Singular integral operators and maximal functions with Hardy space kernels

Ahmad AL-SALMAN ${ }^{1,2, *}$ (D)
${ }^{1}$ Department of Mathematics, Sultan Qaboos University, Sultanate of Oman
${ }^{2}$ Department of Mathematics, Yarmouk University, Irbid-Jordan

| Received: 01.03 .2021 | Accepted/Published Online: 04.08 .2021 | Final Version: 16.09 .2021 |
| :--- | :--- | :--- | :--- | :--- |

Abstract

In this paper, we study singular integrals along compound curves with Hardy space kernels. We introduce a class of bidirectional generalized Hardy Littlewood maximal functions. We prove that the considered singular integrals and the maximal functions are bounded on $L^{p}, 1<p<\infty$ provided that the compound curves are determined by generalized polynomials and convex increasing functions. The obtained results offer L^{p} estimates that are not only new but also they generalize as well as improve previously known results.

Key words: Singular integrals, Hardy space, compound curves, Hardy Littlewood maximal function, convex functions

1. Introduction and statement of results

Let $\mathbb{R}^{n}, n \geq 2$, be the n-dimensional Euclidean space and \mathbb{S}^{n-1} be the unit sphere in \mathbb{R}^{n} equipped with the induced Lebesgue measure $d \sigma$. For non zero $y \in \mathbb{R}^{n}$, we let $y^{\prime}=|y|^{-1} y$. Suppose that $\Omega \in L^{1}\left(\mathbb{S}^{n-1}\right)$ is a homogeneous functions of degree zero on \mathbb{R}^{n} and satisfies the cancellation condition

$$
\begin{equation*}
\int_{\mathbb{S}^{n}-1} \Omega\left(y^{\prime}\right) d \sigma\left(y^{\prime}\right)=0 \tag{1.1}
\end{equation*}
$$

In 1979, Fefferman [12] introduced the following class of singular integral operators

$$
\begin{equation*}
\mathbf{T}_{\Omega, h} f(x)=\text { p.v. } \int_{\mathbb{R}^{n}} f(x-y) \frac{h(|y|) \Omega\left(y^{\prime}\right)}{|y|^{n}} d y \tag{1.2}
\end{equation*}
$$

where $h: \mathbb{R}_{+} \rightarrow \mathbb{R}$ is a suitable measurable function. It is clear that if $h(t)=1$, then the operator $\mathbf{T}_{\Omega, h}$ reduces to the classical Calderón-Zygmund singular integral operator, which will be denoted by \mathbf{T}_{Ω}. In [6], Calderón and Zygmund showed that \mathbf{T}_{Ω} is bounded on L^{p} for all $p \in(1, \infty)$ provided that $\Omega \in L \log ^{+} L\left(\mathbb{S}^{n-1}\right)$. Moreover, they showed that the condition $\Omega \in L \log ^{+} L\left(\mathbb{S}^{n-1}\right)$ is nearly optimal in the sense that the L^{p} boundedness of T_{Ω} may not hold if $\Omega \in L\left(\log ^{+} L\right)^{1-\varepsilon}\left(\mathbb{S}^{n-1}\right) \backslash L \log ^{+} L\left(\mathbb{S}^{n-1}\right)$ for some $\varepsilon>0$. It was proved independently by Connett [7] and Ricci-Weiss [17] that the operator T_{Ω} is bounded on L^{p} for all $p \in(1, \infty)$ if $\Omega \in H^{1}\left(\mathbb{S}^{n-1}\right)$, the Hardy space in the sense of Coifman and Weiss [8]. Fefferman [12] proved that $\mathbf{T}_{\Omega, h}$ is bounded on L^{p} for

[^0]
AL-SALMAN/Turk J Math

all $1<p<\infty$ provided that $\Omega \in \operatorname{Lip}_{\alpha}\left(\mathbb{S}^{n-1}\right)$ for some $\alpha>0$ and that $h \in L^{\infty}\left(\mathbb{R}_{+}\right)$. Here, $\mathbb{R}_{+}=(0, \infty)$. In 1986, Namazi [15] showed that Fefferman's result still holds under the weaker condition $\Omega \in L^{q}\left(\mathbb{S}^{n-1}\right)$ for some $q>1$. Subsequently, the condition $h \in L^{\infty}\left(\mathbb{R}_{+}\right)$was very much relaxed by Duoandikoetxea and Rubio de Francia [9]. In fact, they showed that the operator $\mathbf{T}_{\Omega, h}$ is bounded on L^{p} for all $1<p<\infty$ provided that $\Omega \in L^{q}\left(\mathbb{S}^{n-1}\right)$ for some $q>1$ and h satisfies the condition

$$
\begin{equation*}
\|h\|_{\Delta_{2}}=\sup _{j \in \mathbb{Z}}\left(\int_{2^{j}}^{2^{j+1}}|h(t)|^{2} \frac{d t}{t}\right)^{\frac{1}{2}}<\infty \tag{1.3}
\end{equation*}
$$

In 1997, Fan and Pan [11] improved Duoandikoetxea and Rubio de Francia's result by showing that the operator $\mathbf{T}_{\Omega, h}$ is bounded on L^{p} for all $1<p<\infty$ provided that $\Omega \in L^{q}\left(\mathbb{S}^{n-1}\right)$ for some $q>1$ and h lies in the class $\Delta_{\gamma}\left(\mathbb{R}_{+}\right)$for some $\gamma>1$ where $\Delta_{\gamma}\left(\mathbb{R}_{+}\right)$is the class of all measurable functions $h: \mathbb{R}_{+} \rightarrow \mathbb{R}$ satisfying (1.3) with 2 replaced by γ. It should be noted here that

$$
L^{\infty}\left(\mathbb{R}_{+}\right) \subset \bigcap_{\gamma>1} \Delta_{\gamma}\left(\mathbb{R}_{+}\right)
$$

and that

$$
\Delta_{\gamma_{2}}\left(\mathbb{R}_{+}\right) \subset \Delta_{\gamma_{1}}\left(\mathbb{R}_{+}\right) \text {whenever } \gamma_{1} \leq \gamma_{2}
$$

In [4], Al-Salman and Pan showed that the condition $\Omega \in L^{q}\left(\mathbb{S}^{n-1}\right)$ can be replaced by the weaker condition $\Omega \in L \log L\left(\mathbb{S}^{n-1}\right)$. Here, we remark that

$$
\operatorname{Lip}_{\alpha}\left(\mathbb{S}^{n-1}\right) \varsubsetneqq L^{q}\left(\mathbb{S}^{n-1}\right) \varsubsetneqq L\left(\log ^{+} L\right)\left(\mathbb{S}^{n-1}\right) \varsubsetneqq H^{1}\left(\mathbb{S}^{n-1}\right) \varsubsetneqq L^{1}\left(\mathbb{S}^{n-1}\right)
$$

for all $\alpha>0$ and $q>1$.
In this paper, we consider singular integrals along subvarities determined by compound curves. Let $\varphi:[0, \infty) \rightarrow \mathbb{R}$ be a $\mathcal{C}^{1}([0, \infty))$ function that satisfies $\varphi(0)=0$. For a suitable function $\Gamma:[0, \infty) \rightarrow \mathbb{R}$, we consider the singular integral operator

$$
\begin{equation*}
\mathbf{T}_{\Omega, \Gamma, \varphi, h} f(x)=\text { p.v. } \int_{\mathbb{R}^{n}} f\left(x-\Gamma(\varphi(|y|)) y^{\prime}\right) \frac{h(|y|) \Omega\left(y^{\prime}\right)}{|y|^{n}} d y . \tag{1.4}
\end{equation*}
$$

It is clear that if $\varphi(t)=\Gamma(t):=I(t)=t$, then the operator $\mathbf{T}_{\Omega, \Gamma, \varphi, h}$ reduces to the classical operator $\mathbf{T}_{\Omega, h}$ in (1.2). In the following few remarks, we shed some light on the history behind the consideration of the class of operators $\mathbf{T}_{\Omega, \Gamma, \varphi, h}$ in (1.4):
(i) When $h \in L^{\infty}\left(\mathbb{R}_{+}\right), \varphi(t)=t$, and Γ is a real valued polynomial, Al-Hasan and Fan [1] proved that the corresponding special operator

$$
\begin{equation*}
\mathbf{T}_{\Omega, \Gamma, h} f(x)=\text { p.v. } \int_{\mathbb{R}^{n}} f\left(x-\Gamma(|y|) y^{\prime}\right) \frac{h(|y|) \Omega\left(y^{\prime}\right)}{|y|^{n}} d y \tag{1.5}
\end{equation*}
$$

is bounded on L^{p} for all $p \in(1, \infty)$ if $\Omega \in H^{1}\left(\mathbb{S}^{n-1}\right)$. Subsequently, when $h(t)=1$ and $\Gamma(t)$ is convex increasing, Al-Salman (1.5) showed that the corresponding operator $\mathbf{T}_{\Omega, \Gamma}=\mathbf{T}_{\Omega, \Gamma, 1}$ is bounded on L^{p} for all $p \in(1, \infty)$ provided that $\Omega \in H^{1}\left(\mathbb{S}^{n-1}\right)[5]$.

AL-SALMAN/Turk J Math

(ii) Let $\mathbf{T}_{\Omega, \Gamma}$ be the operator given by (1.4) with $\varphi(t)=t$ and $h(t)=1$, i.e.

$$
\mathbf{T}_{\Omega, \Gamma} f(x)=\text { p.v. } \int_{\mathbb{R}^{n}} f\left(x-\Gamma(|y|) y^{\prime}\right) \frac{\Omega\left(y^{\prime}\right)}{|y|^{n}} d y
$$

In [3], Al-Salman and Al-Qassem generalized the L^{p} boundedness result in [5] by proving that the operator $\mathbf{T}_{\Omega, \Gamma}$ is bounded on $L^{p}\left(\mathbb{R}^{n}\right)$ for every $1<p<\infty$ provide that $\Omega \in H^{1}\left(\mathbb{S}^{n-1}\right)$ and Γ is either convex increasing with $\Gamma(0)=0$ or a generalized polynomial. A mapping $\Gamma: \mathbb{R}_{+} \rightarrow \mathbb{R}$ ia a generalized polynomial if it has the form

$$
\begin{equation*}
\Gamma(t)=\mu_{1} t^{d_{1}}+\cdots+\mu_{l} t^{d_{l}} \tag{1.6}
\end{equation*}
$$

for some $l \in \mathbb{N}$, distinct positive real numbers d_{1}, \ldots, d_{l}, and real numbers μ_{1}, \ldots, μ_{l}. In the case of generalized polynomials, Al-Salman and Al-Qassem showed that the bound for the operator norm $\left\|\mathbf{T}_{\Omega, \Gamma}\right\|_{p, p}$ is independent of the coefficients μ_{1}, \ldots, μ_{l}. The problem whether the L^{p} estimates still hold in the case of kernels that are rough in the radial direction was left open.
(iii) In the recent paper [14], Liu and Zhang considered the operator $\mathbf{T}_{\Omega, \Gamma, \varphi, h}$ for compound polynomial mappings. They proved the following $L^{2}\left(\mathbb{R}^{n}\right)$ result:

Theorem 1.1.([14]). Let $\mathbf{T}_{\Omega, \Gamma, \varphi, h}$ be the operator given by (1.5). Let φ be a nonnegative (or non-positive) $\mathcal{C}^{1}\left(\mathbb{R}_{+}\right)$monotonic function that satisfies $\left|\frac{\varphi(t)}{t \varphi^{\prime}(t)}\right| \leq C_{\varphi}$ where C_{φ} is a constant that depends only on φ. If Γ is a real valued polynomial, $\Omega \in H^{1}\left(\mathbb{S}^{n-1}\right)$, and $h \in \Delta_{\gamma}\left(\mathbb{R}_{+}\right)$for some $\gamma>1$, then

$$
\left\|\mathbf{T}_{\Omega, \Gamma, \varphi, h} f\right\|_{L^{2}} \leq C\|h\|_{\Delta_{\gamma}}\|\Omega\|_{H^{1}}\|f\|_{L^{2}}
$$

where $C>0$ is independent of h, γ, Ω, f and the coefficients of the polynomial Γ but depends on φ and $\operatorname{deg}(\Gamma)$.
The question whether the operator $\mathbf{T}_{\Omega, \Gamma, \varphi, h}$ is bounded for some $p \neq 2$ was left open in [14].
In light of the above remarks, it is our aim in this paper to consider the general operator $\mathbf{T}_{\Omega, \Gamma, \varphi, h}$ and to seek answers to the above stated problems. We shall assume that the function h to be in the class of functions Λ_{γ}^{η} introduced by Sato [18] (see also Seegeer [19] and [21]). In fact, for $\eta, \gamma>0$, we let Λ_{γ}^{η} be the class of all measurable functions $h: \mathbb{R}_{+} \rightarrow \mathbb{R}$ satisfying

$$
\|h\|_{\Lambda_{\gamma}^{\eta}}=\|h\|_{\Delta_{\gamma}}+\|h\|_{\Lambda^{\eta}}<\infty
$$

where

$$
\|h\|_{\Lambda^{\eta}}=\sup _{t \in(0,1)} t^{-\eta} \omega(h, t),
$$

and

$$
\omega(h, t)=\sup _{|s|<\frac{t R}{2}} \int_{R}^{2 R}|h(r-s)-h(r)| \frac{d r}{r}, t \in(0,1] .
$$

The supremum is taken over all s and R such that $|s|<t R / 2$. Our main result is the following:

AL-SALMAN/Turk J Math

Theorem 1.2. Let $\mathbf{T}_{\Omega, \Gamma, \varphi, h}$ be the operator given by (1.4). Let $\Omega \in H^{1}\left(\mathbb{S}^{n-1}\right)$ be a homogeneous functions of degree zero on \mathbb{R}^{n} and satisfies the cancellation condition (1.1). Suppose that
(i) $h \in \Lambda_{1}^{\eta}$ for some $\eta>0$;
(ii) $\Gamma:[0, \infty) \rightarrow \mathbb{R}$ is a non-constant generalized polynomial of the form (1.6);
(iii) φ is a $\mathcal{C}^{2}([0, \infty))$ convex increasing function with $\varphi(0)=0$;

Then

$$
\left\|\mathbf{T}_{\Omega, \Gamma, \varphi, h} f\right\|_{L^{p}} \leq C\|h\|_{\Lambda_{1}^{\eta}}\|\Omega\|_{H^{1}}\|f\|_{L^{p}}
$$

for all $1<p<\infty$ where $C>0$ is independent of h, η, Ω, f and the coefficients of the generalized polynomial Γ but depends on the function φ and the numbers d_{1}, \ldots, d_{l}.

It is clear that Theorem 1.2 is a substantial improvement of the corresponding result in [3]. Furthermore, it substantially generalizes the result in Theorem 1.2 as far as the range of the parameter p is concerned.

The proof of Theorem 1.2 involves a key idea, which is characterized by introducing a new maximal function that is more general than the directional Hardy-Littlewood maximal function. We shall refer to this maximal function by the generalized bidirectional Hardy-Littlewood maximal function. For suitable mappings $\Gamma, \Lambda, \varphi:[0, \infty) \rightarrow \mathbb{R}$, a suitable measurable function $h: \mathbb{R}_{+} \rightarrow \mathbb{R}$, and two vectors $z_{1}, z_{1} \in \mathbb{R}^{n}$, consider the maximal function

$$
\begin{equation*}
H_{\Gamma, \Lambda, \varphi, h}^{\left(z_{1}, z_{2}\right)}(g)(x)=\sup _{j \in \mathbb{Z}} \int_{2^{j-1}}^{2^{j}} g\left(x-\Gamma(\varphi(t)) z_{1}-\Lambda(\varphi(t)) z_{2}\right) \frac{h(t)}{t} d t \tag{1.7}
\end{equation*}
$$

It is clear that if $\Gamma(t)=\Lambda(t)=\varphi(t):=I(t)=t$ and $h(t)=1$, then the operator $H_{\Gamma, \Lambda, \varphi, h}^{\left(z_{1}, z_{2}\right)}$ reduces to the classical directional Hardy Littlewood maximal function in the direction of the vector $z=z_{1}+z_{2}$. The classical directional Hardy-Littlewood maximal function in the direction of a vector z will be denoted by $H^{(z)}=H_{I, I, I, 1}^{\left(\frac{z}{2}, \frac{z}{2}\right)}$. It is well known that the maximal function $H^{(z)}$ is bounded on L^{p} for all $1<p<\infty$ with L^{p} bounds independent of the vector z. If the function h is in $L^{\infty}\left(\mathbb{R}_{+}\right)$and $\Gamma(t)=t$, then the special operator $H_{\varphi, h}^{(z)}=H_{I, \Lambda, \varphi, h}^{(z, 0)}$ is dominated by the maximal function.

$$
\begin{equation*}
H_{\varphi}^{(z)}(g)(x)=\sup _{j \in \mathbb{Z}} \int_{2^{j-1}}^{2^{j}} g(x-\varphi(t) z) \frac{1}{t} d t \tag{1.8}
\end{equation*}
$$

The L^{p} boundedness of the operator $H_{\varphi}^{(z)}$ has been discussed by several authors if the function φ is of special form. In particular, if φ is a polynomial mapping, then the L^{p} boundedness of $H_{\varphi}^{(z)}$ follows by a well known result on page 477 of [20]. On the other hand, if φ is convex increasing, then the L^{p} boundedness of $H_{\varphi}^{(z)}$ was discussed in [2], [9], among others. However, for general functions Γ, φ, and h, the boundedness of the general operators $H_{\Gamma, \varphi, h}^{(z)}=H_{\Gamma, \Lambda, \varphi, h}^{(z, 0)}$ is not known. Our main result concerning the maximal function $H_{\Gamma, \Lambda, \varphi, h}^{\left(z_{1}, z_{2}\right)}$ is the following:

Theorem 1.3. Let Γ and Λ be generalized polynomials of the form in (ii) in Theorem 1.2. Let φ and h be as in the statement of Theorem 1.2. Let $z_{1}, z_{2} \in \mathbb{R}^{n}$ and let $H_{\Gamma, \Lambda, \varphi, h}^{\left(z_{1}, z_{2}\right)}$ be given as in (1.7). Suppose that
$h \in \Lambda_{1}^{\eta}(\eta>0)$. Then

$$
\left\|H_{\Gamma, \Lambda, \varphi, h}^{\left(z_{1}, z_{2}\right)}(g)\right\|_{p} \leq C_{p}\|h\|_{\Lambda_{1}^{\eta}}\|g\|_{p}
$$

$1<p<\infty$ with constant C_{p} independent of h, η, g, z_{1}, z_{2}, and the coefficients of the generalized polynomials Γ and Λ, but depends on the function φ, and the numbers representing the powers of the monomials involved in the representations of the generalized polynomials Γ and Λ.

As a consequence of Theorem 1.3, we obtain the following result:
Corollary 1.4. Let $\Omega \in L^{1}\left(\mathbb{S}^{n-1}\right)$ be a homogeneous functions of degree zero on \mathbb{R}^{n}. Let Γ and Λ be generalized polynomials of the form in (ii) in Theorem 1.2. Let φ and h be as in the statement of Theorem 1.2. For two mappings $\Phi_{1}, \Phi_{2}: \mathbb{S}^{n-1} \rightarrow \mathbb{R}^{n}$, let $M_{\Omega, \Gamma, \Lambda, \varphi, h}^{\left(\Phi_{1}, \Phi_{2}\right)}$ be given by

$$
M_{\Omega, \Gamma, \Lambda, \varphi, h}^{\left(\Phi_{1}, \Phi_{2}\right)}(f)(x)=\sup _{j \in \mathbb{Z}} \int_{2^{j-1} \leq|y|<2^{j}} f\left(x-\Gamma(\varphi(t)) \Phi_{1}\left(y^{\prime}\right)-\Lambda(\varphi(t)) \Phi_{2}\left(y^{\prime}\right)\right) \Omega\left(y^{\prime}\right) \frac{h(|y|)}{|y|^{n}} d y
$$

Suppose that $h \in \Lambda_{1}^{\eta}(\eta>0)$. Then

$$
\left\|M_{\Omega, \Gamma, \Lambda, \varphi, h}^{\left(\Phi_{1}, \Phi_{2}\right)}(f)\right\|_{p} \leq C_{p}\|\Omega\|_{L^{1}}\|h\|_{\Lambda_{1}^{\eta}}\|f\|_{p}
$$

$1<p<\infty$ with constant C_{p} independent of $h, \eta, g, \Phi_{1}, \Phi_{2}, z_{1}, z_{2}$, and the coefficients of the generalized polynomials Γ and Λ, but depends on the function φ, and the numbers representing the powers of the monomials involved in the representations of the generalized polynomials Γ and Λ.

It is clear that Corollary 1.4 generalizes as well as improves the corresponding result on page 477 of [20].
Throughout this paper, the letter C will stand for a positive constant that may vary at each occurrence, but it is independent of the essential variables.

2. L^{p} Bounds of generalized bidirectional Hardy-Littlewood maximal functions

The main aim of this section is to prove the key result of Theorem 1.3. We shall start by establishing the following lemma:

Lemma 2.1. Let Γ and φ be as in the statement of Theorem 1.3. Let $z \in \mathbb{R}^{n}$ and let $H_{\Gamma, \varphi, h}^{(z)}$ be given by (1.7) with $z_{1}=z$ and $z_{2}=0$. Suppose that $h \in \Lambda_{1}^{\eta}(\eta>0)$. Then

$$
\left\|H_{\Gamma, \varphi, h}^{(z)}(g)\right\|_{p} \leq C_{p}\|h\|_{\Lambda_{1}^{\eta}}\|g\|_{p}
$$

$1<p<\infty$ with constant C_{p} independent of h, η, g, z, and the coefficients of the generalized polynomial Γ, but depends on the function φ and the numbers d_{1}, \ldots, d_{l}.

Proof. Suppose that

$$
\begin{equation*}
\Gamma(t)=\mu_{1} t^{d_{1}}+\cdots+\mu_{l} t^{d_{l}} \tag{2.1}
\end{equation*}
$$

AL-SALMAN/Turk J Math

for some $l \in \mathbb{N}$, distinct positive real numbers d_{1}, \ldots, d_{l} and real numbers μ_{1}, \ldots, μ_{l}. We shall argue by induction on the number of terms l. We start by assuming that $l=1$. Let $\varphi(t)=(\varphi(t))^{d_{1}}$ and $\tilde{z}=\mu_{1} z$. Since Γ is not constant, then $d_{1} \neq 0$ and $\mu_{1} \neq 0$. For $j \in \mathbb{Z}$, define the measure μ_{j} by

$$
\begin{equation*}
\int g d \mu_{j}=\int_{2^{j-1}}^{2^{j}} g(\varphi(t) \tilde{z}) \frac{h(t)}{t} d t \tag{2.2}
\end{equation*}
$$

Then

$$
\hat{\mu}_{j}(\xi)=\int_{2^{j-1}}^{2^{j}} e^{-i \varphi(t) \xi \cdot \tilde{z}} \frac{h(t)}{t} d t=\int_{\frac{1}{2}}^{1} e^{-i \varphi\left(2^{j} t\right) \xi \cdot \tilde{z}} \frac{h\left(2^{j} t\right)}{t} d t
$$

Choose a function $\psi \in \mathcal{C}^{\infty}(\mathbb{R})$ such that $\operatorname{supp}(\psi) \subset\left(0,10^{-9}\right), \psi \geq 1$, and $\int_{-\infty}^{\infty} \psi(s) d s=1$. Set

$$
\begin{equation*}
k_{j}(r)=\int_{0}^{\frac{r}{2}} h\left(2^{j}(r-s)\right) \psi_{u}(s) d s, r>0 \tag{2.3}
\end{equation*}
$$

where $\psi_{u}(s)=\frac{1}{u} \psi\left(\frac{s}{u}\right)$. Define the measure ν_{j} by

$$
\int g d \nu_{j}=\int_{\frac{1}{2}}^{1} \frac{k_{j}(t)}{t} g\left(\varphi\left(2^{j} t\right) \tilde{z}\right) d t
$$

Thus,

$$
\left|\hat{\mu}_{j}(\xi)\right| \leq\left|\hat{\mu}_{j}(\xi)-\hat{\nu}_{j}(\xi)\right|+\left|\hat{\nu}_{j}(\xi)\right| .
$$

Now, we use the properties of the function h to estimate $\left|\hat{\mu}_{j}(\xi)-\hat{\nu}_{j}(\xi)\right|$. In fact,

$$
\begin{align*}
\left|\hat{\mu}_{j}(\xi)-\hat{\nu}_{j}(\xi)\right| & \leq \int_{\frac{1}{2}}^{1}\left|h\left(2^{j} t\right)-k_{j}(t)\right| \frac{d t}{t} \\
& =\int_{\frac{1}{2}}^{1} \left\lvert\, \int_{r<t / 2}\left(h\left(2^{j}(t-r)-h\left(2^{j} t\right)\right) \psi_{u}(r) d r \left\lvert\, \frac{d t}{t}\right.\right.\right. \\
& \leq \int_{r<1 / 4} \int_{\frac{1}{2}}^{1} \left\lvert\, h\left(\left.2^{j}(t-r)-h\left(2^{j} t\right)\left|\frac{d t}{t}\right| \psi_{u}(r) \right\rvert\, d r\right.\right. \\
& \leq \int_{r<1 / 4} \int_{2^{j-1}}^{2^{j}}\left|h\left(t-2^{j} r\right)-h(t)\right| \frac{d t}{t}\left|\psi_{u}(r)\right| d r \\
& \leq C \omega(h, u) \leq u^{\eta} C\|h\|_{\Lambda^{\eta}} \tag{2.4}
\end{align*}
$$

AL-SALMAN/Turk J Math

Since φ is convex increasing and $\varphi(0)=0$, we have

$$
\begin{align*}
\varphi(2 r) & \geq 2 \varphi(r) \tag{2.5}\\
r \varphi^{\prime}(r) & \geq \varphi(r) \tag{2.6}
\end{align*}
$$

for every $r>0$. Thus, for $1 / 2 \leq t<r / 2^{j} \leq 1$, we can easily show that

$$
\begin{align*}
\left|\frac{d}{d t}\left(\varphi\left(2^{j} t\right)\right)\right| & =\left|d_{1}\left(\varphi\left(2^{j} t\right)\right)^{d_{1}-1} 2^{j} \varphi^{\prime}\left(2^{j} t\right)\right| \\
& =\left|d_{1}\left(\varphi\left(2^{j} t\right)\right)^{d_{1}-1} 2^{j} t \varphi^{\prime}\left(2^{j} t\right)\right| \\
& \geq \frac{d_{1}}{t}\left(\varphi\left(2^{j} t\right)\right)^{d_{1}} \geq d_{1} \varphi\left(2^{j-1}\right) \tag{2.7}
\end{align*}
$$

Thus, since φ is increasing, by the inequality (2.7) along with van der Corput Lemma [20], we have

$$
\begin{align*}
\left|\int_{2^{j-1}}^{r} e^{-i \varphi(t) \xi \cdot \tilde{z}} \frac{d t}{t}\right| & \leq \frac{1}{d_{1}}\left|\varphi\left(2^{j-1}\right) \xi \cdot \tilde{z}\right|^{-1}\left(\frac{1}{r}+\int_{2^{j-1}}^{r} \frac{1}{t^{2}} d t\right) \\
& \leq \frac{1}{d_{1}}\left|\varphi\left(2^{j-1}\right) \xi \cdot \tilde{z}\right|^{-1} \tag{2.8}
\end{align*}
$$

for all $2^{j-1} \leq r \leq 2^{j}$ uniformly in r. Therefore, we have

$$
\begin{equation*}
\left|\hat{\nu}_{j}(\xi)\right| \leq \frac{1}{d_{1}}\left|\varphi\left(2^{j-1}\right) \xi \cdot \tilde{z}\right|^{-1}\left(\left|k_{j}(1)\right|+\int_{\frac{1}{2}}^{1}\left|k_{j}^{\prime}(r)\right| d r\right) \leq \frac{C}{u}\left|\varphi\left(2^{j-1}\right) \xi \cdot \tilde{z}\right|^{-1} \tag{2.9}
\end{equation*}
$$

Now, if we take $u=\left|\varphi\left(2^{j-1}\right) \xi \cdot \tilde{z}\right|^{-\frac{1}{\eta+1}}$, then we have

$$
\begin{equation*}
\left|\hat{\mu}_{j}(\xi)\right| \leq\left|\hat{\mu}_{j}(\xi)-\hat{\nu}_{j}(\xi)\right|+\left|\hat{\nu}_{j}(\xi)\right| \leq C\left|\varphi\left(2^{j-1}\right) \xi \cdot \tilde{z}\right|^{-\frac{\eta}{\eta+1}} \tag{2.10}
\end{equation*}
$$

Next, let

$$
A_{j}=\int_{2^{j-1}}^{2^{j}} \frac{h(t)}{t} d t
$$

Then $\left|A_{j}\right| \leq\|h\|_{\Delta_{1}}$ and

$$
\begin{equation*}
\left|\hat{\mu}_{j}(\xi)-A_{j}\right|=\left|\int_{2^{j-1}}^{2^{j}}\left(e^{-i \varphi(t) \xi \cdot \tilde{z}}-1\right) h(t) \frac{d t}{t}\right| \leq\|h\|_{\Delta_{1}}\left|\varphi\left(2^{j}\right) \xi \cdot \tilde{z}\right| \tag{2.11}
\end{equation*}
$$

Now choose $\theta \in \mathcal{S}\left(\mathbb{R}^{n}\right)$ such that $\hat{\theta}(\xi)=1$ if $|\xi|<\frac{1}{4}$ and $\hat{\theta}(\xi)=0$ if $|\xi|>1$. Let $\hat{\pi}_{j}(\xi)=\hat{\theta}\left(\varphi\left(2^{j}\right) \xi\right)$ and define σ_{j} by

$$
\begin{equation*}
\sigma_{j}=\mu_{j}-A_{j} \pi_{j} \tag{2.12}
\end{equation*}
$$

AL-SALMAN/Turk J Math

Thus, by (2.10), (2.11), and the properties of the function θ, we have

$$
\begin{equation*}
\left|\hat{\sigma}_{j}(\xi)\right| \leq C\|h\|_{\Lambda_{1}^{\eta}} \min \left\{\left|\varphi\left(2^{j-1}\right) \xi \cdot \tilde{z}\right|^{-\frac{\eta}{\eta+1}},\left|\varphi\left(2^{j}\right) \xi \cdot \tilde{z}\right|\right\} \tag{2.13}
\end{equation*}
$$

Moreover, by (2.12), we arrive at the following:

$$
\begin{align*}
H_{\Gamma, \varphi, h}^{(z)} g(x) & \leq \sup _{j \in \mathbb{Z}}\left|\sigma_{j} * g(x)\right|+\sup _{j \in \mathbb{Z}}\left|A_{j} \pi_{j} * g(x)\right| \\
& \leq\left(\sum_{j}\left|\sigma_{j} * g(x)\right|^{2}\right)^{\frac{1}{2}}+\|h\|_{\Delta_{1}} M g(x) \\
& =S_{z, h}(g)(x)+\|h\|_{\Delta_{1}} M g(x) \tag{2.14}
\end{align*}
$$

where M is the Hardy-Littlewood maximal function. Hence, the L^{p} boundedness of the operator follows by a bootstrapping argument as in [9].

Next, we assume that $H_{\Gamma, \varphi, h}^{(z)}$ is bounded on L^{p} for all $1<p<\infty$ provided that the number of terms l of the generalized polynomial Γ is less than $M \in \mathbb{N}$. Let Γ be given by (2.1) with $l=M+1$. Assume that $d_{1} \leq d_{2} \leq \ldots \leq d_{M+1}$. Let $l_{0}=\max \left\{1 \leq l \leq M: \mu_{l} \neq 0\right\}$ and let

$$
\begin{equation*}
\Gamma_{l_{0}}(t)=\mu_{1} t^{d_{1}}+\cdots+\mu_{l_{0}} t^{d_{l_{0}}} \tag{2.15}
\end{equation*}
$$

For $j \in \mathbb{Z}$, define the measure $\mu_{\Gamma, j}$ and $\mu_{\Gamma_{l_{0}}, j}$ by

$$
\begin{equation*}
\int g d \mu_{\Gamma, j}=\int_{2^{j-1}}^{2^{j}} g(\Gamma(\varphi(t)) \tilde{z}) \frac{h(t)}{t} d t \tag{2.16}
\end{equation*}
$$

and

$$
\begin{equation*}
\int g d \mu_{\Gamma_{l_{0}}, j}=\int_{2^{j-1}}^{2^{j}} g\left(\Gamma_{l_{0}}(\varphi(t)) \tilde{z}\right) \frac{h(t)}{t} d t \tag{2.17}
\end{equation*}
$$

Let k_{j}, ψ, and ψ_{u} be as above. Let $\nu_{\Gamma, j}$ be given by

$$
\int g \nu_{\Gamma, j}=\int_{\frac{1}{2}}^{1} \frac{k_{j}(t)}{t} g(\Gamma(\varphi(t)) \tilde{z}) d t
$$

Then by similar argument as that led to (2.4), we obtain

$$
\begin{equation*}
\left|\hat{\mu}_{\Gamma, j}(\xi)-\hat{\nu}_{\Gamma, j}(\xi)\right| \leq u^{\eta} C\|h\|_{\Lambda^{\eta}} \tag{2.18}
\end{equation*}
$$

Now, for $2^{j-1} \leq r \leq 2^{j}$, by proposition on page 184 in [16](van der Corput Lemma for generalized polynomials), we have

$$
\begin{equation*}
\left.\left|\int_{\varphi\left(2^{j-1}\right)}^{\varphi(r)} e^{-i \Gamma(s) \xi \cdot \tilde{z}} d s\right|=\varphi(r)\left|\int_{\frac{\varphi\left(2^{j-1}\right)}{\varphi(r)}}^{1} e^{-i \Gamma(\varphi(r) s) \xi \cdot \tilde{z}} d s\right| \leq C \varphi(r) \right\rvert\,\left(\left.\varphi\left(2^{j-1}\right)^{d_{M+1}} L_{d, z}(\xi)\right|^{-\varepsilon}\right. \tag{2.19}
\end{equation*}
$$

AL-SALMAN/Turk J Math

for some $0<\varepsilon<\min \left\{\frac{1}{\mu_{M+1}}, \frac{1}{M+1}\right\}$, with bound C independent of $j, r, \mu_{2}, \ldots, \mu_{M+1}$. Here,

$$
L_{d, z}(\xi)=\left(\mu_{M+1}\right)^{d_{M+1}} \xi \cdot \tilde{z}
$$

Thus, by using proper change of variables, we obtain

$$
\begin{align*}
\left.\int_{2^{j-1}}^{r} e^{-i \Gamma(\varphi(t)) \xi \cdot \tilde{z}} \frac{d t}{t} \right\rvert\, & =\left|\int_{\varphi\left(2^{j-1}\right)}^{\varphi(r)} e^{-i \Gamma(s) \xi \cdot \tilde{z}} \frac{d s}{\varphi^{-1}(s) \varphi^{\prime}\left(\varphi^{-1}(s)\right)}\right| \\
& \left.\leq \frac{C \varphi(r)}{2^{j} \varphi^{\prime}\left(2^{j}\right)} \right\rvert\,\left(\left.\varphi\left(2^{j-1}\right)^{d_{M+1}} L_{d, z}(\xi)\right|^{-\varepsilon}\right. \\
& \left.\leq \frac{C \varphi(r)}{\varphi\left(2^{j}\right)} \right\rvert\,\left(\left.\varphi\left(2^{j-1}\right)^{d_{M+1}} L_{d, z}(\xi)\right|^{-\varepsilon}\right. \tag{2.20}\\
& \leq C \mid\left(\left.\varphi\left(2^{j-1}\right)^{d_{M+1}} L_{d, z}(\xi)\right|^{-\varepsilon}\right. \tag{2.21}
\end{align*}
$$

for all $2^{j-1} \leq r \leq 2^{j}$ uniformly in r. Therefore, by similar argument as in (2.9), we have

$$
\begin{equation*}
\left.\left|\hat{\nu}_{\Gamma, j}(\xi)\right| \leq \frac{C}{u} \right\rvert\,\left(\left.\varphi\left(2^{j-1}\right)^{d_{M+1}} L_{d, z}(\xi)\right|^{-\varepsilon}\right. \tag{2.22}
\end{equation*}
$$

By (2.22) and (2.18) with

$$
u=\left|(\varphi(r))^{d_{M+1}} L_{d, z}(\xi)\right|^{-\frac{1}{\eta+1}}
$$

we get

$$
\begin{equation*}
\left|\hat{\mu}_{\Gamma, j}(\xi)\right| \leq C \mid\left(\left.\varphi\left(2^{j-1}\right)^{d_{M+1}} L_{d, z}(\xi)\right|^{-\frac{\eta}{\eta+1}}\right. \tag{2.23}
\end{equation*}
$$

Next, it can be easily seen that

$$
\begin{equation*}
\left|\hat{\mu}_{\Gamma, j}(\xi)-\hat{\nu}_{\Gamma, j}(\xi)\right| \leq\|h\|_{\Delta_{1}}\left|\left(\varphi\left(2^{j}\right)\right)^{d_{M+1}} L_{d, z}(\xi)\right| \tag{2.24}
\end{equation*}
$$

Again, we choose $\theta \in \mathcal{S}\left(\mathbb{R}^{n}\right)$ such that $\hat{\theta}(\xi)=1$ if $|\xi|<\frac{1}{4}$ and $\hat{\theta}(\xi)=0$ if $|\xi|>1$. Let $\hat{\pi}_{j}(\xi)=\hat{\theta}\left(\left(\varphi\left(2^{j}\right)\right)^{d_{M+1}} \xi\right)$ and define $\sigma_{\Gamma, j}$ by

$$
\begin{equation*}
\sigma_{\Gamma, j}=\mu_{\Gamma, j}-\pi_{j} * \mu_{\Gamma_{l_{0}}, j} \tag{2.25}
\end{equation*}
$$

Thus, by (2.23), (2.24), and the properties of function θ, we have

$$
\begin{equation*}
\left|\sigma_{\Gamma, j}(\xi)\right| \leq C\|h\|_{\Lambda_{1}^{\eta}} \min \left\{\left|\left(\varphi\left(2^{j-1}\right)\right)^{d_{M+1}} L_{d, z}(\xi)\right|^{-\frac{\eta}{\eta+1}},\left|\left(\varphi\left(2^{j}\right)\right)^{d_{M+1}} L_{d, z}(\xi)\right|\right\} . \tag{2.26}
\end{equation*}
$$

Moreover, by (2.25), we obtain

$$
\begin{align*}
H_{\Gamma, \varphi, h}^{(z)} g(x) & \leq \sup _{j \in \mathbb{Z}}\left|\sigma_{\Gamma, j} * g(x)\right|+\sup _{j \in \mathbb{Z}}\left|\pi_{j} * \mu_{\Gamma_{l_{0}}, j} * g(x)\right| \\
& \leq\left(\sum_{j}\left|\sigma_{\Gamma, j} * g(x)\right|^{2}\right)^{\frac{1}{2}}+\|h\|_{\Delta_{1}} \mu_{\Gamma_{l_{0}}}^{*} g(x) \\
& =G_{z, h}(g)(x)+\|h\|_{\Delta_{1}} \mu_{\Gamma_{l_{0}}}^{*} g(x), \tag{2.27}
\end{align*}
$$

where $\mu_{\Gamma_{l_{0}}}^{*}$ is the maximal function

$$
\begin{equation*}
\mu_{\Gamma_{L_{0}}}^{*}(g)(x)=\sup _{j}| | \mu_{\Gamma_{l_{0}}, j}|* g(x)| . \tag{2.28}
\end{equation*}
$$

Therefore, by induction assumption, we have

$$
\begin{equation*}
\left\|\mu_{\Gamma_{l_{0}}}^{*}(g)\right\|_{p} \leq C_{p}\|h\|_{\Lambda_{1}^{\eta}}\|g\|_{p} \tag{2.29}
\end{equation*}
$$

for all $1<p<\infty$. Hence, the L^{p} boundedness of the operator $H_{\Gamma, \varphi, h}^{(z)}$ follows by a bootstrapping argument as in [9]. This completes the proof.

Now, we prove Theorem 1.3:
Proof (of Theorem 1.3). Let $\Gamma, \Lambda, \varphi, z_{1}, z_{2}$, and h be as in the statement of Theorem 1.3. If $z_{1}=0$ or $z_{2}=0$, then the result follows by Lemma 2.1. Thus, we assume that $z_{1} \neq 0$ and $z_{2} \neq 0$. We shall argue by induction on the number of terms of Γ. Assume that Γ is given by (2.1) with $l=1$ and let $H_{\Lambda, \varphi, h}^{\left(z_{2}\right)}$ be the operator given by (1.7) with $z_{1}=0$. Then by Lemma 2.1, we have

$$
\begin{equation*}
\left\|H_{\Lambda, \varphi, h}^{\left(z_{2}\right)}(g)\right\|_{p} \leq C_{p}\|h\|_{\Lambda_{1}^{\eta}}\|g\|_{p} \tag{2.30}
\end{equation*}
$$

for $1<p<\infty$ with constant C_{p} independent of h, η, g and the coefficients of the generalized polynomial Λ. For each $j \in \mathbb{Z}$, let ν_{j} and ϑ_{j} be the measures defined by

$$
\begin{equation*}
\int f d \nu_{j}=\int_{2^{j-1}}^{2^{j}} f\left(\Gamma(\varphi(t)) z_{1}+\Lambda(\varphi(t)) z_{2}\right) \frac{h(t)}{t} d t \tag{2.31}
\end{equation*}
$$

and

$$
\begin{equation*}
\int f d \vartheta_{j}=\int_{2^{j-1}}^{2^{j}} f\left(\Lambda(\varphi(t)) z_{2}\right) \frac{h(t)}{t} d t \tag{2.32}
\end{equation*}
$$

Then

$$
\begin{equation*}
H_{\Gamma, \Lambda, \varphi, h}^{\left(z_{1}, z_{2}\right)} f(x)=\sup _{j \in \mathbb{Z}}| | \nu_{j}|* f(x)| \tag{2.33}
\end{equation*}
$$

and

$$
\begin{equation*}
H_{\Lambda, \varphi, h}^{\left(z_{2}\right)} f(x)=\sup _{j \in \mathbb{Z}}| | \vartheta_{j}|* f(x)| \tag{2.34}
\end{equation*}
$$

By (2.30) and repeating the same steps (2.16)-(2.29) with the proper modifications, we obtain the desired estimates for $H_{\Gamma, \Lambda, \varphi, h}^{\left(z_{1}, z_{2}\right)}$.

Next, we assume that $H_{\Gamma, \Lambda, \varphi, h}^{\left(z_{1}, z_{2}\right)}$ has the L^{p} estimates stated in Theorem 1.3 whenever Γ has l terms with $l \leq M$. Let Γ be given by (2.1) with $l=M+1$ and let

$$
\begin{equation*}
\Gamma_{M}(t)=\Gamma(t)-\mu_{M+1} t^{d_{M+1}} \tag{2.35}
\end{equation*}
$$

For each $j \in \mathbb{Z}$, let $\nu_{M+1, j}$ and $\vartheta_{M, j}$ be the measures defined by

$$
\begin{equation*}
\int f d \nu_{M+1, j}=\int_{2^{j-1}}^{2^{j}} f\left(\Gamma(\varphi(t)) z_{1}+\Lambda(\varphi(t)) z_{2}\right) \frac{h(t)}{t} d t \tag{2.36}
\end{equation*}
$$

and

$$
\begin{equation*}
\int f d \vartheta_{M, j}=\int_{2^{j-1}}^{2^{j}} f\left(\Gamma_{M}(\varphi(t)) z_{1}+\Lambda(\varphi(t)) z_{2}\right) \frac{h(t)}{t} d t \tag{2.37}
\end{equation*}
$$

Then

$$
\begin{equation*}
H_{\Gamma, \Lambda, \varphi, h}^{\left(z_{1}, z_{2}\right)} f(x)=\sup _{j \in \mathbb{Z}}| | \nu_{M+1, j}|* f(x)| \tag{2.38}
\end{equation*}
$$

Let

$$
\begin{equation*}
\left(\vartheta_{M}\right)^{*} f(x)=\sup _{j \in \mathbb{Z}}| | \vartheta_{M, j}|* f(x)| \tag{2.39}
\end{equation*}
$$

By induction assumption, we have

$$
\begin{equation*}
\left\|\left(\vartheta_{M}\right)^{*}(f)\right\|_{p} \leq C_{p}\|h\|_{\Lambda_{1}^{\eta}}\|f\|_{p} \tag{2.40}
\end{equation*}
$$

$1<p<\infty$ with constant C_{p} independent of h, η, f and the coefficients of the generalized polynomial Γ and Λ. Thus, the desired L^{p} boundedness of $H_{\Gamma, \Lambda, \varphi, h}^{\left(z_{1}, z_{2}\right)}$ follows by similar argument as in the first step of the induction argument with minor modifications. This completes the proof.

2.1. Proof of main results

Proof of Theorem 1.3. Since $\Omega \in H^{1}\left(\mathbb{S}^{n-1}\right)$, there exists complex numbers λ_{j} and functions b_{j} on \mathbb{S}^{n-1} such that

$$
\begin{equation*}
\Omega=\sum_{j} \lambda_{j} b_{j} \tag{2.41}
\end{equation*}
$$

and

$$
\|f\|_{H^{1}\left(\mathbb{S}^{n-1}\right)} \approx \sum_{j}\left|\lambda_{j}\right|
$$

where b_{j} is either in $L^{\infty}\left(\mathbb{S}^{n-1}\right)$ and $\left\|b_{j}\right\|_{\infty} \leq 1$ or $b_{j}(\cdot)$ satisfies the following properties:

$$
\begin{gather*}
\operatorname{supp}\left(b_{j}\right) \subset \mathbb{S}^{n-1} \cap \mathbf{B}(\zeta, \rho), \text { where } \mathbf{B}(\zeta, \rho)=\left\{y \in \mathbb{R}^{n}:|y-\zeta|<\rho\right\} \tag{2.42}\\
\left\|b_{j}\right\|_{\infty} \leq \rho^{-n+1} ; \tag{2.43}\\
\int_{\mathbb{S}^{n-1}} b_{j}\left(y^{\prime}\right) d \sigma\left(y^{\prime}\right)=0 \tag{2.44}
\end{gather*}
$$

for some $\zeta \in \mathbb{S}^{n-1}$ and $\rho \in(0,2]$. If b_{j} satisfies (2.42)-(2.44), then it is called a regular atom. Otherwise, it is called an exceptional atom. (see [17]). By the decomposition (2.41), we only need to show that the theorem

AL-SALMAN/Turk J Math

holds for regular atoms with L^{p} norms independent of the particular atom. Let b be a regular atom. By using a proper rotation, we may assume that $\operatorname{supp}(b) \subset \mathbb{S}^{n-1} \cap \mathbf{B}(\mathbf{e}, \rho)$ such that $\mathbf{e}=(0, \cdots, 1)$. We shall also assume that ρ is very small. The case for large ρ follows by similar (but easier) argument. Let Γ be given as in (2.1). For $1 \leq s \leq l$, let Γ_{s} be given by (2.15) with l_{0} is replaced by s. Also, for $1 \leq s \leq l$, let $\Psi_{s}:[0, \infty) \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be given by

$$
\Psi_{s}(t, y)=\Gamma_{s}(t) y^{\prime}-\left(\sum_{j=s+1}^{l} \mu_{j} t^{d_{j}}\right) \mathbf{e}
$$

Here, we use the convention $\sum_{j \in \varnothing}=0$. We shall let $\Gamma_{0}(t)=0$.
For $0 \leq s \leq l$ and $k \in \mathbb{Z}$, let $\sigma_{s, k}$ be the measure that is defined in the Fourier transform side by

$$
\begin{equation*}
\hat{\sigma}_{s, k}(\xi)=\int_{2^{k} \leq|y|<2^{k+1}} e^{i \Psi_{s}\left(\varphi(t), y^{\prime}\right) \cdot \xi} \frac{h(|y|) b\left(y^{\prime}\right)}{|y|^{n}} d y \tag{2.45}
\end{equation*}
$$

By the cancellation condition (2.44), we have

$$
\hat{\sigma}_{0, k}(\xi)=0
$$

Moreover,

$$
\begin{equation*}
\mathbf{T}_{\Omega, \Gamma, \varphi, h} f(x)=\sum_{k} \sigma_{s, k} * f(x) \tag{2.46}
\end{equation*}
$$

Let

$$
\left(\sigma_{s}\right)^{*}(f)(x)=\sup _{k \in \mathbb{Z}}| | \sigma_{s, k}|* f(x)|
$$

By Corollary 1.4, we obtain

$$
\begin{equation*}
\left\|\left(\sigma_{s}\right)^{*}(f)\right\|_{p} \leq C_{p}\|b\|_{L^{1}}\|h\|_{\Lambda_{1}^{\eta}}\|f\|_{p} \tag{2.47}
\end{equation*}
$$

$1<p<\infty$ with constant C_{p} independent of $h, \eta, g, \Phi_{1}, \Phi_{2}$, and the coefficients of the generalized polynomials Γ and Λ, but it depends on the function φ, and the numbers representing the powers of the monomials involved in the representations of the generalized polynomials Γ and Λ.

Now, it is straightforward to see that

$$
\begin{equation*}
\left|\hat{\sigma}_{s, k}(\xi)\right| \leq \rho^{-n+1} \int_{\mathbf{B}(\mathbf{e}, \rho)}\left|\mathbf{I}_{k}\left(y^{\prime}, z^{\prime}\right)\right| d \sigma\left(y^{\prime}\right) d \sigma\left(y^{\prime}\right) \tag{2.48}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathbf{I}_{k, s}\left(y^{\prime}, \xi\right)=\int_{2^{j-1}}^{2^{j}} e^{-i \Psi_{s}\left(\varphi(t), y^{\prime}\right) \cdot \xi} \frac{h(t) d t}{t} \tag{2.49}
\end{equation*}
$$

By similar argument as that led to (2.23), we have

$$
\begin{equation*}
\left|\mathbf{I}_{k, s}\left(y^{\prime}, \xi\right)\right| \leq C \mid\left(\left.\varphi\left(2^{j-1}\right)^{d_{s}} \mu_{s} \xi \cdot y^{\prime}\right|^{-\frac{\eta}{\eta+1}}\right. \tag{2.50}
\end{equation*}
$$

By (2.48) and (2.50), we obtain

$$
\begin{equation*}
\left|\hat{\sigma}_{s, k}(\xi)\right| \leq C \mid\left(\left.\varphi\left(2^{j-1}\right)^{d_{s}} \mu_{s} \rho \xi\right|^{-\frac{\eta}{\eta+1}}\right. \tag{2.51}
\end{equation*}
$$

with constant C independent of the essential variables.
On the other hand, it is not hard to see that

$$
\begin{equation*}
\left|\hat{\sigma}_{s, k}(\xi)-\hat{\sigma}_{s-1, k}(\xi)\right| \leq C \mid\left(\varphi\left(2^{j}\right)^{d_{s}} \mu_{s} \rho \xi \mid\right. \tag{2.52}
\end{equation*}
$$

Hence, the result follows by (2.46), (2.47), (2.51), (2.52), and Lemma 5.2 in ([10])
Now we show that Corollary 1.4 is an immediate consequence of Theorem 1.3. In fact, by generalized Minkowsk's inequality and Theorem 1.3, we have

$$
\begin{aligned}
\left\|M_{\Omega, \Gamma, \Lambda, \varphi, h}^{\left(\Phi_{1}, \Phi_{2}\right)}(f)\right\|_{p} & \leq \int_{\mathbb{S}^{n-1}}\left|\Omega\left(y^{\prime}\right)\left\|H_{\Gamma, \Lambda, \varphi, h}^{\left(\Phi\left(y_{1}^{\prime}\right), \Phi_{2}\left(y^{\prime}\right)\right)} f(x)\right\|_{p}\right| d \sigma\left(y^{\prime}\right) \\
& \leq C_{p}\|h\|_{\Lambda_{1}^{\eta}}\|\Omega\|_{L^{1}}\|f\|_{p}
\end{aligned}
$$

References

[1] Al-Hasan A, Fan D. L^{p} boundedness of a singular integral operator. Canadian Mathematical Bulletin 1998; 41 (4): 404-412.
[2] Al-Salman A. Marcinkiewicz functions along flat surfaces with Hardy space kernels. Journal of Integral Equations and Applications 2005; 17 (4): 357-373.
[3] Al-Salman A, Al-Qassem H. Singular integrals along flat curves with kernels in the Hardy space $H^{1}\left(S^{n-1}\right)$. FSORP Conference Proceedings, Stefan Samko, Amarino Lebre, and António F. dos Santos (eds.), Kluwer Academic Publishers, Madeira, Portugal, 2002; 1-12.
[4] Al-Salman A, Pan Y. Singular integrals with rough kernels in $L \log ^{+} L\left(S^{n-1}\right)$. Journal of London Mathematical Society 2002; 66 (2): 153-174.
[5] Al-Salman A. L^{p} estimates of singular integral operators of convolution type with rough kernels. Ph. D. Thesis, University of Pittsburgh 1999.
[6] Calderón A, Zygmund A. On singular integrals. American Journal of Mathematics 1956; 78: 289-309.
[7] Connett WC. Singular integrals near L^{1}. Proceedings of Symposia in Pure Mathematics of the American Mathematical Society. (S. Wainger and G. Weiss, eds) 1979; 35: 163-165.
[8] Coifman RR, Weiss G. Extensions of Hardy spaces and their use in analysis. Bulletin of the American Mathematical Society 1977; 83: 569-645.
[9] Duoandikoetxea J, Rubio de Francia JL. Maximal and singular integral operators via Fourier transform estimates. Inventiones mathematicae 1986; 84: 541-561.
[10] Fan D, Guo K, Pan Y. L^{p} estimates for singular integrals associated to homogeneous surfaces. Journal für die reine und angewandte Mathematik 2002; 542: 1-22. doi: 10.1515/crll.2002.006
[11] Fan D, Pan Y. Singular integral operators with rough kernels supported by subvarieties. American Journal of Mathematics 1997; 119: 799-839.
[12] Fefferman R. A note on singular integrals. Proceedings of the American Mathematical Society 1979; 74: 266-270.
[13] Kim W, Wainger S, Wright J, Ziesler S. Singular integrals and maximal functions associated to surfaces of revolution. Bulletin of London Mathematical Society 1996; 28: 291-296.

AL-SALMAN/Turk J Math

[14] Liu F, Zhang P. A note on certain integrals along polynomial compund curves. Journal of Inequalities and Applications 2019; 2019 (67): 1-16.
[15] Namazi J. A singular integral. Proceedings of the American Mathematical Society 1986; 9: 421-424.
[16] Ricci F, Stein EM. Harmonic analysis on nilpotent groups and singular integrals I: Oscillatory integrals. Journal of Functional Analysis 1987; 73: 179-194.
[17] Ricci F, Weiss G. A characterization of $H^{1}\left(\Sigma_{n-1}\right)$. Proceedings of Symposia in Pure Mathematics of the American Mathematical Society. (S. Wainger and G. Weiss, eds) 1979; 35: 289-294.
[18] Sato S. Singular integrals associated with functions of finite type and extrapolation. Analysis International Mathematical Journal of Analysis and its Applications 2011; 31 (3): 273-291.
[19] Seeger A. Singular integral operators with rough convolution kernels. Journal of the American Mathematical Society 1996; 9 (1): 95-105.
[20] Stein EM. Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton University Press, 1993.
[21] Zhang D. A note on Marcinkiewicz integrals along submanifolds of finite type. Journal of Function Spaces 2018; 2018: 12 pages. doi: $10.1155 / 2018 / 7052490$

[^0]: *Correspondence: alsalman@squ.edu.om
 2010 AMS Mathematics Subject Classification: Primary 42B20; Secondary 42B15, 42B25.

