Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/

Turk J Math (2021) 45: $2180-2198$ © TÜBİTAK doi:10.3906/mat-2102-109

The kernel spaces and Fredholmness of truncated Toeplitz operators

Xiaoyuan YANG ${ }^{1}$ (1), Ran $\mathbf{L I}^{2, *}$ (D) Yufeng $\mathbf{L U}^{3}$ (${ }^{\text {(}}$
${ }^{1}$ School of Mathematical Sciences, Dalian University of Technology, Dalian, China
${ }^{2}$ School of Mathematics, Liaoning Normal University, Dalian, China
${ }^{3}$ School of Mathematical Sciences, Dalian University of Technology, Dalian, China

Received: 24.02.2021 • Accepted/Published Online: 30.07.2021 • Final Version: 16.09.2021

Abstract

In this paper, we study some conditions about invertible and Fredholm truncated Toeplitz operators which have unique symbols. For $f \in L^{\infty}$, if A_{f} is a Fredholm operator, then $\left.f\right|_{E} \neq 0$ for any $E \subset \mathbb{T}$ with $|E|>0$. Moreover ind $\left(A_{f}\right)=0$. In particular, if A_{f} is invertible in $\mathfrak{L}\left(K_{u}^{2}\right)$, then f is invertible in L^{∞}. Besides, we give some results about the kernel spaces of truncated Toeplitz operators. For $f \in L^{\infty}$, we obtain the necessary and sufficient condition that the defect operator $I-A_{f}^{*} A_{f}$ of truncated Toeplitz operator A_{f} meeting some conditions is compact on the model space K_{u}^{2}.

Key words: Model spaces, truncated Toeplitz operators, invertible operators, Fredholm operators, defect operators

1. Introduction

A fundamental problem in the theory of linear operators is that the existence and uniqueness of the solution to the equation

$$
\begin{equation*}
T x=a \tag{1.1}
\end{equation*}
$$

where T is a linear operator acting on a space H which contains x and a as elements. When H is a complex Hilbert space, the operator T is a linear operator acting on some domain $D(T)$ in H and having a range in H. It is obvious that the solution of (1.1) is unique if and only if the equation $T x=0$ has only the trivial solution $x=0$. Further, if T has a closed range, then there exists a solution of (1.1) if and only if $\langle y, a\rangle=0$, where a is any solution of $T^{*} y=0$ and T^{*} denotes the adjoint of T. Moreover, if T is a Fredholm operator, then the solvability of Equation (1.1) for a given a is equivalent to determining whether a is orthogonal to the finite dimensional subspace ker T^{*}. Lastly, the space of the solutions of Equation (1.1) is finite dimensional. These results suggest the importance of investigating the Fredholm operators.

For a Hilbert space H, let $\mathfrak{L}(H)$ be the set of all bounded linear operators and $\mathfrak{L C}(H)$ be the set of all compact operators. We use ker T and ran T to denote the kernel space and range of T, respectively. The dimension of the set E is denoted by $\operatorname{dim}(E)$. We use clos $[E]$ to denote the closure of the set E.

Definition 1.1 If H is a Hilbert space, then the quotient algebra $\mathfrak{L}(H) / \mathfrak{L C}(H)$ is a Banach algebra called the Calkin algebra. The natural homomorphism from $\mathfrak{L}(H)$ onto $\mathfrak{L}(H) / \mathfrak{L} \mathfrak{C}(H)$ is denoted by π. Then $T \in \mathfrak{L}(H)$ is

[^0]a Fredholm operator if $\pi(T)$ is an invertible element of $\mathfrak{L}(H) / \mathfrak{L} \mathfrak{C}(H)$. The spectrum of $\pi(T)$ in $\mathfrak{L}(H) / \mathfrak{L C}(H)$ for T in $\mathfrak{L}(H)$ is called the essential spectrum of T and is denoted by $\sigma_{e}(T)$. The index of T is defined as $\operatorname{dim}(T)=\operatorname{dim} \operatorname{ker} T-\operatorname{dim} \operatorname{ker} T^{*}$, written as ind (T).

The set of all Fredholm operators is invariant under compact perturbations. Namely, some properties of a Fredholm operator T can be possessed by the properties of $T+K$ for every K in $\mathfrak{L C}(H)$. The following theorem contains the usual definition of Fredholm operators.

Theorem 1.2 (Atkinson) If H is a Hilbert space, then $T \in \mathfrak{L}(H)$ is a Fredholm operator if and only if the range of T is closed and the dimensions of $\operatorname{ker} T$ and ker T^{*} are both finite.

In this paper, we study the Fredholm operators on the Hardy spaces. Let \mathbb{D} denote the open unit disk in the complex plane \mathbb{C} and \mathbb{T} denote the unit circle. Denoted by $L^{2}=L^{2}(\mathbb{T}, d m)$ the Hilbert space of square integrable functions on \mathbb{T} with respect to the Lebesgue measure, normalized so that the measure of the entire circle is 1 . Let L^{∞} be the space of the essentially bounded functions on the unit circle. The Hardy space H^{2} denotes the Hilbert space of all holomorphic functions in \mathbb{D} having square-summable Taylor coefficients at the origin, and it will be identified with the space of boundary functions, the subspace of L^{2} consisting of functions whose Fourier coefficients with negative indices vanish. Let H^{∞} denote the space of all bounded holomorphic functions in \mathbb{D} and $C(\mathbb{T})$ denote the space of all continuous functions on \mathbb{T}.

Every function in H^{2}, other than the constant function 0, can be factorized into the product of an inner function and an outer function. An inner function is a function $u \in H^{\infty}$ such that $\left|u\left(e^{i \theta}\right)\right|=1$ almost everywhere with respect to the Lebesgue measure. The function $F \in H^{2}$ is an outer function if F is a cyclic vector of the unilateral shift S. That is, $\bigvee_{0}^{\infty}\left\{S^{k} F\right\}=H^{2}$. For more properties about Hardy spaces, we can refer to [17].

By Beurling's theorem [1], it is well known that the invariant subspace of the unilateral shift operator $S f=z f$ on H^{2} has the form $u H^{2}$, where u is an inner function. It is easy to check that $K_{u}^{2}=H^{2} \ominus u H^{2}$ is the invariant subspace of the backward shift operator S^{*} on H^{2}, which is called the model space. Let P denote the orthogonal projection from L^{2} onto H^{2} and P_{u} denote the orthogonal projection from L^{2} onto K_{u}^{2}. For $\psi \in L^{\infty}$, the Toeplitz operator T_{ψ} induced by the symbol ψ is defined on H^{2} by

$$
T_{\psi} g=P(\psi g), g \in H^{2} .
$$

Obviously, $T_{\psi}^{*}=T_{\bar{\psi}}$. Toeplitz operators acting on H^{2} have very simple and natural matrix representation via infinite Toeplitz matrices that have constant entries on the diagonals parallel to the main one. For $\psi \in L^{\infty}$, Hankel operator H_{ψ} induced by the symbol ψ is defined on H^{2} by

$$
H_{\psi} g=(I-P)(\psi g), g \in H^{2} .
$$

It is easy to check that $H_{\psi}^{*} h=P(\bar{\psi} h)$ for $h \in L^{2} \ominus H^{2}$. The compressions of Toeplitz operators on K_{u}^{2} are called truncated Toeplitz operators, which are defined by

$$
A_{\psi} f=P_{u}(\psi f), f \in K_{u}^{2}
$$

The function ψ is called the symbol of A_{ψ}. Clearly, $A_{\psi}^{*}=A_{\bar{\psi}}$.

Truncated Toeplitz operators represent a far reaching generalization of classical Toeplitz matrices. Although particular case had appeared before in the literature, the general theory has been initiated in the seminal paper [20]. Since then, truncated Toeplitz operators have constituted an active area of research. We mention only a few relevant papers $[2,11,18]$ and so on. On the operator theory level, Nagy shows that A_{z} is a model for a certain class of contraction operators [19]. Every contraction operator T on the Hilbert space H having defect indices $(1,1)$ and such that $\lim _{n \rightarrow \infty} T^{* n}=0(\mathrm{SOT})$ is unitarily equivalent to A_{z} for some inner function u, where SOT denotes the strong operator topology. Thus, the research on truncated Toeplitz operators is of representative significance.

In [9], the author proves that if f is in L^{∞} such that T_{f} is a Fredholm operator, then f is invertible in L^{∞}. Moreover, if $f \in H^{\infty}$, then T_{f} is invertible in $\mathfrak{L}\left(H^{2}\right)$ if and only if f is invertible in H^{∞}. In this case,

$$
\sigma\left(T_{f}\right)=\operatorname{clos}[G(f)(\mathbb{D})]
$$

where $G(f)$ is the Gelfand transform of f. If f belongs to $C(\mathbb{T})$, then T_{f} is a Fredholm operator if and only if f does not vanish. In this case, ind $\left(T_{f}\right)$ is equal to the negative winding number of the curve traced out by f with respect to the origin. In addition, if f is in $H^{\infty}+C(\mathbb{T})$, then T_{f} is a Fredholm operator if and only if f is invertible in $H^{\infty}+C(\mathbb{T})$. The Fredholm properties of Toeplitz operators have many characterizations, see [9], but there are very few results for Fredholmness of truncated Toeplitz operators.

For $f \in H^{\infty}, A_{f}$ is defined on K_{u}^{2} for some inner function u. It is well-known [6] that

$$
\sigma\left(A_{f}\right)=\left\{\lambda \in \mathbb{C}: \inf _{z \in \mathbb{D}}(|u(z)|+|f(z)-\lambda|)=0\right\}=f\left(\sigma\left(A_{z}\right)\right)
$$

For $f \in H^{\infty}+C(\mathbb{T})$, in [3], we know that

$$
\sigma_{e}\left(A_{f}\right)=\left\{\lambda \in \mathbb{C}: \lim _{z \in \mathbb{D}} \inf _{|z| \rightarrow 1}(|u(z)|+|\widetilde{f}(z)-\lambda|)=0\right\}=f\left(\sigma_{e}\left(A_{z}\right)\right)
$$

where \tilde{f} denotes the Possion integral of f. We can refer to $[6]$ for more results that A_{f} is invertible in $\mathfrak{L}\left(K_{u}^{2}\right)$ for $f \in H^{\infty}$. In [7], the authors show that asymmetric truncated Toeplitz operators are equivalent after extension to Toeplitz operators with triangular symbols of a certain form and give some description about the kernel of asymmetric truncated Toeplitz operators with analytic. In [8], using truncated Toeplitz operators equivalence after extension to Toeplitz operators with 2×2 matrix symbols, the authors establish Fredholmness and invertibility criteria for truncated Toeplitz operators with u-separated symbols.

From the view of symbols of truncated Toeplitz operators, it is more difficult to find criteria for invertibility of truncated Toeplitz operators with nonanalytic symbols. In our paper, we characterize the Fredholm truncated Toeplitz operators by the properties of the symbol functions. In addition, from their own properties of model spaces and truncated Toeplitz operators, some description of kernel spaces of truncated Toeplitz operators are given.

The paper is organized as follows: In Section 2, we recall some necessary definitions and properties about model spaces and truncated Toeplitz operators. In Section 3, we give some results about the kernel spaces of truncated Toeplitz operators. In Section 4, under the condition that truncated Toeplitz operators have unique symbols, we study the sufficient condition or necessary condition about invertible truncated Toeplitz operators
A_{f} for $f \in L^{\infty}$. In addition, we also get the necessary and sufficient conditions about the quasinilpotent truncated Toeplitz operators and positive truncated Toeplitz operators. In Section 5, for $u(0)=0$ and $f \in\left(K_{u}^{2}+\overline{K_{u}^{2}}\right) \cap L^{\infty}$, the necessary condition is obtained for A_{f} to be Fredholm. In Section 6 , for $f \in L^{\infty}$, we provide the necessary and sufficient condition that the defect operator $I-A_{f}^{*} A_{f}$ of truncated Toeplitz operator A_{f} meeting some conditions is compact on the model space K_{u}^{2}.

2. Preliminaries

In this section, we introduce some basic properties of truncated Toeplitz operators. The reproducing kernel of K_{u}^{2} at $\lambda \in \mathbb{D}$ is the function $K_{\lambda}^{u}(z)=\frac{1-\overline{u(\lambda)} u(z)}{1-\bar{\lambda} z}$. As is well known that K_{u}^{2} carries a natural conjugation C, antiunitary, involution operator, defined by $C f=\overline{z f} u$, for $f \in K_{u}^{2}$. We have that

$$
\widetilde{K_{\lambda}^{u}}(z)=\left(C K_{\lambda}^{u}\right)(z)=\frac{u(z)-u(\lambda)}{z-\lambda}
$$

which is the conjugation reproducing kernel of K_{u}^{2} at $\lambda \in \mathbb{D}$. That is, $\widetilde{f}(\lambda)=(C f)(\lambda)=\left\langle\widetilde{K_{\lambda}^{u}}, f\right\rangle$ for $f \in K_{u}^{2}$. A bounded linear operator A on K_{u}^{2} is called C-symmetric if $C A C=A^{*}$. Garcia and Putinar introduce some properties of C-symmetry in [12] and they show that all truncated Toeplitz operators are C-symmetric. About more complex symmetric operators can be found in [13].

Bounded truncated Toeplitz operators may be have some unbounded symbols. Sarason gave an example in [20]. Moreover, the symbols of truncated Toeplitz operators are not unique. For $f \in L^{2}$, Sarason in [20] proved that $A_{f}=0$ if and only if $f \in u H^{2}+\overline{u H^{2}}$. If $u(0)=0$, then A_{f} has a unique symbol in $K_{u}^{2}+\overline{K_{u}^{2}}$. In our paper, we mainly consider truncated Toeplitz operators defined on infinite dimensional model spaces which have unique symbols.

The set of all bounded truncated Toeplitz operators is denoted by $\mathfrak{T}_{\mathfrak{u}}$. For $a \in \mathbb{D}$, let φ_{a} be the Möbius transform $\varphi_{a}(z)=\frac{z-a}{1-\bar{a} z}$. The Crofoot transform is the unitary operator $J: K_{u}^{2} \rightarrow K_{\varphi_{a} \circ u}^{2}$ defined by

$$
J f=\frac{\sqrt{1-|a|^{2}}}{1-\bar{a} u} f .
$$

It is proved in [20] that $J \mathfrak{T}_{\mathfrak{u}} J^{*}=\mathfrak{T}_{\varphi_{a} \circ \mathfrak{u}}$. If $u(0)=\alpha \neq 0$, then $\left(\varphi_{\alpha} \circ u\right)(0)=0$ and $\mathfrak{T}_{\mathfrak{u}}$ is unitarily equivalent to $\mathfrak{T}_{\varphi_{\alpha} \mathrm{Ou}}$. Hence we may assume that $u(0)=0$ when we consider the properties of truncated Toeplitz operators.

3. The kernel spaces of truncated Toeplitz operators

The kernel spaces of truncated Toeplitz operators are crucial in studying Fredholmness, but the kernel spaces of truncated Toeplitz operators are complicated. In this section, we introduce some results about kernel spaces of truncated Toeplitz operators.

Proposition 3.1 Let u be a nonconstant inner function and K_{u}^{2} be the model space. If v_{1} and v_{2} are inner functions and $f=\overline{v_{1}} v_{2}$, then

$$
\text { ker } A_{f}=\overline{v_{2}}\left(u v_{1} H^{2} \oplus K_{v_{1}}^{2}\right) \cap K_{u}^{2} .
$$

Proof Denoted by $E=\overline{v_{2}}\left(u v_{1} H^{2} \oplus K_{v_{1}}^{2}\right) \cap K_{u}^{2}$. For any $g \in \operatorname{ker} A_{f}$, we have that $0=A_{f} g=P_{u}\left(\overline{v_{1}} v_{2} g\right)$. This implies that $\overline{v_{1}} v_{2} g \in u H^{2}+\overline{z H^{2}}$. There exist $h, \varphi \in H^{2}$ such that $\overline{v_{1}} v_{2} g=u h+\overline{z \varphi}$. That is,

$$
v_{2} g=v_{1} u h+v_{1} \overline{z \varphi} .
$$

By $K_{v_{1}}^{2}=v_{1} \overline{z H^{2}} \cap H^{2}$, we obtain that $v_{1} \overline{z \varphi} \in K_{v_{1}}^{2}$ and $\varphi \in K_{v_{1}}^{2}$. Since $v_{1} u H^{2} \subseteq v_{1} H^{2}$, we have that

$$
v_{1} u H^{2} \perp K_{v_{1}}^{2} .
$$

Thus $g \in E$ and ker $A_{f} \subseteq E$.
For any $\psi \in E$, there exist $\varphi \in H^{2}$ and $\eta \in K_{v_{1}}^{2}$ such that $\psi=\overline{v_{2}}\left(v_{1} u \varphi+v_{1} \overline{z \eta}\right)$. It follows that

$$
A_{f} \psi=P_{u}\left(\overline{v_{1}} v_{2} \overline{v_{2}}\left(v_{1} u \varphi+v_{1} \overline{z \eta}\right)\right)=P_{u}(u \varphi+\overline{z \eta})=0
$$

Thus $\psi \in \operatorname{ker} A_{f}$ and $E \subseteq \operatorname{ker} A_{f}$. The proof is completed.

For $h \in H^{\infty}$, we already know the kernel space of A_{h}, see in [22]. In the following, for $f \in L^{\infty}$ but $f \notin H^{\infty}$, we give some descriptions about the kernel space of A_{f}. We need the following preliminaries.

For $x, y \in H^{\infty}$, we use $G C D(x, y)$ to denote the greatest common divisor of I_{x} and I_{y}, where I_{x} denotes the inner part of x, which is defined up to a constant. The following lemmas come from [14].

Lemma 3.2 If $f, g \in L^{\infty}$, then either $\operatorname{ker} H_{f}^{*} H_{g}=\operatorname{ker} H_{g}$ or $\operatorname{ker} H_{g}^{*} H_{f}=\operatorname{ker} H_{f}$.

Lemma 3.3 If f is in L^{∞}, then $\operatorname{ker} H_{f} \neq\{0\}$ if and only if f is of the form $\bar{\theta} b$, where θ is some inner function and $b \in H^{\infty}$ such that $G C D(\theta, b)$ is a constant.

For $f \in L^{\infty}$, by $P_{u}=P-u P \bar{u}=P u(I-P) \bar{u}$, we have that

$$
\begin{equation*}
A_{f}=P_{u} f P_{u}=P u(I-P) \bar{u} f P u(I-P) \bar{u}=H_{\bar{u}}^{*} H_{\bar{u} f} H_{\bar{u}}^{*} H_{\bar{u}} \tag{3.1}
\end{equation*}
$$

In terms of (3.1), the kernel spaces of truncated Toeplitz operators are closely related to the kernel spaces of Hankel operators. By $\left.P_{u}\right|_{H^{2}}=H_{\bar{u}}^{*} H_{\bar{u}}$, we get that

$$
\operatorname{ker} A_{f}=\operatorname{ker} H_{\bar{u}}^{*} H_{\bar{u} f} \cap K_{u}^{2}
$$

By Lemma 3.2, we obtain that either

$$
\operatorname{ker} H_{\bar{u}}^{*} H_{\bar{u} f}=\operatorname{ker} H_{\bar{u} f},
$$

or

$$
\operatorname{ker} H_{\bar{u} f}^{*} H_{\bar{u}}=\operatorname{ker} H_{\bar{u}}=u H^{2}
$$

Suppose that ker $H_{\bar{u} f}^{*} H_{\bar{u}} \supsetneq$ ker $H_{\bar{u}}$. We have that

$$
\operatorname{ker} A_{f}=\operatorname{ker} H_{\bar{u}}^{*} H_{\bar{u} f} \cap K_{u}^{2}=\operatorname{ker} H_{\bar{u} f} \cap K_{u}^{2}
$$

Then, by Lemma 3.3, we will get some descriptions about the kernel space of truncated Toeplitz operators. In the following, we give the necessary and sufficient condition such that ker $H_{\bar{u} f}^{*} H_{\bar{u}} \supsetneq$ ker $H_{\bar{u}}$.

YANG et al./Turk J Math

Lemma 3.4 Let u be a nonconstant inner function and K_{u}^{2} be the model space. If f is in L^{∞}, then ker $T_{\bar{f}} \cap K_{u}^{2}=\{0\}$ if and only if $\operatorname{ker} H_{\bar{u} f}^{*} H_{\bar{u}}=\operatorname{ker} H_{\bar{u}}=u H^{2}$.

Proof Suppose that $\operatorname{ker} H_{\bar{u} f}^{*} H_{\bar{u}}=\operatorname{ker} H_{\bar{u}}=u H^{2}$. We have that

$$
\begin{equation*}
H_{\bar{u} f}^{*} H_{\bar{u}} g \neq 0 \tag{3.2}
\end{equation*}
$$

for any $g \in K_{u}^{2}$. Since model spaces have an antiunitary operator C, there exists a function $\psi \in K_{u}^{2}$ such that

$$
g=C \psi=u \overline{z \psi}
$$

Then

$$
\begin{equation*}
H_{\bar{u} f}^{*} H_{\bar{u}} g=H_{\bar{u} f}^{*}(I-P)(\bar{u} u \overline{z \psi})=H_{\bar{u} f}^{*} \overline{z \psi}=P(u \overline{f z \psi})=T_{\bar{f}} g \tag{3.3}
\end{equation*}
$$

By (3.2), we get that $T_{\bar{f}} g \neq 0$ for any $g \in K_{u}^{2}$. Thus

$$
\begin{equation*}
\operatorname{ker} T_{\bar{f}} \cap K_{u}^{2}=\{0\} . \tag{3.4}
\end{equation*}
$$

Next we prove the necessity. It is obvious that $u H^{2} \subseteq$ ker $H_{\bar{u}}^{*} H_{\bar{u}}$. For any $h \notin u H^{2}$ but $h \in H^{2}$, there exist $\eta \neq 0 \in K_{u}^{2}$ and $\varphi \in H^{2}$ such that $h=\eta+u \varphi$. Then

$$
H_{\bar{u} f}^{*} H_{\bar{u}} h=H_{\bar{u} f}^{*} H_{\bar{u}}(\eta+u \varphi)=H_{\bar{u} f}^{*} H_{\bar{u}} \eta
$$

By (3.3) and (3.4), we conclude that $H_{\bar{u} f}^{*} H_{\bar{u}} \eta \neq 0$. It follows that $h \notin \operatorname{ker} H_{\bar{u} f}^{*} H_{\bar{u}}$. Thus ker $H_{\bar{u} f}^{*} H_{\bar{u}} \subseteq u H^{2}$. The proof is completed.

Remark 3.5 From Lemma 3.4, we have that $\operatorname{ker} T_{\bar{f}} \cap K_{u}^{2} \neq\{0\}$ if and only if ker $H_{\bar{u} f}^{*} H_{\bar{u}} \supset$ ker $H_{\bar{u}}=u H^{2}$.

Lemma 3.6 If u and θ are nonconstant inner functions with $G C D(u, \theta)=v \neq c$ and $u=v u_{1}$, then

$$
K_{u}^{2} \cap \theta H^{2} \subseteq v K_{u_{1}}^{2}
$$

where v and u_{1} are inner functions and c is a constant.
Proof For $f \in K_{u}^{2} \cap \theta H^{2}$, there exists $h \in H^{2}$ such that $f=\theta h$. By $u=v u_{1}$, we have that $K_{u}^{2}=K_{v}^{2} \oplus v K_{u_{1}}^{2}$. There exist $g \in K_{v}^{2}$ and $g_{1} \in K_{u_{1}}^{2}$ such that

$$
\begin{equation*}
f=\theta h=g+v g_{1} \tag{3.5}
\end{equation*}
$$

By $G C D(u, \theta)=v$, we get that $\theta=v \theta_{1}$, where θ_{1} is an inner function. Then, by (3.5), v $\theta_{1} h-v g_{1}=g \in v H^{2}$. By $v H^{2} \perp K_{v}^{2}$, we obtain that $g=0$ and $f=v g_{1} \in v K_{u_{1}}^{2}$. The proof is completed.

Remark 3.7 If $G C D(u, \theta)=\theta$ and $u=\theta u_{1}$, then $K_{u}^{2} \cap \theta H^{2}=\theta K_{u_{1}}^{2}$. Furthermore, $\theta K_{u_{1}}^{2}$ is an invariant subspace of A_{z} defined on K_{u}^{2}.

YANG et al./Turk J Math

Proposition 3.8 Let u be a nonconstant inner function with $u(0)=0$ and K_{u}^{2} be the model space. Suppose that $f=f_{1}+\overline{f_{2}} \in\left(K_{u}^{2}+\overline{K_{u}^{2}}\right) \bigcap L^{\infty}$, where f_{1} and f_{2} belong to K_{u}^{2} with $f_{1}(0)=0$ and $f_{2} \neq 0$. If

$$
\operatorname{ker} T_{\bar{f}} \cap K_{u}^{2} \neq\{0\}
$$

then there exist an inner function x and $\eta \in H^{\infty}$ with $G C D(x, \eta)=c$ and $G C D(x, u)=v \neq c$ such that $f=\bar{x} u \eta$ and $f_{2} \in K_{x}^{2}$. Moreover,

$$
\{0\} \neq \operatorname{ker} A_{f}=\operatorname{ker} H_{\bar{u} f} \cap K_{u}^{2}=x H^{2} \cap K_{u}^{2} \subseteq v K_{u_{1}}^{2}
$$

and

$$
\operatorname{ker} H_{\overline{u f}} \cap K_{u}^{2}=\{0\}
$$

where v and u_{1} are inner functions with $u=v u_{1}$ and c is some constant.
Proof By ker $T_{\bar{f}} \cap K_{u}^{2} \neq\{0\}$, there exists $g \neq 0 \in K_{u}^{2}$ such that $T_{\bar{f}} g=0$. That is, $\bar{f} g \in \overline{z H^{2}}$. There exists $y \neq 0 \in H^{2}$ such that $\bar{f} g=\overline{z y}$. Since model spaces have an antiunitary operator C, there exists $\psi \neq 0 \in K_{u}^{2}$ such that $g=C \psi=u \overline{z \psi}$. Then

$$
\bar{f} g=\bar{f} u \overline{z \psi}=\overline{z y} .
$$

That is, $\bar{u} f \psi=y \in H^{2}$. Moreover, $H_{\bar{u} f} \psi=(I-P)(\bar{u} f \psi)=0$. This implies that

$$
\begin{equation*}
\operatorname{ker} H_{\bar{u} f} \cap K_{u}^{2} \neq\{0\} \tag{3.6}
\end{equation*}
$$

By Remark 3.5, we have that ker $H_{\bar{u} f}^{*} H_{\bar{u}} \supset$ ker $H_{\bar{u}}$. Then, by Lemma 3.2,

$$
\begin{equation*}
\operatorname{ker} H_{\bar{u}}^{*} H_{\bar{u} f}=\operatorname{ker} H_{\bar{u} f} \tag{3.7}
\end{equation*}
$$

In terms of (3.1), (3.6) and (3.7), we get that

$$
\operatorname{ker} A_{f}=\operatorname{ker} H_{\bar{u}}^{*} H_{\bar{u} f} \cap K_{u}^{2}=\operatorname{ker} H_{\bar{u} f} \cap K_{u}^{2} \neq\{0\}
$$

By (3.6), we conclude that

$$
\operatorname{ker} H_{\bar{u} f} \neq\{0\}
$$

By Lemma 3.3, there exists an inner function x and $\eta \in H^{\infty}$ with $G C D(x, \eta)=c$ such that ker $H_{\bar{u} f}=x H^{2}$ and $\bar{u} f=\bar{x} \eta$, where c is a constant. Thus,

$$
\begin{equation*}
f=\bar{x} u \eta \tag{3.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{ker} A_{f}=\operatorname{ker} H_{\bar{u} f} \cap K_{u}^{2}=x H^{2} \cap K_{u}^{2} \neq\{0\} \tag{3.9}
\end{equation*}
$$

By Lemma 3.6, we obtain that $\operatorname{ker} A_{f}=x H^{2} \cap K_{u}^{2} \subseteq v K_{u_{1}}^{2}$. By (3.8), we have that

$$
\begin{equation*}
x f=u \eta \tag{3.10}
\end{equation*}
$$

In terms of $f=f_{1}+\overline{f_{2}}$, we get that $x f_{1}+x \overline{f_{2}}=u \eta$. That is, $x \overline{f_{2}}=u \eta-x f_{1} \in H^{2}$. Since $u(0)=0$ and $f_{1}(0)=0$, we obtain that

$$
x \overline{z f_{2}}=\bar{z} u \eta-\bar{z} x f_{1} \in H^{2}
$$

YANG et al./Turk J Math

This implies that $f_{2} \in K_{x}^{2}$. By $f_{2} \neq 0 \in K_{u}^{2}$, we have that $K_{u}^{2} \cap K_{x}^{2} \neq\{0\}$ and $G C D(x, u)=v$, where v is a nonconstant inner function.

Since ker $A_{\bar{f}}=C\left(\operatorname{ker} A_{f}\right)$, we get that ker $A_{\bar{f}} \neq\{0\}$. Then, by (3.1) and (3.9),

$$
\operatorname{ker} A_{\bar{f}}=\operatorname{ker} H_{\bar{u}}^{*} H_{\overline{u f}} \cap K_{u}^{2}=C\left(x H^{2} \cap K_{u}^{2}\right)
$$

For any $x h \neq 0 \in x H^{2} \cap K_{u}^{2}$, we conclude that $C(x h)=u \overline{z x h}$. Then, by (3.10),

$$
\begin{equation*}
H_{\overline{u f}}(u \overline{z x h})=(I-P)(\overline{f z x h})=(I-P)(\overline{u z h \eta})=\overline{u z h \eta} \neq 0 \tag{3.11}
\end{equation*}
$$

In terms of ker $H_{\overline{u f}} \subseteq \operatorname{ker} H_{\bar{u}}^{*} H_{\overline{u f}}$, we get that

$$
\text { ker } H_{\overline{u f}} \cap K_{u}^{2} \subseteq \operatorname{ker} H_{\bar{u}}^{*} H_{\overline{u f}} \cap K_{u}^{2}=C\left(x H^{2} \cap K_{u}^{2}\right)
$$

Thus, by (3.11), ker $H_{\overline{u f}} \cap K_{u}^{2}=\{0\}$. The proof is completed.

Remark 3.9 1. In fact, for $f \in\left(K_{u}^{2}+\overline{K_{u}^{2}}\right) \bigcap L^{\infty}$, $\operatorname{ker} T_{\bar{f}}$, ker $H_{\bar{u} f}$ and ker A_{f} have the following relationship:

$$
\operatorname{ker} T_{\bar{f}} \cap K_{u}^{2} \neq\{0\} \Rightarrow \operatorname{ker} H_{\bar{u} f} \cap K_{u}^{2} \neq\{0\} \Rightarrow \operatorname{ker} A_{f} \neq\{0\}
$$

and

$$
\operatorname{ker} A_{f}=\{0\} \Rightarrow \operatorname{ker} H_{\bar{u} f} \cap K_{u}^{2}=\{0\} \Rightarrow \operatorname{ker} T_{\bar{f}} \cap K_{u}^{2}=\{0\}
$$

2. In [4], it is well known that $f=g \bar{h}$ where $g, h \in H^{\infty}$ if and only if $\int_{\mathbb{T}} \log |f| d m>-\infty$. Under conditions of Proposition 3.8, we have that $f=\bar{x} u \eta$. That is, $\log |f| \in L^{1}$.

By (3.1), truncated Toeplitz operators are associated with Hankel operators. The truncated Toeplitz operators are compressions of Toeplitz operators. From this, the kernel spaces of them must have some relationships. We use $|E|$ to denote the Lebesgue measure of measurable set E.

Proposition 3.10 Let E be a measurable subset of \mathbb{T} with $0<|E|<2 \pi$. For $f \in L^{\infty}$ with $f \neq 0$ and $\left.f\right|_{E}=0$, if $v \in L^{\infty}$ is invertible in L^{∞}, then the following hold.
(1) $\operatorname{ker} T_{v f}=\operatorname{ker} T_{\overline{v f}}=\{0\}$. In particular, $\operatorname{ker} T_{f}=\operatorname{ker} T_{\bar{f}}=\{0\}$;
(2) $\operatorname{ker} H_{v f}=\operatorname{ker} H_{\overline{v f}}=\{0\}$. In particular, $\operatorname{ker} H_{f}=\operatorname{ker} H_{\bar{f}}=\{0\}$;
(3) $\operatorname{ker} H_{v f}^{*}=\operatorname{ker} H_{v f}^{*}=\{0\}$. In particular, ker $H_{f}^{*}=\operatorname{ker} H_{\frac{*}{f}}^{*}=\{0\}$;
(4) Let u be a nonconstant inner function and K_{u}^{2} be the model space. If ker $A_{f} \neq\{0\}$, then

$$
\operatorname{ker} A_{f}=\left\{g \in K_{u}^{2}: H_{\bar{u} f} g \in \overline{u z H^{2}}\right\}
$$

Proof (1) For any $\varphi \in \operatorname{ker} T_{v f} \subseteq H^{2}$, we have that $0=T_{v f} \varphi=P(v f \varphi)$. Then $v f \varphi \in \overline{z H^{2}}$, and there exists $h \in H^{2}$ such that $v f \varphi=\overline{z h}$. By $\left.f\right|_{E}=0$, we get that

$$
v\left(e^{i \theta}\right) f\left(e^{i \theta}\right) \varphi\left(e^{i \theta}\right)=\overline{e^{i \theta} h\left(e^{i \theta}\right)}=0
$$

for any $e^{i \theta} \in E$. Thus $h=0$ on E with $|E|>0$. By F. and M. Riesz theorem, we have that $h=0$ and $v f \varphi=0$. Since v is invertible in L^{∞}, we obtain that $f \varphi=0$. By $f \neq 0$ and $\varphi \in H^{2}$, we conclude that $\varphi=0$ and ker $T_{v f}=\{0\}$. We can get that ker $T_{\overline{v f}}=\{0\}$ by the same way.

The proofs of (2) and (3) are similar to (1).
(4) For any $g \neq 0 \in \operatorname{ker} A_{f}$, we have that $A_{f} g=P_{u}(f g)=0$. Suppose that $f g \in u H^{2}$. There exists $h \in H^{2}$ such that $f g=u h$. Then $\bar{u} f g=h \in H^{2}$. This implies that $H_{\bar{u} f} g=(I-P)(\bar{u} f g)=0$. Since \bar{u} is invertible in L^{∞}, we get that ker $H_{\bar{u} f}=\{0\}$. This is a contradiction. Thus $f g \notin u H^{2}$. Since

$$
0=A_{f} g=P_{u}(f g)=P(f g)-u P(\bar{u} f g)
$$

for $g \in \operatorname{ker} A_{f}$, there exists $x \neq 0 \in H^{2}$ such that $f g-u P(\bar{u} f g)=\overline{z x}$. This implies that $\bar{u} f g-P(\bar{u} f g)=\overline{u z x}$. That is, $H_{\bar{u} f} g \in \overline{u z H^{2}}$. Thus ker $A_{f}=\left\{g \in K_{u}^{2}: H_{\bar{u} f} g \in \overline{u z H^{2}}\right\}$. The proof is completed.

The Coburn theorem states that $\operatorname{ker} T_{f}=\{0\}$ or $\operatorname{ker} T_{f}^{*}=\{0\}$. In the following, we give the sufficient condition such that ker $A_{f}=\{0\}$.

Proposition 3.11 Let u be a nonconstant inner function and K_{u}^{2} be the model space. If f belongs to L^{∞} and $f \geq 0$ but $f \neq 0$, then $\operatorname{ker} A_{f}=\{0\}$.

Proof For $g \in \operatorname{ker} A_{f}$, we have that $A_{f} g=0$. Then

$$
\begin{equation*}
0=\left\langle A_{f} g, g\right\rangle=\langle f g, g\rangle=\int_{0}^{2 \pi} f|g|^{2} \mathrm{~d} m \tag{3.12}
\end{equation*}
$$

By $f \geq 0$, (3.12) can be written as $0=\int_{0}^{2 \pi} f|g|^{2} \mathrm{~d} m=\int_{0}^{2 \pi}\left|f^{\frac{1}{2}} g\right|^{2} \mathrm{~d} m=\left\|f^{\frac{1}{2}} g\right\|^{2}$. This implies that $f^{\frac{1}{2}} g=0$. By $f \neq 0$ and $g \in H^{2}$, we get that $g=0$ and ker $A_{f}=\{0\}$.

4. Invertible truncated Toeplitz operators

The invertible operators are special Fredholm operators. In this section, we introduce the invertibility of truncated Toeplitz operators. Basic definitions and properties of invertible operators can refer to [5, 9].

For the Banach algebra \mathfrak{B} and $a \in \mathfrak{B}$, we use $\sigma(a)$ and $r(a)$ to denote the spectrum and spectral radius of a, respectively. In particular, for $f \in L^{\infty}$, the spectrum $\sigma\left(M_{f}\right)$ of the multiplication operator M_{f} is closely related to the the essential range $\mathfrak{R}(f)$ of f. The following lemma comes from Corollary 4.24 in [9].

Lemma 4.1 If $f \in L^{\infty}$, then $\sigma\left(M_{f}\right)=\mathfrak{R}(f)$.
For operator algebra $\mathfrak{L}(H)$, the invertibility of $T \in \mathfrak{L}(H)$ has the following property (see [9] Proposition 4.8).

Lemma 4.2 If T is in $\mathfrak{L}(H)$, then T is invertible in $\mathfrak{L}(H)$ if and only if T is bounded below in H and has a dense range.

In the following, we give the necessary condition for invertibility of A_{f}.

Proposition 4.3 Let u be a nonconstant inner function with $u(0)=0$ and K_{u}^{2} be the model space. For $f \in\left(K_{u}^{2}+\overline{K_{u}^{2}}\right) \cap L^{\infty}$, if A_{f} is invertible in $\mathfrak{L}\left(K_{u}^{2}\right)$, then f is invertible in L^{∞}.

Proof By Lemma 4.1, we only need to show that M_{f} is invertible in $\mathfrak{L}\left(L^{2}\right)$. Since A_{f} is invertible in $\mathfrak{L}\left(K_{u}^{2}\right)$, there exists $\varepsilon>0$ such that $\left\|A_{f} g\right\| \geq \varepsilon\|g\|$, for $g \in K_{u}^{2}$. Then, for each $n \in \mathbb{Z}$ and $g \in K_{u}^{2}$,

$$
\left\|M_{f} z^{n} g\right\|=\left\|f z^{n} g\right\|=\|f g\| \geq\left\|P_{u}(f g)\right\|=\left\|A_{f} g\right\| \geq \varepsilon\|g\|=\varepsilon\left\|z^{n} g\right\|
$$

Since the set $\left\{z^{n} h: n \in \mathbb{Z}, h \in K_{u}^{2}\right\}$ is dense in L^{2}, it follows that M_{f} is bounded below in L^{2}. Similarly, since $A_{\bar{f}}=A_{f}^{*}$ is invertible in $\mathfrak{L}\left(K_{u}^{2}\right)$, we have that $M_{\bar{f}}$ is bounded below in L^{2}. Then $M_{\bar{f}}$ is one-to-one. Moreover,

$$
\operatorname{clos}\left[\operatorname{ran} M_{f}\right]=\left(\operatorname{ker} M_{\bar{f}}\right)^{\perp}=L^{2}
$$

Thus, by Lemma 4.2, M_{f} is invertible in $\mathfrak{L}\left(L^{2}\right)$. The proof is completed.

Remark 4.4 From Proposition 4.3, if the symbol f is not invertible in L^{∞}, then A_{f} must not be invertible in $\mathfrak{L}\left(K_{u}^{2}\right)$. Moreover, if $\left.f\right|_{E}=0$, then A_{f} is not invertible in $\mathfrak{L}\left(K_{u}^{2}\right)$, where E is a measurable subset of \mathbb{T} with $0<|E|<2 \pi$.

By Proposition 4.3, when the truncated Toeplitz operator is invertible in $\mathfrak{L}\left(K_{u}^{2}\right)$, we have that the symbol is invertible in L^{∞}. In the following, we explain that the condition may be not necessary and sufficient. If f belongs to $C(\mathbb{T})$ and f is invertible in $C(\mathbb{T})$, we have that A_{f} is a Fredholm operator. The following lemma comes from [11].

Lemma 4.5 Let u be an inner function. For $f, g \in C(\mathbb{T})$, if A_{f} and A_{g} are truncated Toeplitz operators on K_{u}^{2}, then $A_{f} A_{g}-A_{f g}$ is compact.

Proposition 4.6 Let u be a nonconstant inner function and K_{u}^{2} be the model space. For $f \in C(\mathbb{T})$, if f is invertible in $C(\mathbb{T})$, then A_{f} is a Fredholm operator.

Proof Since f is invertible in $C(\mathbb{T})$, there exists $g \in C(\mathbb{T})$ such that $f g=1$. Then $A_{f g}=I$. By Lemma 4.5, we have that $I-A_{f} A_{g}=A_{f g}-A_{f} A_{g}$ and $I-A_{g} A_{f}=A_{f g}-A_{g} A_{f}$ are compact. Thus A_{f} is a Fredholm operator.

Corollary 4.7 Let u be a nonconstant inner function with $u(0)=0$ and K_{u}^{2} be the model space. If f is an outer function in $K_{u}^{2} \bigcap H^{\infty}$, then the following are equivalent.
(1) A_{f} is invertible in $\mathfrak{L}\left(K_{u}^{2}\right)$;
(2) f is invertible in L^{∞};
(3) f is invertible in H^{∞};
(4) T_{f} is invertible in $\mathfrak{L}\left(H^{2}\right)$.

YANG et al./Turk J Math

Proof For $f \in H^{\infty}$, (3) is equivalent to (4). (See [9] Proposition 7.21). If f is an outer function, (3) is equivalent to (2). (See [9] Proposition 6.20). By Proposition 4.3, we only need to show that (2) \Rightarrow (1). Suppose that f is invertible in L^{∞}. There exists $\varphi \in L^{\infty}$ such that $\varphi f=1$. Since f is an outer function, we have that φ is analytic. Thus $\varphi \in H^{\infty}$. Then $A_{f} A_{\varphi}=A_{\varphi} A_{f}=A_{f \varphi}=I$. This implies that A_{f} is invertible in $\mathfrak{L}\left(K_{u}^{2}\right)$.

Remark 4.8 The function f is invertible in H^{∞} if and only if T_{f} is invertible in $\mathfrak{L}\left(H^{2}\right)$. Hence, for $f \in H^{\infty}$, that T_{f} is invertible in $\mathfrak{L}\left(H^{2}\right)$ implies that A_{f} is invertible in $\mathfrak{L}\left(K_{u}^{2}\right)$. Moreover, $\sigma\left(A_{f}\right) \subseteq \sigma\left(T_{f}\right)$. Conversely, for $f \in H^{\infty}$, if A_{f} is invertible in $\mathfrak{L}\left(K_{u}^{2}\right)$, we may not get that T_{f} is invertible in $\mathfrak{L}\left(H^{2}\right)$. For example:

Example 4.9 If $f \neq c$ is in H^{∞} and $u=\frac{z-a}{1-\bar{a} z}$ for $a \in \mathbb{D}$, where c is a constant. Since

$$
\sigma\left(A_{f}\right)=f\left(\sigma\left(A_{z}\right)\right)=f(a) \text { and } \sigma\left(T_{f}\right)=\operatorname{clos}[f(\mathbb{D})]
$$

we have that

$$
f(a)=\sigma\left(A_{f}\right) \subset \sigma\left(T_{f}\right)=\operatorname{clos}[f(\mathbb{D})]
$$

This implies that T_{f} may be not invertible in $\mathfrak{L}\left(H^{2}\right)$ when A_{f} is invertible in $\mathfrak{L}\left(K_{u}^{2}\right)$.

Corollary 4.10 Let u be a nonconstant inner function with $u(0)=0$ and K_{u}^{2} be the model space. If f is in $\left(K_{u}^{2}+\overline{K_{u}^{2}}\right) \bigcap L^{\infty}$, then $\mathfrak{R}(f)=\sigma\left(M_{f}\right) \subset \sigma\left(A_{f}\right)$.

Proof Since $A_{f}-\lambda=A_{f-\lambda}$ for $\lambda \in \mathbb{C}$, by Proposition 4.3, we get that $\sigma\left(M_{f}\right) \subset \sigma\left(A_{f}\right)$. By Lemma 4.1, the proof is completed.

Corollary 4.11 Let u be a nonconstant inner function with $u(0)=0$ and K_{u}^{2} be the model space. For $f \in\left(K_{u}^{2}+\overline{K_{u}^{2}}\right) \bigcap L^{\infty}$, if A_{f} is quasinilpotent, then $A_{f}=0$.

Proof If A_{f} is quasinilpotent, then $\sigma\left(A_{f}\right)=\{0\}$. By Corollary 4.10, it is easy to get that $A_{f}=0$.

Corollary 4.12 Let u be a nonconstant inner function with $u(0)=0$ and K_{u}^{2} be the model space. If $f \in\left(K_{u}^{2}+\overline{K_{u}^{2}}\right) \bigcap L^{\infty}$, then A_{f} is a self-adjoint operator if and only if f is a real-valued function.

Proof By Corollary 4.10, the proof is obvious.

Corollary 4.13 Let u be a nonconstant inner function with $u(0)=0$ and K_{u}^{2} be the model space. If f is in $\left(K_{u}^{2}+\overline{K_{u}^{2}}\right) \bigcap L^{\infty}$, then $\left\|A_{f}\right\|=\|f\|_{\infty}$.

Proof By Corollary 4.10, we obtain that $r\left(A_{f}\right)=\sup \left\{|\lambda|: \lambda \in \sigma\left(A_{f}\right)\right\} \geq \sup \{|\lambda|: \lambda \in \mathfrak{R}(f)\}=\|f\|_{\infty}$. Since $\left\|A_{f}\right\| \geq r\left(A_{f}\right)$, we have that $\|f\|_{\infty} \geq\left\|A_{f}\right\| \geq r\left(A_{f}\right) \geq\|f\|_{\infty}$. Thus $\left\|A_{f}\right\|=\|f\|_{\infty}$.

Corollary 4.14 Let u be a nonconstant inner function with $u(0)=0$ and K_{u}^{2} be the model space. If $f \in\left(K_{u}^{2}+\overline{K_{u}^{2}}\right) \bigcap L^{\infty}$, then A_{f} is positive if and only if f is nonnegative.

Proof If A_{f} is positive, then the spectrum of A_{f} is nonnegative. By Corollary 4.10, we have that the essential range of f is nonnegative. Then f is nonnegative.

If f is nonnegative, then

$$
\left\langle A_{f} g, g\right\rangle=\langle f g, g\rangle=\left\langle f^{1 / 2} g, f^{1 / 2} g\right\rangle=\left\|f^{1 / 2} g\right\|^{2} \geq 0
$$

for $g \in K_{u}^{2}$. Thus A_{f} is positive.
We discuss the necessary condition that A_{f} is invertible in $\mathfrak{L}\left(K_{u}^{2}\right)$. In the following, we give a sufficient condition that A_{f} is invertible in $\mathfrak{L}\left(K_{u}^{2}\right)$.

Proposition 4.15 If f is invertible in L^{∞} and its essential range is contained in the open right half-plane, then A_{f} is invertible in $\mathfrak{L}\left(K_{u}^{2}\right)$.

Proof Since f is invertible in L^{∞}, we have that 0 is not in $\mathfrak{R}(f)$. If essential range of f is contained in the open right half-plane, then there exists $\delta>0$ such that

$$
\delta \mathfrak{R}(f)=\{\delta z: z \in \mathfrak{R}(f)\} \subseteq\{w \in \mathbb{C}:|w-1|<1\} .
$$

We conclude that $|\delta z-1|<1$. By simple calculation, we get that $\alpha \mathfrak{R}(f)-\beta=\mathfrak{R}(\alpha f-\beta)$. Then

$$
\|\delta f-1\|_{\infty}=\sup \{|\lambda|: \lambda \in \mathfrak{R}(\delta f-1)\}=\sup \{|\delta z-1|: z \in \mathfrak{R}(f)\}<1
$$

Thus $\left\|I-A_{\delta f}\right\|<1$, and $A_{\delta f}=\delta A_{f}$ is invertible in $\mathfrak{L}\left(K_{u}^{2}\right)$. The proof is completed.

5. Fredholm truncated Toeplitz operators

In this section, for $f \in L^{\infty}$, we study the necessary condition that A_{f} is a Fredholm operator. If M is a closed linear subspace of the Hilbert space H, for $h \in H$, the distance between h and M is defined as

$$
d(h, M)=\inf \{\|h-m\|, m \in M\} .
$$

The following definition and theorem comes from Definition IV.1.3 and Theorem IV.1.6 in [15], respectively.
Definition 5.1 Let A be a linear operator with domain in normed linear space X (not necessarily dense in X) and range in normed linear space Y, and ker A is closed. The minimum modulus of A is defined by, written as $\gamma(A)$,

$$
\gamma(A)=\inf \left\{\frac{\|A x\|}{d(x, \operatorname{ker} A)}, x \in D(A)\right\}
$$

where $0 / 0$ is defined to be ∞, and $D(A)$ denotes the domain of A.

Theorem 5.2 Let X and Y be complete spaces and A be closed operator. Then A has a closed range if and only if $\gamma(A)>0$.

Remark 5.3 If T is a bounded linear operator on the Hilbert space, then T is closed. Thus, Theorem 5.2 can apply to bounded linear operators.

The following lemma can be found in [21].

Lemma 5.4 If T is in $\mathfrak{L}(H)$ and ker $T=\{0\}$, then the range of T is closed if and only if T is bounded below in H.

Theorem 5.5 Let u be a nonconstant inner function with $u(0)=0$ and K_{u}^{2} be the model space. For $f \in\left(K_{u}^{2}+\overline{K_{u}^{2}}\right) \cap L^{\infty}$, if A_{f} is a Fredholm operator, then $\left.f\right|_{E} \neq 0$ for any $E \subset \mathbb{T}$ with $|E|>0$. Moreover,

$$
\text { ind }\left(A_{f}\right)=0
$$

Proof First consider the case where ker $A_{f}=\{0\}$. By $C A_{f} C=A_{f}^{*}$, we obtain that ker $A_{f}^{*}=C\left(\operatorname{ker} A_{f}\right)=\{0\}$. Since A_{f} is a Fredholm operator, we have that A_{f} has a closed range. Then

$$
\operatorname{ran} A_{f}=\operatorname{clos}\left[\operatorname{ran} A_{f}\right]=\left(\operatorname{ker} A_{f}^{*}\right)^{\perp}=K_{u}^{2}
$$

Thus A_{f} is invertible in $\mathfrak{L}\left(K_{u}^{2}\right)$. Then, by Proposition 4.3, f is invertible in L^{∞}. Therefore $\left.f\right|_{E} \neq 0$ for any $E \subset \mathbb{T}$ with $|E|>0$.

Now consider the case where ker $A_{f} \neq\{0\}$. Suppose that there exists a measurable subset $E_{0} \subset T$ with $\left|E_{0}\right|>0$ such that $\left.f\right|_{E_{0}}=0$. By Proposition 3.10, we have that

$$
\begin{equation*}
\operatorname{ker} H_{\bar{u} f}=\operatorname{ker} H_{\overline{u f}}=\{0\} \tag{5.1}
\end{equation*}
$$

In addition,

$$
A_{f} g=P_{u}(f g)=P u(I-P)(\bar{u} f g)=H_{\bar{u}}^{*} H_{\bar{u} f} g
$$

and $H_{\bar{u}}^{*} \overline{z g}=P(u \overline{z g})=C g$ for $g \in K_{u}^{2}$. By $\overline{z H^{2}}=\overline{u z H^{2}} \oplus \overline{z K_{u}^{2}}$ and ker $H_{\bar{u}}^{*}=\overline{u z H^{2}}$, we get that

$$
\left\|H_{\bar{u}}^{*} \overline{z g}\right\|=\|P(u \overline{z g})\|=\|C g\|=\|g\|=\|z g\|
$$

for $g \in K_{u}^{2}$. Thus $H_{\bar{u}}^{*}$ is a partial isometry. Then

$$
\begin{equation*}
\left\|H_{\bar{u} f} g\right\| \geq\left\|H_{\bar{u}}^{*} H_{\bar{u} f} g\right\|=\left\|A_{f} g\right\| \tag{5.2}
\end{equation*}
$$

for $g \in K_{u}^{2}$. By (5.1), we obtain that

$$
\begin{equation*}
d\left(g, \text { ker } H_{\bar{u} f}\right)=\|g\| \tag{5.3}
\end{equation*}
$$

For $g \in K_{u}^{2}$ but $g \notin$ ker A_{f}, there exists a constant α with $|\alpha|=1$ such that $\alpha g \perp$ ker A_{f}. Then, by the Pythagorean theorem,

$$
\|\alpha g-\varphi\|^{2}=\|\alpha g\|^{2}+\|\varphi\|^{2}=\|g\|^{2}+\|\varphi\|^{2}
$$

for $\varphi \in \operatorname{ker} A_{f}$. Thus

$$
\begin{aligned}
d\left(\alpha g, \operatorname{ker} A_{f}\right) & =\inf \left\{\|\alpha g-\varphi\|, \varphi \in \operatorname{ker} A_{f}\right\} \\
& =\inf \left\{\sqrt{\|g\|^{2}+\|\varphi\|^{2}}, \varphi \in \operatorname{ker} A_{f}\right\} \\
& \geq \inf \left\{\|g\|, \varphi \in \operatorname{ker} A_{f}\right\} \\
& =\|g\|
\end{aligned}
$$

YANG et al./Turk J Math

Then

$$
\begin{equation*}
\frac{1}{d\left(\alpha g, \text { ker } A_{f}\right)} \leq \frac{1}{\|g\|} \tag{5.4}
\end{equation*}
$$

By (5.2), (5.3) and (5.4), we have that

$$
\frac{\left\|H_{\bar{u} f} \alpha g\right\|}{\|\alpha g\|} \geq \frac{\left\|A_{f} \alpha g\right\|}{d\left(\alpha g, \operatorname{ker} A_{f}\right)}
$$

for $g \in K_{u}^{2}$ but $g \notin \operatorname{ker} A_{f}$. Let

$$
\beta=\inf \left\{\frac{\left\|H_{\bar{u} f} \alpha g\right\|}{\|\alpha g\|}, g \in K_{u}^{2} \text { and } g \notin \operatorname{ker} A_{f}\right\}
$$

We conclude that

$$
\begin{equation*}
\beta \geq \inf \left\{\frac{\left\|A_{f} g\right\|}{d\left(g, \operatorname{ker} A_{f}\right)}, g \in K_{u}^{2} \text { and } g \notin \operatorname{ker} A_{f}\right\} \tag{5.5}
\end{equation*}
$$

Since A_{f} is a Fredholm operator, we get that the range of A_{f} is closed, and the dimensions of ker A_{f} and ker A_{f}^{*} are finite. Then, by Theorem 5.2,

$$
\gamma\left(A_{f}\right)=\inf \left\{\frac{\left\|A_{f} g\right\|}{d\left(g, \operatorname{ker} A_{f}\right)}, g \in K_{u}^{2}\right\}>0
$$

If $g \in \operatorname{ker} A_{f}$, then

$$
\frac{\left\|A_{f} g\right\|}{d\left(g, \operatorname{ker} A_{f}\right)}=\frac{0}{0}=\infty
$$

Thus

$$
\begin{equation*}
\inf \left\{\frac{\left\|A_{f} g\right\|}{d\left(g, \operatorname{ker} A_{f}\right)}, g \in K_{u}^{2} \text { and } g \notin \operatorname{ker} A_{f}\right\}>0 \tag{5.6}
\end{equation*}
$$

Moreover, by (5.5),

$$
\begin{equation*}
\beta=\inf \left\{\frac{\left\|H_{\bar{u} f} \alpha g\right\|}{\|\alpha g\|}, g \in K_{u}^{2} \text { and } g \notin \operatorname{ker} A_{f}\right\}>0 \tag{5.7}
\end{equation*}
$$

For $g \in \operatorname{ker} A_{f}$, since the dimension of $\operatorname{ker} A_{f}$ is finite, we have that $\left.H_{\bar{u} f}\right|_{\operatorname{ker} A_{f}}$ has a closed range. Thus, by Theorem 5.2,

$$
\begin{equation*}
\beta_{1}=\inf \left\{\frac{\left\|H_{\bar{u} f} \alpha g\right\|}{\|\alpha g\|}, g \in \operatorname{ker} A_{f}\right\}>0 \tag{5.8}
\end{equation*}
$$

By (5.7) and (5.8), we get that

$$
\inf \left\{\frac{\left\|H_{\bar{u} f} \alpha g\right\|}{\|\alpha g\|}, g \in K_{u}^{2}\right\}=\min \left\{\beta, \beta_{1}\right\}>0
$$

Then, by Theorem 5.2, $\left.H_{\bar{u} f}\right|_{K_{u}^{2}}$ has a closed range. By ker $H_{\bar{u} f}=\{0\}$ and Lemma 5.4, we obtain that $\left.H_{\bar{u} f}\right|_{K_{u}^{2}}$ is bounded below in K_{u}^{2}. There exists $\epsilon>0$ such that

$$
\begin{equation*}
\left\|H_{\bar{u} f} g\right\| \geq \epsilon\|g\| \tag{5.9}
\end{equation*}
$$

for $g \in K_{u}^{2}$. Then

$$
\begin{equation*}
\left\|M_{f} z^{n} g\right\|=\|f g\|=\|\bar{u} f g\| \geq\|(I-P)(\bar{u} f g)\|=\left\|H_{\bar{u} f} g\right\| \geq c\|g\|=c\left\|z^{n} g\right\| \tag{5.10}
\end{equation*}
$$

for $n \in \mathbb{Z}$ and $g \in K_{u}^{2}$. Since the set $\Delta=\left\{z^{n} h: n \in \mathbb{Z}, g \in K_{u}^{2}\right\}$ is dense in L^{2}, we have that M_{f} is bounded below in L^{2}.

Since A_{f} is a Fredholm operator, there exist $T_{1}, T_{2} \in \mathfrak{L}\left(K_{u}^{2}\right)$ and compact operators K_{1}, K_{2} such that $A_{f} T_{1}=I+K_{1}$ and $T_{2} A_{f}=I+K_{2}$. By $C A_{f} C=A_{f}^{*}$ and $C^{2}=I$, we get that $A_{f}^{*} C T_{1} C=I+C K_{1} C$ and $C T_{2} C A_{f}^{*}=I+C K_{2} C$. Since the set of all compact operators is an ideal, we get that A_{f}^{*} is a Fredholm operator. Then $\operatorname{ran} A_{f}^{*}$ is closed and the dimension of ker A_{f}^{*} is finite. By (5.1) and

$$
A_{f}^{*} g=P_{u}(\bar{f} g)=P u(I-P)(\overline{u f} g)=H_{\bar{u}}^{*} H_{\overline{u f}} g
$$

for $g \in K_{u}^{2}$, we conclude that M_{f}^{*} is bounded below in L^{2} by the similar way. Then M_{f} is invertible in $\mathfrak{L}\left(L^{2}\right)$. By Lemma 4.1, we have that f is invertible in L^{∞}. This contradicts our assumption about f. Thus $\left.f\right|_{E} \neq 0$ for $E \subset \mathbb{T}$ with $|E|>0$. In terms of $\operatorname{ker} A_{f}^{*}=C\left(\operatorname{ker} A_{f}\right)$, we have that ind $\left(A_{f}\right)=0$. The proof is completed.

6. Compact defect operators of truncated Toeplitz operators

For a bounded linear operator T on the Hilbert space H, we call $D_{T}=I-T^{*} T$ and $D_{T^{*}}=I-T T^{*}$ the defect operators, $R_{T}=\overline{D_{T} H}$ and $R_{T^{*}}=\overline{D_{T^{*}} H}$ the defect spaces, and $\operatorname{dim} R_{T}$ and $\operatorname{dim} R_{T^{*}}$ the defect indices. For $f \in H^{\infty}$, the necessary and sufficient condition is obtained for $I-A_{f}^{*} A_{f}$ to be compact or of finite-rank in [22]. For $f \in\left(K_{u}^{2}+\overline{K_{u}^{2}}\right) \cap L^{\infty}$, by Theorem 5.5, we obtain a sufficient condition for $I-A_{f}^{*} A_{f}$ to be compact. In following, for $f \in L^{\infty}$, using the known result about a finite sum of products of Toeplitz operators to be compact, see [16], we will simplify $I-A_{f}^{*} A_{f}$ as a finite sum of products of Toeplitz operators and give the necessary and sufficient condition that $I-A_{f}^{*} A_{f}$ is compact on the model space K_{u}^{2}.

For $f \in L^{2}$, we use f_{+}and f_{-}to denote $P(f)$ and $(I-P)(f)$, respectively. In the following, for $f, g \in L^{\infty}$, we will frequently use the relationship:

$$
\begin{equation*}
T_{f g}-T_{f} T_{g}=H_{f}^{*} H_{g} \tag{6.1}
\end{equation*}
$$

A finite sum of finite products of Toeplitz operators can be written as a finite sum of products of two Toeplitz operators. The key idea used in [16]:

$$
\begin{equation*}
T_{f} T_{g} T_{h}=T_{f}\left(T_{g_{+}}+T_{g_{-}}\right) T_{h}=T_{f g_{+}} T_{h}+T_{f} T_{g_{-} h} \tag{6.2}
\end{equation*}
$$

for $f, g, h \in L^{\infty}$. Moreover,

$$
T_{f} T_{g} T_{h} T_{\varphi}=T_{f}\left(T_{g_{+}}+T_{g_{-}}\right) T_{h} T_{\varphi}=T_{f g_{+}} T_{h} T_{\varphi}+T_{f} T_{g_{-} h} T_{\varphi}
$$

for $f, g, h, \varphi \in L^{\infty}$. Similar to (6.2), the product of four Toeplitz operators can be written as a sum of two Toeplitz operators with (perhaps unbounded) symbols, and the decomposition is not unique.

Lemma 6.1 Let u be a nonconstant inner function and K_{u}^{2} be the model space. If f is in L^{∞} such that $f_{-}, f_{+},(u f)_{+},(u f)_{-},\left(u f_{-}(\overline{u f})_{-}\right)_{-}$and $\left(u f_{-}(\overline{u f})_{-}\right)_{+}$are in L^{∞}, then $I-A_{f}^{*} A_{f}=T_{1-\bar{f} f_{+}}+T$, where T is the finite sum of the products of two Toeplitz operators.

Proof By $P_{u}=P-u P \bar{u}$, we have that

$$
\begin{equation*}
A_{f}=P_{u} f P_{u}=P u(I-P) \bar{u} f P u(I-P) \bar{u}=H_{\bar{u}}^{*} H_{\bar{u} f} H_{\bar{u}}^{*} H_{\bar{u}} \tag{6.3}
\end{equation*}
$$

By (6.1), we obtain that

$$
\begin{align*}
H_{\bar{u}}^{*} H_{\bar{u} f} H_{\bar{u}}^{*} H_{\bar{u}} & =\left(T_{f}-T_{u} T_{\bar{u} f}\right)\left(I-T_{u} T_{\bar{u}}\right) \\
& =\left(T_{f}-T_{u} T_{\bar{u} f}\right)-\left(T_{f}-T_{u} T_{\bar{u} f}\right) T_{u} T_{\bar{u}} \\
& =H_{\bar{u}}^{*} H_{\bar{u} f}-\left(T_{f} T_{u} T_{\bar{u}}-T_{u} T_{\bar{u} f} T_{u} T_{\bar{u}}\right) \\
& =H_{\bar{u}}^{*} H_{\bar{u} f}-\left(T_{f u} T_{\bar{u}}-T_{u}\left(T_{f_{+}}+T_{f_{-}}\right) T_{\bar{u}}\right) \\
& =H_{\bar{u}}^{*} H_{\bar{u} f}-\left(T_{f u} T_{\bar{u}}-T_{u} T_{f_{+}} T_{\bar{u}}-T_{u} T_{f_{-}} T_{\bar{u}}\right) \\
& =H_{\bar{u}}^{*} H_{\bar{u} f}-\left(T_{f u} T_{\bar{u}}-T_{u f_{+}} T_{\bar{u}}-T_{u} T_{\bar{u} f_{-}}\right) \tag{6.4}\\
& =H_{\bar{u}}^{*} H_{\bar{u} f}-\left(T_{u f_{-}} T_{\bar{u}}-T_{u} T_{\bar{u} f_{-}}\right) \\
& =H_{\bar{u}}^{*} H_{\bar{u} f}-\left(T_{u f_{-}} T_{\bar{u}}-T_{f_{-}}+T_{f_{-}}-T_{u} T_{\bar{u} f_{-}}\right) \\
& =H_{\bar{u}}^{*} H_{\bar{u} f}-\left(-H_{\frac{u f_{-}}{*}} H_{\bar{u}}+H_{\bar{u}}^{*} H_{\bar{u} f_{-}}\right) \\
& =H_{\bar{u}}^{*} H_{\bar{u} f_{+}}+H_{\overline{u f_{-}}}^{*} H_{\bar{u}} .
\end{align*}
$$

In terms of (6.3), we get that

$$
\begin{align*}
I-A_{f}^{*} A_{f} & =P_{u}-H_{\bar{u}}^{*} H_{\overline{u f}} H_{\bar{u}}^{*} H_{\bar{u} f} H_{\bar{u}}^{*} H_{\bar{u}} \\
& =I-T_{u} T_{\bar{u}}-H_{\bar{u}}^{*} H_{\overline{u f}}\left(H_{\bar{u}}^{*} H_{\bar{u} f_{+}}+H_{\overline{u f_{-}}}^{*} H_{\bar{u} \overline{ })}\right. \tag{6.5}\\
& =I-T_{u} T_{\bar{u}}-H_{\bar{u}}^{*} H_{\overline{u f}} H_{\bar{u}}^{*} H_{\bar{u} f_{+}}-H_{\bar{u}}^{*} H_{\overline{u f}} H_{\overline{u f_{-}}}^{*} H_{\bar{u}}
\end{align*}
$$

By (6.1) and the idea before Lemma 6.1, $H_{\bar{u}}^{*} H_{\overline{u f}} H_{\bar{u}}^{*} H_{\bar{u} f_{+}}$and $H_{\bar{u}}^{*} H_{\overline{u f}} H_{\overline{u f_{-}}}^{*} H_{\bar{u}}$ can be written as a finite sum of products of two Toeplitz operators. By calculating, we conclude that

$$
\begin{equation*}
H_{\bar{u}}^{*} H_{\overline{u f}} H_{\bar{u}}^{*} H_{\bar{u} f_{+}}=T_{\bar{f} f_{+}}-T_{u} T_{\overline{u f} f_{+}}-T_{u(\bar{f})_{-}} T_{\bar{u} f_{+}}+T_{u} T_{\bar{u} f_{+}(\bar{f})_{-}}, \tag{6.6}
\end{equation*}
$$

and

$$
\begin{align*}
H_{\bar{u}}^{*} H_{\overline{u f}} H_{\overline{u f_{-}}}^{*} H_{\bar{u}} & =T_{\bar{f}} T_{f_{-}}-T_{u(\overline{u f})_{+}} T_{f_{-}}-T_{u} T_{(\overline{u f})_{-} f_{-}}-T_{\bar{f}\left(u f_{-}\right)_{+}} T_{\bar{u}} \\
& -T_{\bar{f}} T_{\bar{u}\left(u f_{-}\right)_{-}}+T_{u(\overline{u f})_{+}\left(u f_{-}\right)_{+}} T_{\bar{u}}+T_{u(\overline{u f})_{+}} T_{\bar{u}\left(u f_{-}\right)_{-}} \tag{6.7}\\
& +T_{u\left(u f_{-}(\overline{u f})_{-}\right)_{+}} T_{\bar{u}}+T_{u} T_{\bar{u}\left(u f_{-}(\overline{u f})_{-}\right)_{-}}
\end{align*}
$$

By (6.5), we have that

$$
\begin{equation*}
I-A_{f}^{*} A_{f}=T_{1-\bar{f} f_{+}}+T \tag{6.8}
\end{equation*}
$$

where

$$
\begin{align*}
T & =T_{u} T_{\overline{u f f_{+}}}-T_{u} T_{\bar{u}}+T_{u(\bar{f})_{-}} T_{\bar{u} f_{+}}-T_{u} T_{\bar{u} f_{+}(\bar{f})_{-}}-T_{\bar{f}} T_{f_{-}}+T_{u(\overline{u f})_{+}} T_{f_{-}} \\
& +T_{u} T_{\overline{u f)_{-}} f_{-}}+T_{\bar{f}\left(u f_{-}\right)_{+}} T_{\bar{u}}+T_{\bar{f}} T_{\bar{u}\left(u f_{-}\right)_{-}}-T_{u(\overline{u f})_{+}\left(u f_{-}\right)_{+}} T_{\bar{u}} \tag{6.9}\\
& -T_{u\left(\overline{u f)_{+}}\right.} T_{\bar{u}\left(u f_{-}\right)_{-}}-T_{u\left(u f _ { - } \left(\overline{\left.u f)_{-}\right)_{+}}\right.\right.} T_{\bar{u}}-T_{u} T_{\bar{u}\left(u f _ { - } \left(\overline{\left.u f)_{-}\right)_{-}}\right.\right.} .
\end{align*}
$$

The following theorem can be found in [10].
Theorem 6.2 For f_{i}, g_{i}, h in $L^{\infty}, i=1,2, \cdots, n$, if $\sum_{i=1}^{n} T_{f_{i}} T_{g_{i}}-T_{h}$ has finite rank k, then there are analytic polynomials $A_{i}(z)$ and $B_{i}(z)$, not all of which are zero, with $\max \left\{\operatorname{deg} A_{i}(z)\right\}=k$ and $\max \left\{\operatorname{deg} B_{i}(z)\right\}=k$ such that

$$
\sum_{i=1}^{n} A_{i} \overline{f_{i}} \in H^{2} \text { or } \sum_{i=1}^{n} B_{i} g_{i} \in H^{2}
$$

In the following, we give the necessary condition that the defect operator $I-A_{f}^{*} A_{f}$ has finite rank on the model space K_{u}^{2}.

Theorem 6.3 Let u be a nonconstant inner function and K_{u}^{2} be the model space. For $f \in L^{\infty}$ with $f_{-}, f_{+},(u f)_{+},(u f)_{-},\left(u f_{-}(\overline{u f})_{-}\right)_{-}$, and $\left(u f_{-}(\overline{u f})_{-}\right)_{+}$in L^{∞}, if $I-A_{f}^{*} A_{f}$ has finite rank k, then there are analytic polynomials $A_{i}(z), i=1,, \cdots, 7$, and $B_{j}(z), j=1,, \cdots, 8$, with $\max \left\{\operatorname{deg} A_{i}(z)\right\}=k$ and $\max \left\{\operatorname{deg} B_{j}(z)\right\}=k$ such that

$$
\begin{aligned}
& f\left(A_{3}+A_{5} \overline{\left(u f_{-}\right)_{+}}\right) \\
+ & \bar{u}\left(A_{1}+A_{2} \overline{(\bar{f})_{-}}+A_{4} \overline{(\overline{u f})_{+}}+A_{6} \overline{(\overline{u f})_{+}\left(u f_{-}\right)_{+}}+A_{7} \overline{\left(u f_{-}(\overline{u f})_{-}\right)_{+}}\right) \in H^{\infty}
\end{aligned}
$$

or

$$
\begin{aligned}
& f_{-}\left(B_{5}+B_{6}(\overline{u f})_{-}\right) \\
+ & \bar{u}\left(B_{1} \bar{f} f_{+}+B_{2}+B_{3} f_{+}+B_{4} f_{+}(\bar{f})_{-}+B_{7}\left(u f_{-}\right)_{-}+B_{8}\left(u f_{-}(\overline{u f})_{-}\right)_{-}\right) \in H^{\infty}
\end{aligned}
$$

Proof By $u f=u f_{+}+u f_{-}$, we get that

$$
(u f)_{+}=P\left(u f_{+}+u f_{-}\right)=u f_{+}+\left(u f_{-}\right)_{+}
$$

and

$$
(u f)_{-}=(I-P)\left(u f_{+}+u f_{-}\right)=\left(u f_{-}\right)_{-}
$$

Since f is in L^{∞} such that $f_{-}, f_{+},(u f)_{+},(u f)_{-}$are in L^{∞}, we have that $\left(u f_{-}\right)_{+}$and $\left(u f_{-}\right)_{-}$are in L^{∞}. Since $I-A_{f}^{*} A_{f}$ has finite rank, by (6.8) and Theorem 6.2, there are analytic polynomials $A_{i}(z), i=1,, \cdots, 7$, and $B_{j}(z), j=1,, \cdots, 8$, not all of which are zero, with $\max \left\{\operatorname{deg} A_{i}(z)\right\}=k$ and $\max \left\{\operatorname{deg} B_{j}(z)\right\}=k$ such that

$$
\begin{aligned}
& A_{1} \bar{u}+A_{2} \overline{u(\bar{f})_{-}}+A_{3} f+A_{4} \overline{u(\overline{u f})_{+}} \\
+ & A_{5} \overline{f\left(u f_{-}\right)_{+}}+A_{6} \overline{u(\overline{u f})_{+}\left(u f_{-}\right)_{+}}+A_{7} \overline{u\left(u f_{-}(\overline{u f})_{-}\right)_{+}} \in H^{\infty}
\end{aligned}
$$

or

$$
\begin{aligned}
& B_{1} \overline{u f} f_{+}+B_{2} \bar{u}+B_{3} \bar{u} f_{+}+B_{4} \bar{u} f_{+}(\bar{f})_{-}+B_{5} f_{-} \\
+\quad & B_{6}(\overline{u f})_{-} f_{-}+B_{7} \bar{u}\left(u f_{-}\right)_{-}+B_{8} \bar{u}\left(u f_{-}(\overline{u f})_{-}\right)_{-} \in H^{\infty} .
\end{aligned}
$$

By simplifying, the proof is completed.

The following theorem can refer to [16].

Theorem 6.4 A finite sum T of finite products of Toeplitz operators is a compact perturbation of a Toeplitz operator if and only if

$$
\lim _{|z| \rightarrow 1}\left\|T-T_{\varphi_{z}}^{*} T T_{\varphi_{z}}\right\|=0
$$

where $\varphi_{z}(w)=\frac{z-w}{1-\bar{z} w}$.
In the following, we give the necessary and sufficient condition that the defect operator $I-A_{f}^{*} A_{f}$ is compact on the model space K_{u}^{2}.

Theorem 6.5 Let u be a nonconstant inner function and K_{u}^{2} be the model space. If f is in L^{∞} such that $f_{-}, f_{+},(u f)_{+},(u f)_{-},\left(u f_{-}(\overline{u f})_{-}\right)_{-}$and $\left(u f_{-}(\overline{u f})_{-}\right)_{+}$are in L^{∞}, then $I-A_{f}^{*} A_{f}$ is compact if and only if

$$
\lim _{|z| \rightarrow 1}\left\|T-T_{\varphi_{z}}^{*} T T_{\varphi_{z}}\right\|=0
$$

where $\varphi_{z}(w)=\frac{z-w}{1-\bar{z} w}$ and T is equal to (6.9).
Proof By (6.8), we have that $I-A_{f}^{*} A_{f}$ is compact if and only if $T_{1-\bar{f} f_{+}}+T$ is compact, where T is a finite sum of the products of two Toeplitz operators. By Theorem 6.4, the proof is completed.

Acknowledgment

This work was supported by the National Scinece Foundation of China (grant number 12031002, 11671065, 11901269).

References

[1] Beurling A. On two problems concerning linear transformations in Hilbert space. Acta Mathematica 1949; 81 (1): 239-255. doi: 10.1007/BF02395019
[2] Bessonov VR. Truncated Toeplitz operators of finite rank. Proceedings of the American Mathematical Society 2012; 142 (4): 1301-1313. doi: 10.1090/S0002-9939-2014-11861-2
[3] Bessonov RV. Fredholmness and compactness of truncated Toeplitz and Hankel operators. Integral Equations Operator Theory 2015; 82 (4): 451-467. doi: 10.1007/s00020-014-2177-2
[4] Bourgain J. A problem of Douglas and Rudin on factorization. Pacific Journal of Mathematics 1986; 121 (1): 47-50. doi: $10.2140 / \mathrm{pjm} .1986 .121 .47$
[5] Conway JB. A course in functional analysis. Second edition. Graduate Texts in Mathematics, 96, Springer, New York, 1990.
[6] Chalendar I, Fricain E, Timotin D. A survey of some recent results on truncated Toeplitz operators. Recent progress on operator theory and approximation in spaces of analytic functions 2016; 59-77.
[7] C \hat{a} mara MC, Partington JR. Asymmetric truncated Toeplitz operators and Toeplitz operators with matrix symbol. Journal of Operator Theory 2017; 77 (2): 455-479. doi: 10.7900/jot.2016apr27.2108
[8] C \hat{a} mara MC, Partington JR. Spectral properties of truncated Toeplitz operators by equivalence after extension. Journal of Mathematical Analysis and Applications 2016; 433 (2): 762-784. doi: 10.1016/j.jmaa.2015.08.019
[9] Douglas RG. Banach algebra techniques in the theory of Toeplitz operators. American Mathematical Society, 1973. doi: http://dx.doi.org/10.1090/cbms/015
[10] Ding X. The finite sum of the products of two Toeplitz operators. Journal of the Australian Mathematical Society 2009; 86 (1): 45-60. doi: 10.1017/S1446788708000128
[11] Garcia SR, Ross WT, Wogen WR. C^{*}-algebras generated by truncated Toeplitz operators. Operator Theory Advances and Applications 2014; 236: 181-192. doi: 10.1007/978-3-0348-0648-0_11
[12] Garcia SR, Putinar M. Complex symmetric operators and applications. Transactions of the American Mathematical Society 2006; 358 (3): 1285-1315. doi: 10.1090/S0002-9947-05-03742-6
[13] Garcia SR, Putinar M. Complex symmetric operators and applications II. Transactions of the American Mathematical Society 2007; 359 (8): 3913-3931. doi: 10.1090/S0002-9947-07-04213-4
[14] Gu C. Separation for kernels of Hankel operators. Proceedings of the American Mathematical Society 2001; 129 (8): 2353-2358. doi: $10.2307 / 2669211$
[15] Goldberg S. Unbounded linear operators: Theory and applications. New York, 1966.
[16] Guo K, Zheng D. The distribution function inequality for a finite sum of finite products of Toeplitz operators. Journal of Functional Analysis 2005; 218 (1): 1-53. doi: 10.1016/j.jfa.2004.06
[17] Hoffman K. Banach spaces of analytic functions. Englewood Cliffs, Prentice-Hall, Prentice-Hall Series in Modern Analysis, 1962. doi: 10.1007/BFb0069197
[18] Ma P, Zheng D. Compact truncated Toeplitz operators. Journal of Functional Analysis 2016; 270 (11): 4256-4279. doi: 10.1016/j.jfa.2016.01.023
[19] Nagy S. Harmonic analysis of operators on Hilbert space. Second edition, Revised and enlarged edition, Universitext, Springer, New York, 2010.
[20] Sarason D. Algebraic properties of truncated Toeplitz operators. Operator Matrices 2007; 4 (4): 491-526. doi: 10.7153/oam-01-29
[21] Shaabani MH. Closed range weighted composition operators on H^{2} and A_{α}^{2}. Iranian Journal of Science and Technology 2019; 43 (3): 1167-1170.
[22] Yang X, Li R, Yang Y, Lu Y. Finite-rank and compact defect operators of truncated Toeplitz operators. Submitting.

[^0]: *Correspondence: liranmika@163.com
 2010 AMS Mathematics Subject Classification: 47B35

