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Abstract: In this paper, we establish some congruences involving the trinomial coefficients and harmonic numbers. For
example, for any prime p > 3,

p−1∑
k=0

(−1)k
(
p− 1

k

)
2

Hk ≡ 0 (mod p).
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1. Introduction
The harmonic numbers Hn are defined by

H0 = 0 and Hn =

n∑
i=1

1

i
for n ≥ 1.

In [4], for arbitrary integer m ≥ 1 and complex number n,

(
1 + x+ x2 + · · ·+ xm

)n
:=
∑
k≥0

(
n

k

)
m

xk.

For m = 2 ,
(
n
k

)
2

is the trinomial coefficient. It is seen ([4, 7, 8]) that

(
n

k

)
m

=

k∑
i=⌈k/m⌉

(
i

k − i

)
m−1

(
n

i

)
,

where ⌈.⌉ denote ceiling functions. The congruence properties for the trinomial coefficients have been investi-
gated by several authors (see [1, 3, 13]). Recently Elkhiri and Mihoubi gave the following identity (see [6])

(
n

k

)
2

=

k∑
i=0

(
n

i

)(
n

k − i

)
cos

(k − 2i)π

3
.
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Apagodu and Liu [2] gave that for any prime p ≥ 5 and integer j with 0 < j < p,

p−1∑
k=0

(
k

j

)
2

≡ (−1)
p−j−1

2
(−1)

j
+ 1

2
(mod p).

If p is a prime and a is an integer not divisible by p, Fermat little theorem is given by ap−1 ≡ 1 (mod p). This
is the origin of the definition of the Fermat quotient of p to base a,

qp (a) :=
ap−1 − 1

p
,

which is an integer according to Fermat little theorem.
For an odd prime p and an integer a , the Legendre symbol is defined by

(
a

p

)
=

 0 if p| a,
1 if a is a quadratic residue modulo p,
−1 if a is a quadratic nonresidue modulo p.

Note that (p
3

)
=

{
1 if p ≡ 1 (mod 3),

−1 if p ≡ 2 (mod 3).

Some sums of harmonic numbers are given as follows [12]: For any positive integer m,

n∑
k=1

kmHk = nm n+ 1

m+ 1

(
Hn+1 −

1

m+ 1

)
, (1.1)

n∑
k=1

(−1)
k
Hk =

(
(−1)

n − 1

2

)
Hn +

1

2
H⌊n/2⌋, (1.2)

where km = k(k − 1) · · · (k −m+ 1) and L.J denote floor functions.
Let p be any prime and n be integer not divided by p . For 0 ≤ k ≤ p− 1,

(
np− 1

k

)
= (−1)

k
k∏

j=1

(
1− np

j

)
≡ (−1)

k
(1− npHk) (mod p2). (1.3)

Let p be an odd prime. The following results are well-known:

qp (2) ≡
1

2

p−1∑
k=1

(−1)
k−1

k
(mod p), (1.4)

and for 0 ≤ k ≤ p− 1,

Hp−1−k ≡ Hk (mod p). (1.5)

Lehmer [10] gave that for any prime p > 3,

H⌊(p−1)/3⌋ ≡ −3

2
qp (3) (mod p). (1.6)
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Elkhiri et al. [5] proved that for any prime p > 3,

⌊(p−1)/3⌋∑
k=1

H3k ≡


1
3 − 1

3qp (3) (mod p) if p ≡ 1 (mod 3),

1
3 − 1

6qp (3) (mod p) if p ≡ 2 (mod 3).
(1.7)

The Catalan numbers are given by

Cn =
1

n+ 1

(
2n

n

)
=

(
2n

n

)
−
(

2n

n+ 1

)
, n ∈ N = {0, 1, 2, ...} .

Koparal and Ömür [9] established that for any odd prime p,

(p−1)/2∑
k=1

CkHkx
k+1 ≡

2p
(
(1− 4x)

(p+1)/2
+ 1
)
−
(√

1− 4x+ 1
)p+1 −

(√
1− 4x− 1

)p+1

2p
(mod p), (1.8)

where x is an integer not divisible by p.

Elkhiri and Mihoubi [6] showed following congruences that for any prime p > 3,

(
np− 1

3k

)
2

≡ 1− np

(
2

3
Hk +

k−1∑
i=0

1

3i+ 2

)
(mod p2), (1.9)

(
np− 1

3k + 1

)
2

≡ −1 + np

(
2

3
Hk +

k∑
i=0

1

3i+ 1

)
(mod p2), (1.10)

(
np− 1

3k + 2

)
2

≡ np

(
k∑

i=0

1

3i+ 2
−

k∑
i=0

1

3i+ 1

)
(mod p2), (1.11)

where n and k are positive integers. They obtained that for any prime p > 3,

p−1∑
k=0

(
np− 1

k

)
2

≡

 1 + npqp (3) (mod p2) if p ≡ 1 (mod 3),

0 (mod p2) if p ≡ 2 (mod 3),
(1.12)

and

⌊p/3⌋−1∑
k=1

1

3k + 1
≡


1
2qp (3)− 1 (mod p) if p ≡ 1 (mod 3),

0 (mod p) if p ≡ 2 (mod 3),
(1.13)

⌊p/3⌋−1∑
k=1

1

3k + 2
≡

 − 1
2 (mod p) if p ≡ 1 (mod 3),

1
2 (qp (3)− 1) (mod p) if p ≡ 2 (mod 3).

(1.14)

2. On congruences
In this section, firstly we will start with some lemmas for further use:
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Lemma 2.1 For any prime p > 3, we have

⌊(p−1)/3⌋∑
k=1

(−1)
k

3k − 1
≡ 2

3
qp(2) (mod p), (2.1)

⌊(p−2)/3⌋∑
k=0

(−1)
k

3k + 1
≡ 2

3
qp(2) (mod p). (2.2)

Proof We will give proof of (2.1) for p ≡ 1 (mod 3). Consider that

⌊(p−1)/3⌋∑
k=1

(−1)
k

3k − 1
= −

(p−4)/3∑
k=0

(−1)
k

3k + 2
. (2.3)

With the help of the congruence
(p−4)/3∑

k=0

(−1)k

3k+1 ≡
(p−4)/3∑

k=0

(−1)k

3k+3 (mod p), we have

(p−4)/3∑
k=0

(−1)
k

3k + 2
=

p−1∑
k=1

(−1)
k

k
+

(p−4)/3∑
k=0

(−1)
k

3k + 1
+

(p−4)/3∑
k=0

(−1)
k

3k + 3

≡
p−1∑
k=1

(−1)
k

k
− 2

3

(p−1)/3∑
k=1

(−1)
k

k
(mod p).

By (1.4), (2.3) and
(p−1)/3∑

k=1

(−1)k

k ≡ −2qp(2) (mod p), we have the result. Similarly, for p ≡ 2 (mod 3), using

the equality

1

3

(p−2)/3∑
k=1

(−1)
k

k
−

(p−2)/3∑
k=0

(−1)
k

3k + 1
−

(p−2)/3∑
k=1

(−1)
k

3k − 1
=

p−1∑
k=1

(−1)
k

k
,

the desired result is obtained. Proof of (2.2) is similar to proof of (2.1). Thus, the proof of Lemma 2.1 is
complete. 2

Lemma 2.2 For integer numbers n ≥ 0 and m > 1, we have

⌊n/m⌋∑
k=0

(−1)
k(m+1)

(
n

k

)(
n

mk

)
=

n∑
k=0

(−1)
n−k

(
2n

k

)(
n

n− k

)
m−1

.

Proof Consider that

⌊n/m⌋∑
k=0

(−1)
k(m+1)

(
n

k

)(
n

mk

)
= [xn]

{
(1 + x)

n
(
1 + (−1)

m+1
xm
)n}

= [xn]
{
(1 + x)

2n
(
1− x+ x2 − ...+ (−x)

m−1
)n}

= [xn]

( ∞∑
k=0

(
2n

k

)
xk

)( ∞∑
k=0

(
n

k

)
m−1

(−x)
k

)
.
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By product of generating functions, we get

⌊n/m⌋∑
k=0

(−1)
k(m+1)

(
n

k

)(
n

mk

)
= [xn]

∞∑
k=0

(
k∑

i=0

(−1)
k−i

(
2n

i

)(
n

k − i

)
m−1

)
xk

=

n∑
i=0

(−1)
n−i

(
2n

i

)(
n

n− i

)
m−1

,

as claimed. 2

Corollary 2.3 For any prime p > 3, we have

(p−1)/2∑
k=0

(
(p− 1) /2

k

)
2

≡ (−1)
(p−1)/2

⌊(p−1)/6⌋∑
k=0

1

28k

(
2k

k

)(
6k

3k

)
(mod p),

⌊(p+3)/6⌋∑
k=1

k(3k − 2)

28(k−1)

(
2k

k

)(
6k − 4

3k − 2

)
≡ (−1)

(p+1)/2
(p−1)/2∑

k=0

(
k + 1

2

)(
(p− 3)/2

k − 1

)
2

(mod p). (2.4)

Proof We will give proof of (2.4). Setting n = (p− 3) /2, m = 3 in Lemma 2.2, we write

⌊(p−3)/6⌋∑
k=0

(
(p− 3)/2

k

)(
(p− 3)/2

3k

)
=

(−1)
(p−1)/2

p− 2

(p−1)/2∑
k=0

k (−1)
k

(
p− 2

k

)(
(p− 3)/2

(p− 1)/2− k

)
2

.

In view of equality
(
(p−1)/2

k+1

)
= p−1

2(k+1)

(
(p−3)/2

k

)
, we have

4

⌊(p−3)/6⌋∑
k=0

(k + 1)(3k + 1)

(p− 1)
2

(
(p− 1)/2

k + 1

)(
(p− 1)/2

3k + 1

)

=
(−1)

(p−1)/2

(p− 2) (p− 1)

(p−1)/2∑
k=0

k(k + 1) (−1)
k

(
p− 1

k + 1

)(
(p− 3)/2

(p− 1)/2− k

)
2

.

By the congruences (−1)
k (p−2

k

)
≡ −k+1

p−1 (mod p) and for 1 ≤ k ≤ (p− 1) /2 ,
(
(p−1)/2

k

)
≡ 1

(−4)k

(
2k
k

)
(mod p),

we have the proof. Similarly, the other congruence is given. This concludes the proof. 2

Lemma 2.4 Let p > 3 be a prime number and n be a positive integer. Then

3

⌊(p−1)/3⌋∑
k=0

k

(
np− 1

3k

)
2

≡

 − 1
3 + p

(
5
18n− 1

3nqp (3) +
1
6

)
(mod p2) if p ≡ 1 (mod 3),

− 1
3 + p

(
13
18n− 1

3nqp (3)−
1
6

)
(mod p2) if p ≡ 2 (mod 3),

(2.5)

⌊(p−2)/3⌋∑
k=1

(3k + 1)

(
np− 1

3k + 1

)
2

≡


1
6 (3p+ 4)− 1

3np
(
qp (3) +

11
3

)
(mod p2) if p ≡ 1 (mod 3),

1− p
18 (17n+ 3) (mod p2) if p ≡ 2 (mod 3),

(2.6)
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and

⌊(p−3)/3⌋∑
k=1

(3k + 2)

(
np− 1

3k + 2

)
2

≡


17
18np (mod p2) if p ≡ 1 (mod 3),

5
9np (mod p2) if p ≡ 2 (mod 3).

(2.7)

Proof Firstly, we will give the proof of (2.5). From (1.9), we have

⌊(p−1)/3⌋∑
k=0

k

(
np− 1

3k

)
2

≡
⌊(p−1)/3⌋∑

k=0

k

(
1− np

(
2

3
Hk +

k−1∑
i=0

1

3i+ 2

))

=

⌊(p−1)/3⌋∑
k=0

k − 2

3
np

⌊(p−1)/3⌋∑
k=0

kHk − np

⌊(p−1)/3⌋∑
k=0

k

k∑
i=1

1

3i− 1

=

⌊(p−1)/3⌋∑
k=0

k − 2

3
np

⌊(p−1)/3⌋∑
k=0

kHk − np

⌊(p−1)/3⌋∑
i=1

1

3i− 1

⌊(p−1)/3⌋∑
k=i

k (mod p2),

and using some elementary operations, we get

⌊(p−1)/3⌋∑
k=0

k

(
np− 1

3k

)
2

≡
⌊(p−1)/3⌋∑

k=0

k − 2

3
np

⌊(p−1)/3⌋∑
k=0

kHk − np

⌊(p−1)/3⌋∑
k=1

1

3k − 1

(
1

2

⌊
p− 1

3

⌋(⌊
p− 1

3

⌋
+ 1

)
− k (k − 1)

2

)

=
(
1 +

np

6

) ⌊(p−1)/3⌋∑
k=1

k − 2

3
np

⌊(p−1)/3⌋∑
k=0

kHk − np

9

⌊(p−1)/3⌋∑
k=1

1− np

9

⌊(p−1)/3⌋∑
k=1

1

3k − 1

− np

2

⌊
p− 1

3

⌋(⌊
p− 1

3

⌋
+ 1

) ⌊(p−1)/3⌋∑
k=1

1

3k − 1

=
1

2

(
1 +

np

6

)⌊p− 1

3

⌋(⌊
p− 1

3

⌋
+ 1

)
− 2

3
np

⌊(p−1)/3⌋∑
k=0

kHk − np

9

⌊
p− 1

3

⌋

− np

2

(
2

9
+

⌊
p− 1

3

⌋(⌊
p− 1

3

⌋
+ 1

)) ⌊(p−1)/3⌋∑
k=1

1

3k − 1
(mod p2).

By 2
9 +

⌊
p−1
3

⌋ (⌊
p−1
3

⌋
+ 1
)
≡ 0 (mod p) and (1.1) , we write

⌊(p−1)/3⌋∑
k=0

k

(
np− 1

3k

)
2

≡ 1

2

(
1 +

np

6

)⌊p− 1

3

⌋(⌊
p− 1

3

⌋
+ 1

)
− np

9

⌊
p− 1

3

⌋

+
np

6

⌊
p− 1

3

⌋(⌊
p− 1

3

⌋
− 1− 2

(⌊
p− 1

3

⌋
+ 1

)
H⌊(p−1)/3⌋

)
(mod p2).
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(1.6) yields that

⌊(p−1)/3⌋∑
k=0

3k

(
np− 1

3k

)
2

≡ 3

2

(
1 +

np

6
+ npqp (3)

)⌊p− 1

3

⌋(⌊
p− 1

3

⌋
+ 1

)
− np

3

⌊
p− 1

3

⌋

+
np

2

⌊
p− 1

3

⌋(⌊
p− 1

3

⌋
− 1

)
(mod p2).

According to the cases of p, the proof of (2.5) is clearly obtained. With the help of (1.6), (1.10) and (1.13), the
proof of (2.6) is similar to the proof of (2.5). Also from (1.11), (1.13) and (1.14), the proof of (2.7) is obtained.

2

Lemma 2.5 Let p > 3 be a prime number and n be a positive integer. Then

⌊(p−1)/3⌋∑
k=0

(−1)
k

(
np− 1

3k

)
2

≡

 1 + np
(
1
2qp(3) +

1
3qp(2)

)
(mod p2) if p ≡ 1 (mod 3),

np
(
1
3qp(2)−

1
4qp(3)

)
(mod p2) if p ≡ 2 (mod 3),

⌊(p−2)/3⌋∑
k=0

(−1)
k

(
np− 1

3k + 1

)
2

≡ np


1
4qp(3)−

1
3qp(2) (mod p2) if p ≡ 1 (mod 3),

1
2qp(3)−

1
3qp(2) (mod p2) if p ≡ 2 (mod 3),

and
⌊(p−3)/3⌋∑

k=0

(−1)
k

(
np− 1

3k + 2

)
2

≡ np

(
1

4
qp(3)−

2

3
qp(2)

)
(mod p2).

Proof Using (1.9), (1.10), (1.11), together with (1.2), (1.14), Lemma 2.1, the proof is similar to proof of
Lemma 2.4. 2

Lemma 2.6 Let p > 3 be a prime number and n be a positive integer. Then

⌊(p−1)/3⌋∑
k=0

(3k)
2

(
np− 1

3k

)
2

≡ 1

32

 −1 + p
(
n−3
2 − nqp (3)

)
(mod p2) if p ≡ 1 (mod 3),

1− 3
2p+ np

(
qp (3)− 13

6

)
(mod p2) if p ≡ 2 (mod 3),

⌊(p−2)/3⌋∑
k=1

(3k + 1)
2

(
np− 1

3k + 1

)
2

≡


1
18 (20− 9p)− np

(
23
27 − 1

9qp (3)
)

(mod p2) if p ≡ 1 (mod 3),

1
18 (3p+ 22)− np

(
3
2 − 2

9qp (3)
)

(mod p2) if p ≡ 2 (mod 3),

and
⌊(p−3)/3⌋∑

k=1

(3k + 2)
2

(
np− 1

3k + 2

)
2

≡ 1

54

 115np (mod p2) if p ≡ 1 (mod 3),

130np (mod p2) if p ≡ 2 (mod 3).

Proof With the help of (1.1), (1.6), (1.9), (1.10), (1.11) and (1.13), the proof of Lemma 2.6 is similar to proof
of Lemma 2.4. 2

Now, we will give main theorems.
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Theorem 2.7 Let p > 3 be a prime number and n be a positive integer. Then

p−1∑
k=0

(−1)
k

(
np− 1

k

)
2

≡

 1 + np
2 qp(3) (mod p2) if p ≡ 1 (mod 3),

−np
2 qp(3) (mod p2) if p ≡ 2 (mod 3),

(2.8)

p−1∑
k=0

k

(
np− 1

k

)
2

≡ −1

3

 2 (1 + p (nqp (3)− 1)) (mod p2) if p ≡ 1 (mod 3),

1 + p (nqp (3)− n+ 1) (mod p2) if p ≡ 2 (mod 3),
(2.9)

and
p−1∑
k=0

k2
(
np− 1

k

)
2

≡ 1

3

 (n− 2) p (mod p2) if p ≡ 1 (mod 3),

1 + np (qp (3)− 1) (mod p2) if p ≡ 2 (mod 3).

Proof We will give the proof of (2.9). Consider that

p−1∑
k=0

k

(
np− 1

k

)
2

=

⌊(p−1)/3⌋∑
k=0

3k

(
np− 1

3k

)
2

+

⌊(p−2)/3⌋∑
k=0

(3k + 1)

(
np− 1

3k + 1

)
2

+

⌊(p−3)/3⌋∑
k=0

(3k + 2)

(
np− 1

3k + 2

)
2

=

⌊(p−1)/3⌋∑
k=0

3k

(
np− 1

3k

)
2

+

⌊(p−2)/3⌋∑
k=1

(3k + 1)

(
np− 1

3k + 1

)
2

+

(
np− 1

1

)
2

+

⌊(p−3)/3⌋∑
k=1

(3k + 2)

(
np− 1

3k + 2

)
2

+ 2

(
np− 1

2

)
2

.

The equalities
(
np−1

1

)
2
=
(
np−1

1

)
and

(
np−1

2

)
2
=
(
np−1

1

)2 − (np−1
2

)
yield that

p−1∑
k=0

k

(
np− 1

k

)
2

≡ −1 +

⌊(p−1)/3⌋∑
k=0

3k

(
np− 1

3k

)
2

+

⌊(p−2)/3⌋∑
k=1

(3k + 1)

(
np− 1

3k + 1

)
2

+

⌊(p−3)/3⌋∑
k=1

(3k + 2)

(
np− 1

3k + 2

)
2

(mod p2).

With the help of Lemma 2.4, for p ≡ 1 (mod 3) ,

p−1∑
k=0

k

(
np− 1

k

)
2

≡ −1− 1

3
+ p

(
5

18
n− 1

3
nqp (3) +

1

6

)
+

1

6
(3p+ 4)− 1

3
np

(
qp (3) +

11

3

)
+

17

18
np

=
2

3
p (1− nqp (3))−

2

3
(mod p2),
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and for p ≡ 2 (mod 3),

p−1∑
k=0

k

(
np− 1

k

)
2

≡ −1− 1

3
+

13

18
pn− 1

3
pnqp (3)−

1

6
p+ 1− 17

18
pn− p

6
+

5

9
np

= −1

3
(1 + p (nqp (3)− n+ 1)) (mod p2).

So, the proof of the congruence is complete. Similarly, with the help of Lemmas 2.5 and 2.6, proofs of the other
congruences are clearly obtained. 2

Theorem 2.8 For any prime p > 3, we have

p−1∑
k=0

(
p− 1

k

)
2

Hk ≡

 − 1
2qp (3) (mod p) if p ≡ 1 (mod 3),

0 (mod p) if p ≡ 2 (mod 3).

Proof By product of generating functions, we obtain

n∑
k=0

(−1)
k

(
n

k

)(
n

k

)
2

= [xn]

∞∑
k=0

(
k∑

i=0

(−1)
i

(
n

i

)
2

(
n

k − i

))
xk

= [xn]

( ∞∑
k=0

(−1)
k

(
n

k

)
2

xk

)( ∞∑
k=0

(
n

k

)
xk

)

= [xn]
(
1− x+ x2

)n
(1 + x)

n

= [xn]
(
1 + x3

)n
= [xn]

( ∞∑
k=0

(
n

k

)
x3k

)

=

{ (
n

n/3

)
if n = 3k,

0 if n ̸= 3k.

This identity with n = p− 1 and (1.3) yield that

p−1∑
k=0

(
p− 1

k

)
2

− p

p−1∑
k=0

Hk

(
p− 1

k

)
2

≡

 (−1)
(p−1)/3 (

1− pH(p−1)/3

)
(mod p2) p ≡ 1 (mod 3),

0 (mod p2) p ≡ 2 (mod 3).

From here, using (1.6) and (1.12), the desired result is clearly obtained. 2

Theorem 2.9 For any prime p > 3, we have

p−1∑
k=0

(−1)
k

(
p− 1

k

)
2

Hk ≡ 0 (mod p).

Proof It is known (see the sequence A082759 in the OEIS) that

n∑
k=0

(
n

k

)(
n

k

)
2

=

n∑
k=0

(
2n− k

k

)(
n

k

)
. (2.10)
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Substuting n = p − 1 in this equality, by (1.3) and for 0 ≤ k ≤ p − 1 ,
(
2p−2−k

k

)
≡ (−1)

k (2k+1
k+1

)
(mod p), we

have

p

p−1∑
k=0

(−1)
k

(
p− 1

k

)
2

Hk ≡
p−1∑
k=0

(−1)
k

(
p− 1

k

)
2

−
p−1∑
k=0

(
2k + 1

k + 1

)
+ p

p−1∑
k=0

(
2k + 1

k + 1

)
Hk (mod p2).

From
p−1∑
k=0

(
2k+1
k+1

)
= 2

p−1∑
k=0

(
2k
k

)
−

p−1∑
k=0

1
k+1

(
2k
k

)
≡ 1

2

(
1 +

(
p
3

))
(mod p2) [14], we write

p

p−1∑
k=0

(−1)
k

(
p− 1

k

)
2

Hk

≡
p−1∑
k=0

(−1)
k

(
p− 1

k

)
2

− 1

2

(
1 +

(p
3

))
+ p

p−1∑
k=0

(
2− 1

k + 1

)(
2k

k

)
Hk

=

p−1∑
k=0

(−1)
k

(
p− 1

k

)
2

− 1

2

(
1 +

(p
3

))
+ p

p−1∑
k=0

(
2− 1

k + 1

)(
2k

k

)
Hk

=

p−1∑
k=0

(−1)
k

(
p− 1

k

)
2

− 1

2

(
1 +

(p
3

))

+ p

2

p−1∑
k=0

(
2k

k

)
Hk −

(p−1)/2∑
k=0

CkHk +

(p−1)/2∑
k=1

Cp−kHp−k

 (mod p2),

and by for 1 ≤ k ≤ (p− 1) /2 ,
(
2(p−k)
p−k

)
≡ 0 (mod p),

p

p−1∑
k=0

(−1)
k

(
p− 1

k

)
2

Hk

≡
p−1∑
k=0

(−1)
k

(
p− 1

k

)
2

− 1

2

(
1 +

(p
3

))
+ p

2

p−1∑
k=0

(
2k

k

)
Hk −

(p−1)/2∑
k=0

CkHk

 (mod p2).

With the help of (1.8) and
p−1∑
k=0

(
2k
k

)
Hk ≡

(
p
3

)
1−3p−1

p (mod p) [11], we write

p

p−1∑
k=0

(−1)
k

(
p− 1

k

)
2

Hk

≡
p−1∑
k=0

(−1)
k

(
p− 1

k

)
2

− 1

2

(
1 +

(p
3

))

+p

(√−3 + 1
)p+1

+
(√

−3− 1
)p+1 − 2p

(
(−3)

(p+1)/2
+ 1
)

2p
+ 2

(p
3

) 1− 3p−1

p

 (mod p2).
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(2.8) and

((√
−3 + 1

)p+1
+
(√

−3− 1
)p+1

)
/2 =

{
−2p p ≡ 1 (mod 3),
2p+1 p ≡ 2 (mod 3),

yield that

p−1∑
k=0

(−1)
k

(
p− 1

k

)
2

Hk

≡ 3


(−12)(p−1)/2−1

p − 1
2qp (3)− qp (2) (mod p) if p ≡ 1 (mod 3),

1
2qp(3) + qp (2) +

1+(−12)(p−1)/2

p (mod p) if p ≡ 2 (mod 3).

From here, for p ≡ 1 (mod 3), we have

p−1∑
k=0

(−1)
k

(
p− 1

k

)
2

Hk ≡
3
(
2p (−3)

(p−1)/2 − 3p−1 + 1− 2p
)

2p
(mod p)

=

3

(
1−

(
(−3)

(p−1)/2
)2

− 2p
(
1− (−3)

(p−1)/2
))

2p

=
3
(
1− (−3)

(p−1)/2
)(

1− 2p + (−3)
(p−1)/2

)
2p

≡ −
3
(
1− (−3)

(p−1)/2
)2

2p
(mod p).

By
(

−3
p

)
≡ 1 (mod p), the desired result is complete. Similarly, by

(
−3
p

)
≡ −1 (mod p), the other congruence

is obtained. Thus we have the proof. 2

Theorem 2.10 For any prime p > 3, we have

3

p−1∑
k=1

k

(
p− 1

k

)
2

Hk ≡

 qp (3) (mod p) if p ≡ 1 (mod 3),

1
2qp (3)− 2 (mod p) if p ≡ 2 (mod 3).

Proof Setting n = p− 1, m = 3 in Lemma 2.2, we have

⌊(p−1)/3⌋∑
k=0

(
p− 1

k

)(
p− 1

3k

)
=

p−1∑
k=0

(−1)
k

(
2 (p− 1)

p− 1− k

)(
p− 1

k

)
2

,
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and from (1.3),

⌊(p−1)/3⌋∑
k=0

(1− pHk − pH3k)

≡
p−1∑
k=1

(−1)
k p− k

2p− 1

(
2p− 1

p− k

)(
p− 1

k

)
2

+
p

2p− 1

(
2p− 1

p

)

≡ (−1)
p
p−1∑
k=1

p− k

2p− 1
(1− 2pHp−k)

(
p− 1

k

)
2

+ (−1)
p p

2p− 1
(1− 2pHp)

≡ (−1)
p
p−1∑
k=1

(k − (1− 2k) p) (1− 2pHp−k)

(
p− 1

k

)
2

− (−1)
p p

2p− 1

≡
p−1∑
k=1

(2pkHp−k + (1− 2k) p− k)

(
p− 1

k

)
2

− p (mod p2).

Hence we write

2p

p−1∑
k=1

kHp−k

(
p− 1

k

)
2

≡
⌊(p−1)/3⌋∑

k=0

(1− pHk − pH3k)−
p−1∑
k=1

(p− 2pk − k)

(
p− 1

k

)
2

+ p (mod p2).

By (1.1) and some elementary operations, we have

2p

p−1∑
k=1

kHp−k

(
p− 1

k

)
2

≡
⌊
p− 1

3

⌋
+ 1− p

((⌊
p− 1

3

⌋
+ 1

)
H⌊(p−1)/3⌋ −

⌊
p− 1

3

⌋)
+ p

− p

⌊(p−1)/3⌋∑
k=0

H3k −
p−1∑
k=1

(p− 2pk − k)

(
p− 1

k

)
2

(mod p2).

For p ≡ 1 (mod 3), by (1.7), (1.12) and (2.9),

2p

p−1∑
k=1

kHp−k

(
p− 1

k

)
2

≡
⌊
p− 1

3

⌋
+ 1− p

((⌊
p− 1

3

⌋
+ 1

)
H⌊(p−1)/3⌋ −

⌊
p− 1

3

⌋)
+ p

− p

(
1

3
− 1

3
qp (3)

)
− 2

3
− 2

3
p (qp (3)− 1)− 4

3
p (mod p2).

With the help of (1.6), we have

2p

p−1∑
k=1

kHp−k

(
p− 1

k

)
2

≡ 2

3
pqp (3) (mod p2),

and by (1.5), we have the proof for p ≡ 1 (mod 3). Similarly, for p ≡ 2 (mod 3), the proof complete. 2
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