn)

−λ. Since λn > λ for n ≥ n0 , (2.2) implies

(α1 · · ·αn)
λ < (α1 · · ·αn0−1)

λ · (αn0
· · ·αn)

λn = (α1 · · ·αn0−1)
λ−λn ·N1N2 · · ·Nn. (2.4)

Therefore,
1 ≤ (α1 · · ·αn0−1)

λ−λn ·N1N2 · · ·Nn · ψλ(δi). (2.5)

In what follows we will use (2.4) with another index, n− 1 instead of n . The left hand side of (2.4) exceeds 1.
Hence,

1 ≤ (α1 · · ·αn0−1)
λ−λn−1 ·N1N2 · · ·Nn−1. (2.6)

We decompose the sum
∑
ψλ(δi) into two parts. Let

∑′
be the sum over all i such that ℓn ≤ δi <

ℓn−1

Nn
, and∑′′

be the sum over the remaining i ’s. Since ℓn−1

Nn
< ℓn + hn−1 , for any i in the sum

∑′
, the interval Gi can

intersect at most two basic intervals of En . By construction, it can intersect at most 2Nn+1 basic intervals of
En+1, . . . , 2Nn+1 · · ·Nn1 basic intervals of En1 .

Then by (2.5) we obtain for each i corresponding to
∑′

ki ≤ 2Nn+1 · · ·Nn1
≤ 2N1 · · ·Nn1

· (α1 · · ·αn0−1)
λ−λn · ψλ(δi). (2.7)

For i corresponding to
∑′′

we fix j ∈ {1, 2, . . . , Nn − 1} such that j
Nn
ℓn−1 ≤ δi <

j+1
Nn

ℓn−1 . It is easy to check
that the interval Gi can intersect at most j + 2 basic intervals of En and hence (j + 2)Nn+1 · · ·Nn1

basic
intervals of En1

.
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Here,

ψλ(δi) ≥ ψλ

(
j

Nn
ℓn−1

)
≥

(
α1 . . . αn−1 + log

Nn

j

)−λ

.

If log Nn

j ≥ α1 · · ·αn−1 , then ψλ(δi) ≥ (2 log Nn

j )−λ. Recall that 1 < Nn

j ≤ Nn. Take a constant Aλ such that

logλ t ≤ Aλt for t ≥ 1. Then 1 ≤ 2λAλ
Nn

j ψ
λ(δi) and

ki ≤ (j + 2)Nn+1 · · ·Nn1 ≤ 2λAλ
j + 2

j
NnNn+1 · · ·Nn1ψ

λ(δi).

Here, j+2
j ≤ 3 . Let C ′

λ = 3 · 2λAλ. By (2.6),

ki ≤ C ′
λ(α1 · · ·αn0−1)

λ−λn−1 ·N1 · · ·Nn1
ψλ(δi). (2.8)

Suppose now that log Nn

j < α1 · · ·αn−1. Then ψλ(δi) ≥ (2α1 . . . αn−1)
−λ. Since j + 2 ≤ Nn + 1 < 2Nn, we

have
ki ≤ 2Nn · · ·Nn1

≤ 2λ+1(α1 . . . αn−1)
λNn · · ·Nn1

ψλ(δi).

By (2.4),
ki ≤ 2Nn · · ·Nn1 ≤ 2λ+1(α1 · · ·αn0−1)

λ−λnN1 · · ·Nn1ψ
λ(δi).

Combining this with (2.7) and (2.8), we see that for each i , the inequality

ki ≤ Cλ(α1 · · ·αn0−1)
−σN1 · · ·Nn1

ψλ(δi)

is valid with Cλ = max{C ′
λ, 2

λ+1} . Here we use the conditions λk − λ > σ for k ∈ {n− 1, n}.

The covering
⋃M

i=1Gi intersects all basic intervals of En1
, so

∑M
i=1 ki ≥ N1 · · ·Nn1

. This gives

C−1
λ (α1 · · ·αn0−1)

σ ≤
M∑
i=1

ψλ(δi). (2.9)

By Lemma 2.1, the left hand side here is as big as we want for small enough ϵ. By (2.3), µϵ(K,ψ
λ) → ∞ as

ϵ→ 0, which is our claim.
It remains to consider the case of infinite λ0 . Fix any λ. We repeat the previous arguments with minor

modifications. Here, ñ is given by the condition λn ≥ 2λ for n ≥ ñ . In the same manner we get (2.9) with λ

instead of σ and µ(K,ψλ) = ∞. 2

Remarks. 1. A set K is called dimensional if there is at least one dimension function φ such that
0 < µ(K,φ) <∞. Best in [4] presented an example of a dimensionless Cantor set. The theorem above does not

mean that each sets K = K
(αn)
(Nn)

is dimensional, because the value µ(K,ψλ0) may be 0 or ∞. Nevertheless, we

think that for every K of the given type, there is a function φ (possibly more complex in structure than ψλ )
with a proper value of µ(K,φ). See for instance [1] for the construction of such function for a more complicated
Cantor-type set that is not geometrically symmetric.
2. In the proof we did not use the condition (2.1).

1583



GONCHAROV and ŞENGÜL TEZEL/Turk J Math

3. Relation to potential theory and the extension property

The value λ0 = 1 is critical in potential theory: by Theorem III.19 and Theorem III.20 in [16], we have the
following simple observation.

Proposition 3.1 Assume λ0 = λ0(K
(αn)
2 ) ̸= 1 . Then K

(αn)
2 is polar if and only if λ0 < 1 .

In the case of λ0(K) = 1 , the finiteness of the logarithmic measure is sufficient for polarity.

Proposition 3.2 ([9]) If µ(K,ψ) <∞ then Cap(K) = 0 .

By Carleson [5] (see also [6]), we have

Proposition 3.3 The set K(αn)
2 is polar if and only if

∑∞
n=1

An

2n = ∞ , where An = α1α2 . . . αn .

It is easy to give examples of both polar and non-polar Cantor sets of logarithmic dimension 1. Let K1 :=

K
(αn)
2 with An = 2n/n2 for large n and K2 := K2

2 . Then Cap(K1) > 0, Cap(K2) = 0 , λ0(K1) = λ0(K2) = 1.

Also, the example K(αn)
2 with α2 = 2 and αn = 2n−1

n , n ≥ 3 (here, An = 2n/n) shows that the inverse
implication in Propositions 3.2 is not valid.

Let K ⊂ R be a perfect compact set and I be a closed interval containing K . By F(K, I) =

{F ∈ C∞(I) : F (p)|K = 0, ∀p} we denote the ideal of flat on K functions. The Whitney space E(K)

of extendable functions consists of traces on K of C∞ -functions defined on I , so it is a factor space of
C∞(I) and the restriction operator R : C∞(I) −→ E(K) is surjective. This means that the sequence

0 −→ F(K, I)
J−→ C∞(I)

R−→ E(K) −→ 0 is exact. If it splits, then the right inverse to R is the linear
continuous extension operator W : E(K) −→ C∞(I). In this case we say that K has the extension property.

By the celebrated Whitney theorem ([18]), the quotient topology of E(K) can be given by the norms

∥f∥q = |f |q + sup{|(Rq
yf)

(i)(x)| · |x− y|i−q : x, y ∈ K,x ̸= y, i = 0, 1, . . . , q},

where q = 0, 1, . . . , |f |q = sup{|f (i)(x)| : x ∈ K, i ≤ q} and Rq
yf(·) = f(·) −

∑q
k=0

f(k)(y)
k! (· − y)k is the q−th

Taylor remainder of f at y .
The following result was proved for the considered Cantor-type sets with Nn = N .

Proposition 3.4 ([2]) If lim inf αn > N , then K
(αn)
N does not have the extension property. If lim supαn < N ,

then K
(αn)
N has the extension property.

Corollary 3.5 For a compact set K(αn)
N , let the limit α = limαn exist and be not equal to N . Then K

(αn)
N

has the extension property if and only if λ0(K(αn)
N ) > 1 .

In general, the logarithmic dimension cannot be used for characterization of the extension property. What
is more, recently it was shown in [13] that there is no such characterization in terms of Hausdorff measures,
Hausdorff contents, their densities or related characteristics.
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On the other hand, the logarithmic dimension is quite suitable to describe the diametral dimension of
the space E(K), see Section 4 in [2] for more details. In particular,

Corollary 3.6 ([2]) If spaces of the type E(Kα
N ) are isomorphic, then the corresponding compact sets have the

same logarithmic dimension.

4. Polynomial bases for small Cantor-type sets

The Grothendieck problem of the existence of a basis in a nuclear Fréchet (NF) space was open for a long time.
In 1974 the first example of a NF space without basis was found in [15]. After this many other examples of
nuclear spaces without basis were presented, but all of them are either artificial as in [3], [17] or non-metrizable
[8]. Therefore, no natural NF space of functions without basis has been found so far. This explains the interest
to basis problem in concrete functional spaces.

Any Schauder basis in a NF space is absolute, therefore in order to construct a basis in such a space, it
is enough to present a biorthogonal system satisfying the following Dynin-Mityagin criterion ( [14]).

Let E be a nuclear Fréchet space with topology given by an increasing sequence of norms (|| · ||p)∞p=1 . Let
E′ be the topological dual space and | · |−q denote the dual norm, that is, for ξ ∈ E , |ξ|−q := sup{|ξ(f)|, ∥f∥q ≤
1} . Suppose {en ∈ E, ξn ∈ E′, n ∈ N} is a biorthogonal system such that the set of functionals (ξn)

∞
n=1 is total

over E . The last means that f = 0 if ξn(f) = 0 for all n . Assume that for every p there exist a q and a C

such that for all n
∥en∥p · |ξn|−q ≤ C. (4.1)

Then the system (en, ξn)
∞
n=1 is an absolute basis in E .

Given a perfect compact set K ⊂ R and a sequence of distinct points (xk)
∞
1 ⊂ K , let e0 = 1 and

en(x) =
∏n

1 (x − xk) for n ∈ N . By ξn(f) we denote the n−th divided difference [x1, x2, . . . , xn+1]f of a
function f . By the properties of divided differences, see for instance [7], the system (en, ξn)

∞
n=1 is biorthogonal.

If, in addition, the sequence (xk)
∞
1 is dense in K , then the functionals ξn, n = 0, 1, . . . , are total over E(K).

Our claim is that the space E(K(αn)
(Nn)

) possesses an interpolating Faber basis provided λ0(K
(αn)
(Nn)

) < 1 .

Recall that a polynomial basis (Pn)
∞
n=0 in a function space X is called a Faber basis if degPn = n for all n .

The task is to find a sequence (xk)
∞
1 ⊂ K

(αn)
(Nn)

such that the corresponding system (en, ξn)
∞
n=0 satisfies (4.1).

When the sequence will be determined, set ZM := (xk)
M
1 . As in Theorem 2.3, we write K instead of K(αn)

(Nn)
.

Let us first consider the representation of numbers in mixed numerical bases. Let An denote the number
of intervals in En , so A0 = 1 and An = N1 · · ·Nn .

Lemma 4.1 Suppose that An ≤M < An+1. Then M has a unique representation in the form M =
∑n

j=0 kjAj

with 1 ≤ kn ≤ Nn+1 − 1 and 0 ≤ kj ≤ Nj+1 − 1 for 0 ≤ j ≤ n− 1.

Proof Indeed, let us subtract from M the value An several times in succession while the result is nonnegative.
We can do this kn times with kn ≤ Nn+1 − 1 . For the remainder we have 0 ≤M − knAn < An and the same
reasoning applies to kj for j = n− 1, n− 2, . . . , 0. 2
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We compose the desired sequence (xk)
∞
1 from all left endpoints of basic intervals. Write each basic

interval as Ij, n = [aj, n, bj, n]. Let x be a left endpoint of some basic interval. Then there exists a minimal
number s (the type of x) such that x is the endpoint of some Ij,m for every m ≥ s. By Xn we denote all
points of the type n . Hence, X0 := {0}, X1 contains N1 − 1 points ai, 1 = (i − 1)(ℓ1 + h0) for 2 ≤ i ≤ N1 .
Continuing in this manner, we obtain

X2 = {(i− 1)(ℓ1 + h0) + (j − 1)(ℓ2 + h1) with 1 ≤ i ≤ N1, 2 ≤ j ≤ N2} (4.2)

and, in general, Xn = {(i1 − 1)(ℓ1 + h0) + (i2 − 1)(ℓ2 + h1) + · · ·+ (in − 1)(ℓn + hn−1)} , where 1 ≤ ij ≤ Nj for
1 ≤ j ≤ n− 1 and 2 ≤ in ≤ Nn. We see that Xn contains An − An−1 points aj, n with j ̸= kNn + 1 for 0 ≤
k ≤ An−1 − 1. Set Yn = ∪n

k=0Xk. Then #(Yn) = An. Here and below, #(Z) denotes the cardinality of a finite
set Z . If Z is fixed then for brevity νj,s := #(Ij,s ∩ Z). Also, for each x ∈ R , by dk(x,Z), k = 1, 2, . . . ,#(Z),

we denote the distances |x− zjk | from x to points of Z arranged in the nondecreasing order.
Let us arrange points from ∪∞

k=0Xk in order, including successively points of all types in ascending
order. For points of the same type, the following procedure is used to ensure a uniform distribution of points
on K . First x1 = 0. The points from X1 we arrange in their natural order: xk = (k − 1)(ℓ1 + h0) for
2 ≤ k ≤ N1 . Now each Ij,1 contains exactly one point from ZA1 . To enumerate points from X2 , we fix
the value j = 2 in (4.2) and consider i = 1, 2, . . . , N1. Then the same we do for j = 3, 4, . . . , N2. This gives
xN1+1 = ℓ2 + h1 = a2,2, xN1+2 = ℓ1 + h0 + ℓ2 + h1 = aN1+2,2, so xN1+k is the left endpoint of the second
subinterval Ij,2 of Ik,1 for 1 ≤ k ≤ N1. Next, x2N1+k = (k − 1)(ℓ1 + h0) + 2(ℓ2 + h1) is aj,2 of the third Ij,2

subinterval of Ik,1 for 1 ≤ k ≤ N1 , etc. Maximal possible values i = N1, j = N2 give the point xk = 1 − ℓ2

with the index k = N1 + (N2 − 1)N1 = A2. We note that, if A1 ≤M < A2, then for the set ZM the condition
νj,2 ∈ {0, 1} is valid for each j with 1 ≤ j ≤ A2 , whereas νi,1 ∈ {1, . . . , N2} for 1 ≤ i ≤ A1.

We use the same lexicographic order to list points from Xn for n ≥ 3 : first fix the values in = 2, in−1 =

· · · = i2 = 1, and consider i1 = 1, 2, . . . , N1 , after this enlarge i2 by 1, take again i1 = 1, 2, . . . , N1, etc.
Maximal xk in Xn is 1 − ℓn with k = An. Clearly, (xn)

∞
1 is dense in K . We warn the reader that in [12] a

different, more symmetric distribution of points xk was used. Nevertheless, as in [12] and [13], the points ZM

are distributed uniformly on K in the following sense: for each s ∈ N and i, j ∈ {1, 2, . . . , As} we have

|νj,s − νi,s| ≤ 1, (4.3)

so any two intervals of the same level contain the same number of points from ZM or, perhaps, one of the
intervals contains one extra point xk, compared to another interval.

Suppose An ≤M < An+1. Then M = knAn+ rn with 1 ≤ kn ≤ Nn+1− 1 and 0 ≤ rn < An . There are
An intervals of n−th level. Hence, for each j we have kn ≤ νj,n ≤ kn+1. Lemma 4.1 yields the representation
M = (knNn+kn−1)An−1+rn−1 with 0 ≤ rn−1 < An−1. Therefore, knNn+kn−1 ≤ νj,n−1 ≤ knNn+kn−1+1.

Similarly, for 0 ≤ s ≤ n− 1 and 1 ≤ j ≤ As we have

knNn · · ·Ns+1 + kn−1Nn−1 · · ·Ns+1 + · · ·+ ks ≤ νj,s ≤ knNn · · ·Ns+1 + · · ·+ ks + 1. (4.4)

In the case of bounded sequence, let Nk ≤ N for all k , we have 1 ≤ νj,n ≤ N and, for s < n,

Nn · · ·Ns+1 ≤ νj,s ≤ Nn−s+1.
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Our next objective is to associate with a given M a set (mk)
n
k=0 of natural numbers which will be

used in estimations of ||eM ||p and |ξM |−q. For each x ∈ K we have the chain of basic intervals containing x :
x ∈ Ij,n ⊂ Ij1,n−1 ⊂ · · · ⊂ Ijn,0 = [0, 1].

Let mn(x) = νj,n = #(ZM ∩ Ij,n) and mk(x) = νjn−k,k − νjn−k−1,k+1 for 0 ≤ k ≤ n− 1 , so mk(x) is the

number of zeros of eM in Ijn−k,k which do not belong to Ijn−k−1,k+1 . Then |eM (x)| =
∏M

i=1 di(x,ZM ) with
di(x,ZM ) ≤ ℓn for 1 ≤ i ≤ mn(x), di(x,ZM ) ≤ ℓn−1 for the next mn−1(x) values of i , etc. This gives

|eM (x)| ≤ ℓmn(x)
n · · · ℓm0(x)

0 . (4.5)

Let us find minimal possible values of (mk)
n
k=0 for which (4.5) is valid for all x ∈ K . Since knAn ≤ M <

(kn + 1)An, at least one Ij,n contains exactly kn points from ZM . Hence we must take mn = kn. Since
(knNn + kn−1)An−1 ≤ M < (knNn + kn−1 + 1)An−1, there is Ij,n−1 containing exactly knNn + kn−1

points from ZM . For at least of one of its subintervals Ij,n we have #(ZM ∩ Ij,n) = kn. It follows that
mn−1 = kn(Nn − 1) + kn−1. Continuing in this manner, we obtain for 0 ≤ s ≤ n− 1 the representation

ms = knNn · · ·Ns+2(Ns+1 − 1) + · · ·+ ks+1 (Ns+1 − 1) + ks. (4.6)

Then for each x ∈ K we have

|eM (x)| =
M∏
i=1

di(x,ZM ) ≤ ℓmn
n · · · ℓm0

0 , (4.7)

where the set (mk)
n
k=0 does not depend on x . It is easy to check that mn + · · ·+m0 =M, so ℓmn

n · · · ℓm0
0 is a

product of M nondecreasing terms:

ℓmn
n · · · ℓm0

0 =

M∏
k=1

ρk where ρ1 ≤ ρ2 ≤ · · · ≤ ρM . (4.8)

Lemma 4.2 Suppose Nn ≤ N for all n. Let M be as in Lemma 4.1, mn = kn and (ms)
n−1
s=0 be given by (4.6).

Then for any natural numbers r, s with 2 ≤ r ≤ r + s ≤ n we have

r+s∑
j=r

mn−j ≤ Ns+3mn−r+1.

Proof By Lemma 4.1, kn ≥ 1 and kj ≥ 0 for 0 ≤ j ≤ n− 1. This gives

Nn ·Nn−1 · · ·Nn−r+2(Nn−r+1 − 1) ≤ mn−r. (4.9)

Substituting the maximal possible values kj = Nj+1 − 1 into (4.6) yields

mn−r ≤ Nn+1 ·Nn · · ·Nn−r+2(Nn−r+1 − 1). (4.10)

We note that (4.10) is valid for r = 1 as well. By (4.10),

r+s∑
j=r

mn−j ≤ Nn+1 ·Nn · · ·Nn−r+3[Nn−r+2(Nn−r+1 − 1) + · · ·+Nn−r+2 · · ·Nn−r−s+2(Nn−r−s+1 − 1)].
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Here, the sum in square brackets does not exceed Ns+2, as is easy to check. Hence,

r+s∑
j=r

mn−j ≤ Ns+3Nn · · ·Nn−r+3.

On the other hand, by (4.9), mn−r+1 ≥ Nn · · ·Nn−r+3 as Nn−r+2 ≥ 2. 2

Lemma 4.3 Let An ≤ M < An+1 and p < M. Then ||eM ||p ≤ CpM
p
∏M

k=p+1 ρk, where Cp does not depend
on M .

Proof The i−th derivative of eM at x is a sum of M !/(M − i)! products, where each product contains M − i

terms of the type x−xj . Hence, |e(i)M (x)| ≤M i
∏M

j=i+1 dj(x,ZM ) ≤M i
∏M

k=i+1 ρk, by (4.7) and (4.8). Taking

supremum over all i ≤ p and x ∈ K we get |eM |p ≤Mp
∏M

k=p+1 ρk.

As for the norms ||ek||p , by (2.1), we can repeat the reasoning from the proof of Theorem 1 in [12], see
page 354. 2

We proceed to estimate the dual norms. For each xr ∈ ZM we have xr ∈ Ii,n ⊂ Ii1,n−1 ⊂ · · · ⊂ Iin,0 =

[0, 1] and

|e′M (xr)| =
∏
j ̸=r

|xr − xj | =
M∏
j=2

dj(xr, ZM ) ≥ h
m′

n(xr)
n · · ·hm

′
0(xr)

0 . (4.11)

where m′
k(xr) is the number of zeros of eM (except the point xr ) in Iin−k,k which do not belong to Iin−k−1,k+1 .

Thus, (m′
k(xr))

n
k=0 are natural numbers except perhaps m′

n(xr) which is 0 if Ii,n ∩ ZM = {xr}.
We search for maximal possible values of (m′

k)
n
k=0 for which (4.11) is valid for all xr ∈ ZM . Since

kn ≤ νj,n ≤ kn + 1 for all j and we remove xr from consideration, m′
n = max νj,n − 1 ≤ kn = mn. In the next

step, m′
n−1 = (νi1,n−1−1)−m′

n with νi1,n−1 ≤ knNn+kn−1+1. Hence, m′
n−1 ≤ (kn−1)Nn+kn−1 = mn−1.

Reapplying this argument yields m′
k ≤ mk for 0 ≤ k ≤ n and the following uniform with respect to xr bound

|e′M (xr)| ≥ hmn
n · · ·hm0

0 . (4.12)

Given any product
∏N

j=1 λj with λj ≥ 0 and q < N, by (
∏N

j=1 λj)q we denote this product without q
smallest terms.

Lemma 4.4 Suppose An ≤ M < An+1, 1 ≤ q < M. Then |ξM |−q ≤ Cq2
M ((hn · hmn

n · · ·hm0
0 )q)

−1, where Cq

does not depend on M .

Proof To estimate the dual q -th norm of ξM we enumerate the points (xk)
M+1
1 in increasing order and

denote the rearranged set by (yk)
M+1
1 . Then ξM (f) = [y1, . . . , yM+1]f. By (1) in [11], see also (2) in [12],

|ξM |−q ≤ Cq2
M

min

M∏
k=q+1

|ya(k) − yb(k)|

−1

, (4.13)

where minimum is taken over all j with 1 ≤ j ≤ M + 1 − q and all possible chains of strict embeddings
[yj , . . . , yj+q] ⊂ · · · ⊂ [y1, . . . , yM+1]. Here, [yj , . . . , yj+q] = [ya(q+1), . . . , yb(q+1)] ⊂ [ya(q+2), . . . , yb(q+2)] ⊂ . . . ⊂
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[ya(M), . . . , yb(M)] = [y1, . . . , yM+1] with a(k+1) = a(k) , b(k+1) = b(k)+1 , or a(k+1) = a(k)−1 , b(k+1) =

b(k) . Let the minimal product Π in (4.13) be realized by [yj0 , . . . , yj0+q]. We note that at least one point from
the pair yj0 , yj0+q belongs to ZM . Without loss of generality let yj0 ∈ ZM . In each embedding of [yj0 , . . . , yj0+q]

into larger interval [ya, . . . , yb] some new endpoint, let for instance ya , appears. Since yb − ya ≥ |yj0 − ya|,

we obtain Π =
∏M

k=q+1 |ya(k) − yb(k)| ≥ (
∏M+1

k=1,k ̸=j0
|yj0 − yk|)q. The last product represent largest M − q

terms of |e′M+1(yj0)|. Here, |e′M+1(yj0)| = |e′M (yj0)| · |yj0 − xM+1| with |yj0 − xM+1| ≥ ℓn+1 + hn > hn, since
M + 1 ≤ An+1. Applying (4.12) yields the desired result. 2

From now on, we assume that the sequence (Nn)
∞
n=1 is bounded. We present a Faber basis in the space

E(K(αn)
(Nn)

) for two cases:

1) αn ≥ Nn for all n . The corresponding result is a direct generalization of Theorem 1 from [12]. Here,

λ0(K
(αn)
(Nn)

) ≤ 1 but perhaps limn λn does not exist.

2) There exists limn λn which is smaller than 1.

Theorem 4.5 Let Nn ≤ N for all n. Suppose that for a set K(αn)
(Nn)

either αn ≥ Nn for all n or there exists

limn λn < 1. Then the sequence (eM )∞M=0 is a Schauder basis in the space E(K(αn)
(Nn)

) .

Proof Given p , we need to find q and C such that for all M

∥eM∥p · |ξM |−q ≤ C. (4.14)

Let us fix any p ∈ N and take q = p(1 + Nw+3) , where w = w(N) will be specified later. We can
consider only large enough M since otherwise (4.14) is valid with an appropriate choice of C. Hence, we can
assume that M is so large that we can use above lemmas. Fix M . Let An ≤M < An+1.

Let us first apply Lemma 4.4 to the case of bounded sequence (Nn)
∞
n=0 . By (2.1), we have ℓk ≤

(2Nk+1 − 1)hk. It follows that hk > (2N)−1ℓk for all k and |ξM |−q ≤ Cq(4N)M (
∏M

k=q ρk)
−1, by (4.8). Thus

there is a constant C0 such that

∥eM∥p · |ξM |−q ≤ C0 ·Mp (4N)M
q−1∏

k=p+1

ρk. (4.15)

Given p , take u such that mn + · · ·+mn−u+2 < p ≤ mn + · · ·+mn−u+1. Consider the product from (4.8) in
more detail:

M∏
k=1

ρk = ℓn · · · ℓn︸ ︷︷ ︸
mn

· · · ℓn−u+1 · · · ℓn−u+1︸ ︷︷ ︸
mn−u+1

ℓn−u · · · ℓn−u︸ ︷︷ ︸
mn−u

· · · ℓn−u−w+1 · · · ℓn−u−w+1︸ ︷︷ ︸
mn−u−w+1

· · · ℓ0 · · · ℓ0︸ ︷︷ ︸
m0

.

Here, mn+mn−1+· · ·+mn−u−w+1 < p+
∑u+w−1

j=u−1 mn−j ≤ p+Nw+3mn−u+2, by Lemma 4.2. But mn−u+2 < p.

Hence, the sum above does not exceed q − 1 and interval [ρp+1, . . . ρq−1] covers

ℓn−u · · · ℓn−u︸ ︷︷ ︸
mn−u

· · · ℓn−u−w+1 · · · ℓn−u−w+1︸ ︷︷ ︸
mn−u−w+1

.
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Therefore,
∏q−1

k=p+1 ρk ≤ ℓ
mn−u

n−u · · · ℓmn−u−w+1

n−u−w+1 . The last product is ℓκ1 with κ = mn−uα1 · · ·αn−u + · · · +
mn−u−w+1α1 · · ·αn−u−w+1 . It remains to find a constant C such that for all M

Mp (4N)M ℓκ1 ≤ C.

Recall that M < An+1 ≤ N An ; therefore, the desired inequality reduces to

p log(N An) +AnN log(4N) ≤ C + κ · log(1/ℓ1). (4.16)

By (4.9), mn−r ≥ Nn ·Nn−1 · · ·Nn−r+2 ≥ (N)−1Nn ·Nn−1 · · ·Nn−r+1. For this reason,

mn−rα1 · · ·αn−r ≥ N−1N1 · · ·Nn · α1 · · ·αn−r

N1 · · ·Nn−r
.

Hence,

κ ≥ N−1An

u+w−1∑
j=u

α1 · · ·αn−j

N1 · · ·Nn−j
.

In the first case, when αn ≥ Nn for all n , we have κ ≥ N−1An w. We see that the choice w = N3 provides
(4.16).

In the second case, when limn λn = λ0 < 1 , let us take ñ such that λn ≤ 1 for n ≥ ñ . By(2.2),
α1···αn−j

N1···Nn−j
= (N1 · · ·Nn−j)

1−λn−j
λn−j ≥ 1 for large enough n and bounded j . Here, as above, κ ≥ N−1An w and

we can take the same w . This gives (4.16) and (4.14). 2

Remarks. 1. The same reasoning applies to the case when λn ↘ 1 so fast that the sequence
(λn − 1) logAn is bounded.
2. We think that for the general case, the method of local interpolations, see [12] and [13], can be used to

construct topological (in general, not Faber) bases in E(K(αn)
(Nn)

) , see question on page 237 in [2].
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