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Abstract: The existence of monads on products of projective spaces Pa1 × · · · × Pan is nontrivial. In this paper, we
construct monads over the polycyclic variety P2n+1 × P2n+1 , we prove that cohomology vector bundle associated to
these monads is simple. We also construct a monad on P1 ×P1 ×P2 . We also study the vector bundles associated to
monads and prove stability and simplicity.
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1. Introduction

One of the most interesting problems in algebraic geometry deals with the existence of indecomposable rank r

vector bundles on algebraic varieties. The difficulty in constructing non-splitting vector bundles on algebraic
varieties increases when the difference between the rank of the vector bundle and the dimension of the variety
increases.

We have the famous Hartshorne’s conjecture concerning the non-existence of indecomposable rank 2 vector
bundles on n -dimensional projective spaces for n ≥ 7 . The conjecture has been one of the main motivations
for a great activity in the study of low rank vector bundles on projective spaces. On 3-dimensional projective
spaces, there are plenty of examples of indecomposable vector bundles of rank 2. But, in spite of many efforts,
in the last thirty years, very few indecomposable rank two vector bundles on n -dimensional projective spaces,
n > 3 are known. More precisely, in positive characteristic p ̸= 2 , there are no known indecomposable rank 2
vector bundles on Pn for n > 4 .

In this paper, we will construct vector bundles of low rank via monads and analyze their properties.
More precisely, we construct monads on a Cartesian product of projective spaces, Pa1 × · · · ×Pan . We relate
these monads to those constructed by Okonek and Spindler[9] and Spindler and Trautmann[11] in construction
of Schwarzenberger and special instanton bundles. We prove that the cohomology vector bundle E associated
to the monad on P2n+1 × P2n+1 is simple and, hence, indecomposable. Finally, we construct a monad on
P1 ×P1 ×P2 .

Monads appear in many contexts within algebraic geometry, and they are very useful in construction of
vector bundles with prescribed invariants like rank, determinant and chern classes, see examples [5]. A lot has
been done in this respect. Monads were first introduced by Horrocks[4] who showed that all vector bundles E
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on P3 could be obtained as the cohomology bundle of a monad of the following kind:

0 // ⊕iOP3(ai)
A // ⊕jOP3(bj)

B // ⊕nOP3(cn) // 0

where A and B are matrices whose entries are homogeneous polynomials of degrees bj − ai and cn − bj ,
respectively for some integers i, j, n .

2. Preliminaries
Definition 2.1 Let X be a non-singular irreducible projective variety of dimension d and let L be an ample
line bundle on X . For a torsion-free sheaf F on X we define

1. the degree of F relative to L as degL F := c1(F ) · L d−1 , where c1(F ) is the first chern class of F

2. the slope of F as µL (F ) := c1(F )L d−1

rank(F ) and

3. the Hilbert polynomial of F as PF (m) := χ(F ⊗OX(mL )) .

Definition 2.2 Let X be an algebraic variety and let E be a torsion-free sheaf on X . Then E is L -stable if
every subsheaf F ↪→ E satisfies µL (F ) < µL (E) , where L is an ample line bundle.

2.1. Hoppe’s criterion over cyclic varieties

Suppose that the picard group Pic(X) ≃ Z , such varieties are called cyclic. Given a locally free sheaf
(or, equivalently, a holomorphic vector bundle) E → X of rank r , there is a unique integer kE such that
−r + 1 ≤ c1(E(−kE)) ≤ 0 . Setting Enorm := E(−kE) , we say E is normalized if E = Enorm . Then one has
the following stability criterion:

Proposition 2.3 ([3], Lemma 2.6) Let E be a rank r holomorphic vector bundle over a cyclic projective
variety X . If H0((

∧q
E)norm) = 0 for 1 ≤ q ≤ r − 1 , then E is stable. If H0((

∧q
E)norm(−1)) = 0 for

1 ≤ q ≤ r − 1 , then E is semistable.

2.2. Hoppe’s criterion over polycyclic varieties

Suppose that the picard group Pic(X) ≃ Zl where l ≥ 2 is an integer, then X is a polycyclic variety. Given a
divisor B on X , we define δL (B) := degL OX(B) . Then one has the following stability criterion [5], Theorem
3:

Theorem 2.4 (Generalized Hoppe criterion) Let G → X be a holomorphic vector bundle of rank r ≥ 2

over a polycyclic variety X equiped with a polarisation L if

H0(X, (∧sG)⊗OX(B)) = 0

for all B ∈ Pic(X) and s ∈ {1, . . . , r−1} such that δL (B) < −sµL (G) then G is stable and if δL (B) ≤ −sµL (G) ,
then G is semi-stable.
Conversely, if G is (semi-)stable, then

H0(X,G⊗OX(B)) = 0

for all B ∈ Pic(X) and all s ∈ {1, . . . , r − 1} such that δL (B) < −sµL (G) or δL (B) ≤ −sµL (G) .
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2.3. Hoppe’s criterion over X = Pn ×Pm

Suppose the ambient space is X = Pn × Pm , then Pic(X) ≃ Z2 . We denote by a, b the generators of
Pic(X) . Denote by OX(a, b) := p1

∗OPn(a) ⊗ p2
∗OPm(b) , where p1 and p2 are natural projections from X

to Pn and Pm , respectively. For any line bundle L = OX(a, b) on X and a vector bundle E , we will
write E(a, b) = E ⊗ OX(a, b) and (a, b) := a[h × Pn] + b[Pn × t] to represent its corresponding divisor.
The normalization of E on X with respect to L is defined as follows: Set d = degL (OX(1, 0)) , since
degL (E(−kE , 0)) = degL (E) − 2k · rank(E) there’s a unique integer kE := ⌈µL (E)/d⌉ such that 1 −
d. rank(E) ≤ degL (E(−kE , 0)) ≤ 0 . The twisted bundle EL−norm := E(−kE , 0) is called the L -normalization
of E . Finally, we define the linear functional δL on Z2 as δL (p1, p2) := degL OX(p1, p2) .

Proposition 2.5 ([6], Proposition 6) Let X be a polycyclic variety with Picard number 2 , let L be an ample
line bundle and let E be a rank r > 1 holomorphic vector bundle over X . If H0((

∧q
E)L−norm(p1, p2)) = 0

for 1 ≤ q ≤ r − 1 and every (p1, p2) ∈ Z2 such that δL ≤ 0 , then E is L -stable.

Definition 2.6 A vector bundle E is said to be

1. decomposable if it is isomorphic to a direct sum E1 ⊕ E2 of two non-zero vector bundles, otherwise E is
indecomposable.

2. simple if its only endomorphisms are the homotheties, i.e. Hom(E,E) = k , which is equivalent to
h0(X,E ⊗ E∗) = 1 .

Proposition 2.7 Let 0 → E → F → G→ 0 be an exact sequence of vector bundles.
Then we have the following exact sequences involving exterior and symmetric powers:

1. 0 −→
∧q

E −→
∧q

F −→
∧q−1

F ⊗G −→ · · · −→ F ⊗ Sq−1G −→ SqG −→ 0

2. 0 −→ SqE −→ Sq−1E ⊗ F −→ · · · −→ E ⊗
∧q−1

F −→
∧q

F −→
∧q

G −→ 0

Theorem 2.8 (Künneth formula) Let X and Y be projective varieties over a field k . Let F and G be
coherent sheaves on X and Y , respectively. Let F ⊠ G denote p∗1(F )⊗ p∗2(G )

then Hm(X × Y,F ⊠ G ) ∼=
⊕

p+q=m

Hp(X,F )⊗Hq(Y,G ) .

Since for our case we deal with Cartesian products of projective spaces, in particular, if X = Pn × Pm , then

Hr(X,OX(c, d)) ∼=
⊕

p+q=r

Hp(Pn,OPn(c))⊗Hq(Pm,OPm(d)) where p, q, r, c and d are integers.

Theorem 2.9 ([10], Theorem 4.1) Let n ≥ 1 be an integer and consider d ∈ Z . We denote by Sd the space
of homogeneous polynomials of degree in n+1 (conventionally if d < 0 then Sd = 0). The following statements
hold:

1. H0(Pn,OPn(d)) = Sd for all d .
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2. Hi(Pn,OPn(d)) = 0 for 1 < i < n and for all d .

3. Hn(Pn,OPn(d)) ∼= H0(Pn,OPn(−d− n− 1)) .

Lemma 2.10 ([6], Lemma 9) Let X = Pn × Pm , p1 and p2 be integers and k a nonnegative integer. If
p1 + p2 > 0 then hp(X,OX(−p1,−p2)⊕k) = 0 where 0 ≤ p < dim(X)− 1 .

Lemma 2.11 ([6], Lemma 10) Let A and B be vector bundles canonically pulled back from A′ on Pn and
B′ on Pm , then

Hq(

s∧
(A⊗B)) =

∑
k1+···+ks=q

{ s⊕
i=1

(

s∑
j=0

ki∑
m=0

Hm(∧j(A))⊗ (Hki−m(∧s−j(B))))
}

.

The lemma above depends on the following facts:

Hq(A1 ⊕ · · · ⊕As) =
∑

k1+···+ks=q

{ s⊕
i=1

Hk
i (Ai)

}
.

Hq(A⊗B) =

q∑
m=0

Hm(A)⊗Hq−m(B) .

∧s(A⊗B) =

s∑
j=0

∧j(A)⊗ ∧s−j(B) .

2.4. Background on monads

Definition 2.12 Let X be a nonsingular projective variety. A monad on X is a complex of vector bundles:

M• : 0 // M0
α // M1

β // M2
// 0

with α injective and β surjective. Equivalently, M• is a monad if α and β are of maximal rank and β ◦α = 0 .

Definition 2.13 A monad as defined above has a display diagram of short exact sequences as shown below:

0 0y y
0 −−−−→ M0 −−−−→ kerβ −−−−→ E −−−−→ 0

||
y y

0 −−−−→ M0 −−−−→
α

M1 −−−−→ cokerα −−−−→ 0

β

y y
M2 M2y y
0 0
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The kernel of β , kerβ and the cokernel of α , coker(α) for the given monad are also vector bundles and the
vector bundle E = ker(β)/ im(α) and is called the cohomology bundle of the monad.

Definition 2.14 [8] Let X be a nonsingular projective variety, let L be a very ample line sheaf, and V,W,U

be finite dimensional k -vector spaces. A linear monad on X is a complex of sheaves,

0 // V ⊗ L −1 α // W ⊗OX
β // U ⊗ L // 0

where α ∈Hom(V,W )⊗H0L is injective and β ∈Hom(W,U)⊗H0L is surjective.

Definition 2.15 [8] A torsion-free sheaf E on X is said to be a linear sheaf on X if it can be represented
as the cohomology sheaf of a linear monad i.e. E = ker(β)/ im(α) , moreover rank(E) = w − u − v , where
w = dimW , v = dimV and u = dimU .

3. Main results
The goal of this section is to actually construct different types of monads by varying the ambient space X ,
which is a smooth projective variety and the ample line bundle L . More precisely, we construct monads on a
Cartesian product of projective spaces, Pa1×· · ·×Pan . Okonek and Spindler[9] and Spindler and Trautmann[11]
constructed monads and proved stability of Schwarzenberger and special instanton bundles on P2n+1 ; here we
construct monads on P2n+1×P2n+1 . We prove that the cohomology vector bundle E associated to the monad
on P2n+1 × P2n+1 is simple, hence, indecomposable. Finally, we construct a monad on P1 × P1 × P2 . We
start by recalling the existence and classification of linear monads on Pn given by Fløystad in [2].

Lemma 3.1 ([2], Main Theorem) Let k ≥ 1 . There exist linear monads on Pk of the form:

0 −−−−→ OPk(−1)⊕a −−−−→
A

O⊕b
Pk −−−−→

B
OPk(1)⊕c −−−−→ 0

if and only if at least one of the following is fulfilled:
(1)b ≥ 2c+ k − 1 , b ≥ a+ c and
(2)b ≥ a+ c+ k

Lemma 3.2 ([7], Theorem 3.2) Let X = Pn × Pm and let L = OX(ρ, σ) be an ample line bundle on
X . Denote by N = h0(OX(ρ, σ)) − 1 . Let α, β, γ be positive integers such that at least one of the following
conditions holds
(1)β ≥ 2γ +N − 1 , and β ≥ α+ γ ,
(2)β ≥ α+ γ +N .

Then, there exists a linear monad on X of the form

0 −−−−→ OX(−ρ,−σ)⊕α −−−−→
A

O⊕β
X −−−−→

B
OX(ρ, σ)⊕γ −−−−→ 0

Theorem 3.3 Let X = Pa1 × · · · ×Pan and let L = OX(1, . . . , 1) be an ample line bundle on X . Denote by
N = h0(OX(a1, . . . , an))− 1 . Let α, β, γ be positive integers such that at least one of the following conditions
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holds
(1)β ≥ 2γ +N − 1 , and β ≥ α+ γ ,
(2)β ≥ α+ γ +N .

Then, there exists a linear monad on X of the form

0 −−−−→ OX(−1, . . . ,−1)⊕α −−−−→
A

O⊕β
X −−−−→

B

OX(1, . . . , 1)⊕γ −−−−→ 0

Proof For the ample line bundle L = OX(1, . . . , 1) , we have an embedding

i∗ : X = Pa1 × · · · ×Pan ↪→ P(H0(X,OX(1, . . . , 1))) ∼= PN

such that i∗(OX(1)) ≃ L and where N =
∏
(ai + 1)− 1 , i = 1, · · · , n .

Suppose that one of the conditions is satisfied. Then, by Lemma 3.1, there exists a linear monad

0 −−−−→ OPN (−1)⊕α −−−−→
A

O⊕β
PN −−−−→

B
OPN (1)⊕γ −−−−→ 0

on PN .

Notice that

A ∈ HomX(L −1⊕α
,O⊕β

X ) and B ∈ Hom(O⊕β
PN ,O⊕γ

PN (1)) ∼= HomX(O⊕β
X ,L ⊕γ) .

Thus, A and B induce a monad on X :

0 // L −1⊕α Ā // O⊕β
X

B̄ // L ⊕γ // 0

where

Ā ∈ Hom(OX(−1, . . . ,−1)⊕α,O⊕β
X ) and B̄ ∈ Hom(O⊕β

X ,OX(1, . . . , 1)⊕γ)

which proves what we want. 2

In particular when a1 = a2 = · · · = an = 1 the above Theorem guarantees the existence of the monad,

0 −−−−→ OX(−1, . . . ,−1)⊕α −−−−→ O⊕β
X −−−−→ OX(1, . . . , 1)⊕γ −−−−→ 0

Definition 3.4 An instanton bundle on P2n+1 with quantum number k is a rank 2n vector bundle E on
P2n+1 satisfying the following properties:

1. ct(E) = 1
(1−t2)k

,

2. E has the natural cohomology in the range −2n− 1 ≤ j ≤ 0 , i.e. for every j in that range at most one
of the cohomology groups Hq(P2n+1, E(j)) is non-zero,

3. E has trivial splitting type, i.e. for a general line l ⊂ P2n+1 we have E|l ∼= O2n
l .
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Proposition 3.5 ([7], Proposition 5.6) Any instanton bundle E on P2n+1 with quantum number k is a
linear vector bundle; more precisely E is the cohomology bundle of a linear monad

0 // V ⊗OP2n+1(−1) // W ⊗OP2n+1 // U ⊗OP2n+1(1) // 0

with dimV = dimU = k and dimW = 2k + 2n .
Conversely, a linear vector bundle arising as the cohomology bundle of a linear monad

0 // V ⊗OP2n+1(−1) // W ⊗OP2n+1 // U ⊗OP2n+1(1) // 0

with dimV = dimU = k and dimW = 2k+2n is an instanton bundle provided that it has trivial splitting type.

Definition 3.6 ([9], Proposition 4.2) 1. A special instanton bundle on P2n+1 of quantum number k can
be defined by an exact sequence

0 −−−−→ OP2n+1(−1)⊕k −−−−→ S∗ −−−−→ E −−−−→ 0

2. A Schwarzenberger bundle S of rank 2n+ k is defined by a special exact sequence

0 −−−−→ OP2n+1(−1)⊕k −−−−→ O⊕2n+2k
P2n+1 −−−−→ S −−−−→ 0

Proposition 3.7 ([1], Proposition 2.11) Let E be a rank 2n bundle on P2n+1 such that E has natural
cohomology in the range −2n− 1 ≤ q ≤ 0 and ct(E) = (1− t)−k . Then E is simple.

Theorem 3.8 ([1], Theorem 2.8) Let a, b be integers, 0 < a ≤ b . Let T,E be vector bundles on Pm defined
by the sequences

0 −−−−→ OPm(−1)⊕b −−−−→ O⊕m+a+b−1
Pm −−−−→ T −−−−→ 0

0 −−−−→ OPm(−1)⊕a −−−−→ T ∗ −−−−→ E −−−−→ 0

then T is stable and E is simple.

Theorem 3.9 Let n and k be positive integers and A and B be morphisms of linear forms as in

B :=

 x0 · · · xn y0 · · · yn
. . . . . . . . . . . .

x0 · · ·xn y0 · · · yn


and

A :=



−y0 · · · −yn
. . . . . .

−y0 · · · −yn
x0 · · · xn

. . . . . .
x0 · · · xn


then there exists a linear monad of the form

0 −−−−→ OP2n+1(−1)⊕k −−−−→
A

O⊕2n+2k
P2n+1 −−−−→

B
OP2n+1(1)⊕k −−−−→ 0
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Proof We know that for nonnegative integers a, b, c,N satisfying
(i) b ≥ 2c+N − 1 and
(ii) b ≥ a+ c , there exists a monad

0 −−−−→ OPN (−1)⊕a −−−−→
α

O⊕b
PN −−−−→

β
OPN (1)⊕c −−−−→ 0

on setting a = c = k , b = 2n+ 2k and N = 2n+ 1 we see that
(I) b = 2n+ 2k and 2c+N − 1 = 2k + 2n+ 1− 1 = 2k + 2n = b so (i) is true and
(II) a+ c = 2k ≤ 2k + 2n = b so (ii) is true and hence we get the expected monad

0 −−−−→ OP2n+1(−1)⊕k −−−−→
A

O⊕2n+2k
P2n+1 −−−−→

B
OP2n+1(1)⊕k −−−−→ 0

2

Theorem 3.10 The cohomology vector bundle associated to the monad

0 −−−−→ OP2n+1(−1)⊕k −−−−→
A

O⊕2n+2k
P2n+1 −−−−→

B
OP2n+1(1)⊕k −−−−→ 0

is a special instanton bundle of quantum number k , has rank 2n and is simple.

Proof The display of the monad is

0 0y y
0 −−−−→ OP2n+1(−1)⊕k −−−−→ T −−−−→ E −−−−→ 0

||
y y

0 −−−−→ OP2n+1(−1)⊕k −−−−→
α

O⊕2n+2k
P2n+1 −−−−→ coker(α) −−−−→ 0

β

y y
OP2n+1(1)⊕k OP2n+1(1)⊕ky y

0 0

On dualizing the exact sequence

0 −−−−→ T −−−−→ O⊕2n+2k
P2n+1 −−−−→ OP2n+1(1)⊕k −−−−→ 0

we get

0 −−−−→ OP2n+1(−1)⊕k −−−−→ O⊕2n+2k
P2n+1 −−−−→ T ∗ −−−−→ 0

setting the conditions of Theorem 3.8, a = b = k and m = 2n + 2k , then it follows T ∗ is stable and so is T
from which we deduce that E∗ is simple and, hence, E is simple. 2

2133



MAINGI/Turk J Math

Lemma 3.11 Let T be a vector bundle on X = P2n+1 ×P2n+1 defined by the sequence

0 −−−−→ T −−−−→ O⊕2n+2k
X −−−−→ OX(1, 1)⊕k −−−−→ 0

, then T is stable.

Proof We show that H0(X,
∧q

T (−p1,−p2)) = 0 for all p1 + p2 > 0 and 1 ≤ q ≤ rank(T ) .

Consider the ample line bundle L = OX(1, 1) = O(L) .
Its class in Pic(X) = ⟨[a×P2n+1], [P2n+1 × b]⟩ corresponds to the class
1 · [a×P2n+1] + 1 · [P2n+1 × b] , where a and b are hyperplanes of P2n+1 with the
intersection product induced by a2n+1 = 1 = b2n+1 and a2n+2 = 0 = b2n+2 .

Now from the display diagram of the monad, we get

c1(T ) = c1(O2n+2k
X )− c1(OX(1, 1)k)

= (2n+ 2k)(0, 0)− k(1, 1)

= (−k,−k)

Since L4n+2 > 0 hence , the degree of T is:

degL T = −k([a×P2n+1] + [P2n+1 × b]) · (1 · [a×P2n+1] + 1 · [P2n+1 × b])4n+1

= −kL4n+2 < 0.

Since degL T < 0 , then (
∧q

T )L−norm = (
∧q

T ) , and it suffices by the generalized Hoppe criterion (Proposi-
tion 2.5), to prove that h0(

∧q
T (−p1,−p2)) = 0 with p1 + p2 ≥ 0 and for all 1 ≤ q ≤ rank(T )− 1 .

Next, we twist the exact sequence

0 −−−−→ T −−−−→ O⊕2n+2k
X −−−−→ OX(1, 1)⊕k −−−−→ 0

by OX(−p1,−p2) we get,

0 −→ T (−p1,−p2) −→ OX(−p1,−p2)⊕2n+2k −→ OX(1− p1, 1− p2)
⊕k −→ 0

and taking the exterior powers of the sequence by Proposition 2.7, we get

0 −→
q∧
T (−p1,−p2) −→

q∧
(OX(−p1,−p2)⊕2n+2k) −→

q−1∧
(OX(1− 2p1, 1− 2p2)

⊕2n+2k) −→ · · ·

.
Taking cohomology, we have the injection:

0 −→ H0(X,

q∧
T (−p1,−p2)) ↪→ H0(X,

q∧
(OX(−p1,−p2)⊕2n+2k))
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Set G = OX(−p1,−p2)2n+2k = OX(−p1,−p2) ⊗ O⊕2n+2k
X and using Lemma 2.11 H0(X,

∧q G ) expands into

H0(X,

q∑
j=0

∧jOX(−p1,−p2)⊗O⊕2n+2k
X ) and since p1 + p2 > 0 then

h0(X,

q∧
(OX(−p1,−p2)⊕2n+2k)) = h0(X,

q∧
T (−p1,−p2)) = 0

i.e. h0(
∧q

T (−p1,−p2)) = 0 and, thus, T is stable.
2

Theorem 3.12 Let X = P2n+1 ×P2n+1 , then the cohomology vector bundle E associated to the monad

0 −−−−→ OX(−1,−1)⊕k −−−−→
A

O⊕2n+2k
X −−−−→

B
OX(1, 1)⊕k −−−−→ 0

of rank 2n is simple.

Proof The display of the monad is

0 0y y
0 −−−−→ OX(−1,−1)⊕k −−−−→ T −−−−→ E −−−−→ 0

||
y y

0 −−−−→ OX(−1,−1)⊕k −−−−→
α

O⊕2n+2k
X −−−−→ Q −−−−→ 0

β

y y
OX(1, 1)⊕k OX(1, 1)⊕ky y

0 0

Since T is stable from Lemma 3.11, we prove that the cohomology vector bundle E with rank 2n is simple.

The first step is to take the dual short exact sequence

0 −−−−→ OX(−1,−1)⊕k −−−−→ T −−−−→ E −−−−→ 0

to get
0 −−−−→ E∗ −−−−→ T ∗ −−−−→ OX(1, 1)⊕k −−−−→ 0.

Tensoring by E we get

0 −−−−→ E ⊗ E∗ −−−−→ E ⊗ T ∗ −−−−→ E(1, 1)k −−−−→ 0.

Now taking cohomology gives:

0 −−−−→ H0(X,E ⊗ E∗) −−−−→ H0(X,E ⊗ T ∗) −−−−→ H0(E(1, 1)k) −−−−→ · · ·
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which implies that
h0(X,E ⊗ E∗) ≤ h0(X,E ⊗ T ∗) (3.1)

Now, we dualize the short exact sequence

0 −−−−→ T −−−−→ O⊕2n+2k
X −−−−→ OX(1, 1)⊕k −−−−→ 0

to get
0 −−−−→ OX(−1,−1)⊕k −−−−→ O⊕2n+2k

X −−−−→ T ∗ −−−−→ 0

For the sake of brevity we shall use the notation Oa
X in place of O⊕a

X .
Now twisting by OX(−1,−1) and taking cohomology, we get

0 −→ H0(X,OX(−2,−2)k) −→ H0(X,OX(−1,−1)2n+2k) −→ H0(X,T ∗(−1,−1)) −→

−→ H1(X,OX(−2,−2)k) −→ H1(X,OX(−1,−1)2n+2k) −→ H1(X,T ∗(−1,−1)) −→

−→ H2(X,OX(−2,−2)k) −→ H2(X,OX(−1,−1)2n+2k) −→ H2(X,T ∗(−1,−1)) −→ · · ·

from which we deduce H0(X,T ∗(−1,−1)) = 0 and H1(X,T ∗(−1,−1)) = 0 from Theorems 2.8 and 2.9.

Lastly, tensor the short exact sequence

0 −−−−→ O(−1,−1)⊕k −−−−→ T −−−−→ E −−−−→ 0

by T ∗ to get
0 −−−−→ T ∗(−1,−1)k −−−−→ T ⊗ T ∗ −−−−→ E ⊗ T ∗ −−−−→ 0

and taking cohomology, we have

0 −−−−→ H0(X,T ∗(−1,−1)k) −−−−→ H0(X,T ⊗ T ∗) −−−−→ H0(X,E ⊗ T ∗) −−−−→

−−−−→ H1(X,T ∗(−1,−1)k) −−−−→ · · ·

But H1(X,T ∗(−1,−1)k = 0 for k > 1 from above.

so we have

0 −−−−→ H0(X,T ∗(−1,−1)k) −−−−→ H0(X,T ⊗ T ∗) −−−−→ H0(X,E ⊗ T ∗) −−−−→ 0

This implies that
h0(X,T ⊗ T ∗) ≤ h0(X,E ⊗ T ∗) (3.2)

Since T is stable, then it follows that it is simple, which implies h0(X,T ⊗ T ∗) = 1 .

From (1) and now (2) and putting these together, we have

1 ≤ h0(X,E ⊗ E∗) ≤ h0(X,E ⊗ T ∗) = h0(X,T ⊗ T ∗) = 1

We have h0(X,E ⊗ E∗) = 1 , and, therefore, E is simple.
2
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Construction 3.13 Let ψ : X = P1 ×P1 ×P2 −→ P11 be the Segre embedding defined by

[x0 : x1][y0 : y1][z0 : z1 : z2] ↪→ [a0 : a1 : a2 : a3 : a4 : a5 : b0 : b1 : b2 : b3 : b4 : b5] .

Then, by Lemma 3.1, there exists a linear monad

0 // OP11(−1)α
A // Oβ

P11

B // OP11(1)γ // 0

Suppose β = 2γ +N − 1 , and β = α+ γ , that is equality on the first condition of Lemma 3.1.

Also let γ = 2 , then since N = 11 then β = 14 and α = 12 .

Thus, we can construct the maps A and B that establish the monad

0 // OP11(−1)12
A // O14

P11

B // OP11(1)2 // 0

as follows:

B :=

(
a0 a1 a2 a3 a4 a5 0 b0 b1 b2 b3 b4 b5 0
0 a0 a1 a2 a3 a4 a5 0 b0 b1 b2 b3 b4 b5

)
a 2 by 14 matrix and

A :=



−b0 −b1 −b2 −b3 −b4 −b5 0 0 0 0 0 0
0 −b0 −b1 −b2 −b3 −b4 −b5 0 0 0 0 0
0 0 −b0 −b1 −b2 −b3 −b4 −b5 0 0 0 0
0 0 0 −b0 −b1 −b2 −b3 −b4 −b5 0 0 0
0 0 0 0 −b0 −b1 −b2 −b3 −b4 −b5 0 0
0 0 0 0 0 −b0 −b1 −b2 −b3 −b4 −b5 0
0 0 0 0 0 0 −b0 −b1 −b2 −b3 −b4 −b5
a0 a1 a2 a3 a4 a5 0 0 0 0 0 0
0 a0 a1 a2 a3 a4 a5 0 0 0 0 0
0 0 a0 a1 a2 a3 a4 a5 0 0 0 0
0 0 0 a0 a1 a2 a3 a4 a5 0 0 0
0 0 0 0 a0 a1 a2 a3 a4 a5 0 0
0 0 0 0 0 a0 a1 a2 a3 a4 a5 0
0 0 0 0 0 0 a0 a1 a2 a3 a4 a5


a 14 by 12 matrix.

Notice that BA = 0 and A and B are of maximal rank and, hence, the monad,

0 −−−−→ OP11(−1)12 −−−−→
A

O14
P11 −−−−→

B
OP11(1)2 −−−−→ 0

Now we induce the monad

0 −−−−→ OX(−1,−1,−1)12 −−−−→
A

O14
X −−−−→

B

OX(1, 1, 1)2 −−−−→ 0

We construct A and B from A and B from the Segre map using the table:
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A,Bentries A,B, entries

a0 x0y0z0

a1 x0y0z1

a2 x0y0z2

a3 x0y1z0

a4 x0y1z1

a5 x0y1z2

b0 x1y0z0

b1 x1y0z1

b2 x1y0z2

b3 x1y1z0

b4 x1y1z1

b5 x1y1z2

Specifically, we define two matrices A and B as follows:

B =
(
B1 B2

)
and

A =

(
A1

A2

)
Where

B1 :=

(
x0y0z0 x0y0z1 x0y0z2 x0y1z0 x0y1z1 x0y1z2 0

0 x0y0z0 x0y0z1 x0y0z2 x0y1z0 x0y1z1 x0y1z2

)
and

B2 :=

(
x1y0z0 x1y0z1 x1y0z2 x1y1z0 x1y1z1 x1y1z2 0

0 x1y0z0 x1y0z1 x1y0z2 x1y1z0 x1y1z1 x1y1z2

)
Similarly, one can construct A1 and A2 as follows:

A2 a 7× 12 matrix

x0y0z0 x0y0z1 x0y0z2 x0y1z0 x0y1z1 x0y1z2 0 0 0 0 0 0
0 x0y0z0 x0y0z1 x0y0z2 x0y1z0 x0y1z1 x0y1z2 0 0 0 0 0
0 0 x0y0z0 x0y0z1 x0y0z2 x0y1z0 x0y1z1 x0y1z2 0 0 0 0
0 0 0 x0y0z0 x0y0z1 x0y0z2 x0y1z0 x0y1z1 x0y1z2 0 0 0
0 0 0 0 x0y0z0 x0y0z1 x0y0z2 x0y1z0 x0y1z1 x0y1z2 0 0
0 0 0 0 0 x0y0z0 x0y0z1 x0y0z2 x0y1z0 x0y1z1 x0y1z2 0
0 0 0 0 0 0 x0y0z0 x0y0z1 x0y0z2 x0y1z0 x0y1z1 x0y1z2


−A1 is a 7× 12 matrix constructed similarly that is:
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

x1y0z0 x1y0z1 x1y0z2 x1y1z0 x1y1z1 x1y1z2 0 0 0 0 0 0
0 x1y0z0 x1y0z1 x1y0z2 x1y1z0 x1y1z1 x1y1z2 0 0 0 0 0
0 0 x1y0z0 x1y0z1 x1y0z2 x1y1z0 x1y1z1 x1y1z2 0 0 0 0
0 0 0 x1y0z0 x1y0z1 x1y0z2 x1y1z0 x1y1z1 x1y1z2 0 0 0
0 0 0 0 x1y0z0 x1y0z1 x1y0z2 x1y1z0 x1y1z1 x1y1z2 0 0
0 0 0 0 0 x1y0z0 x1y0z1 x1y0z2 x1y1z0 x1y1z1 x1y1z2 0
0 0 0 0 0 0 x1y0z0 x1y0z1 x1y0z2 x1y1z0 x1y1z1 x1y1z2


We note that

1. B ·A = 0 and

2. The matrices B and A have maximal rank

Hence, we get the desired monad

0 −−−−→ OX(−1,−1,−1)12 −−−−→
A

O14
X −−−−→

B

OX(1, 1, 1)2 −−−−→ 0
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