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Abstract: In this paper, we study singular integrals along compound curves with Hardy space kernels. We introduce a
class of bidirectional generalized Hardy Littlewood maximal functions. We prove that the considered singular integrals
and the maximal functions are bounded on Lp, 1 < p < ∞ provided that the compound curves are determined by
generalized polynomials and convex increasing functions. The obtained results offer Lp estimates that are not only new
but also they generalize as well as improve previously known results.
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1. Introduction and statement of results
Let Rn, n ≥ 2, be the n -dimensional Euclidean space and Sn−1 be the unit sphere in Rn equipped with the
induced Lebesgue measure dσ . For non zero y ∈ Rn , we let y′ = |y|−1

y . Suppose that Ω ∈ L1(Sn−1) is a
homogeneous functions of degree zero on Rn and satisfies the cancellation condition∫

Sn−1

Ω(y′)dσ(y′) = 0. (1.1)

In 1979, Fefferman [12] introduced the following class of singular integral operators

TΩ,hf(x) = p.v.
∫
Rn

f(x− y)
h(|y|)Ω(y′)

|y|n
dy, (1.2)

where h : R+ → R is a suitable measurable function. It is clear that if h(t) = 1 , then the operator TΩ,h reduces
to the classical Calderón–Zygmund singular integral operator, which will be denoted by TΩ . In [6], Calderón and
Zygmund showed that TΩ is bounded on Lp for all p ∈ (1,∞) provided that Ω ∈ L log+ L(Sn−1) . Moreover,
they showed that the condition Ω ∈ L log+ L(Sn−1) is nearly optimal in the sense that the Lp boundedness of
TΩ may not hold if Ω ∈ L(log+ L)1−ε(Sn−1)\L log+ L(Sn−1) for some ε > 0 . It was proved independently by
Connett [7] and Ricci-Weiss [17] that the operator TΩ is bounded on Lp for all p ∈ (1,∞) if Ω ∈ H1(Sn−1) ,
the Hardy space in the sense of Coifman and Weiss [8]. Fefferman [12] proved that TΩ,h is bounded on Lp for
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all 1 < p < ∞ provided that Ω ∈ Lipα(Sn−1) for some α > 0 and that h ∈ L∞(R+) . Here, R+ = (0,∞) .
In 1986, Namazi [15] showed that Fefferman’s result still holds under the weaker condition Ω ∈ Lq(Sn−1) for
some q > 1 . Subsequently, the condition h ∈ L∞(R+) was very much relaxed by Duoandikoetxea and Rubio
de Francia [9]. In fact, they showed that the operator TΩ,h is bounded on Lp for all 1 < p <∞ provided that
Ω ∈ Lq(Sn−1) for some q > 1 and h satisfies the condition

∥h∥∆2
= sup

j∈Z

 2j+1∫
2j

|h(t)|2 dt
t


1
2

<∞. (1.3)

In 1997, Fan and Pan [11] improved Duoandikoetxea and Rubio de Francia’s result by showing that the operator
TΩ,h is bounded on Lp for all 1 < p <∞ provided that Ω ∈ Lq(Sn−1) for some q > 1 and h lies in the class
∆γ(R+) for some γ > 1 where ∆γ(R+) is the class of all measurable functions h : R+ → R satisfying (1.3)
with 2 replaced by γ . It should be noted here that

L∞(R+) ⊂
⋂
γ>1

∆γ(R+)

and that
∆γ2(R+) ⊂ ∆γ1(R+) whenever γ1 ≤ γ2.

In [4], Al-Salman and Pan showed that the condition Ω ∈ Lq(Sn−1) can be replaced by the weaker
condition Ω ∈ L logL(Sn−1) . Here, we remark that

Lipα(Sn−1) ⫋ Lq(Sn−1) ⫋ L(log+ L)(Sn−1) ⫋ H1(Sn−1) ⫋ L1(Sn−1)

for all α > 0 and q > 1 .
In this paper, we consider singular integrals along subvarities determined by compound curves. Let

φ : [0,∞) → R be a C1([0,∞)) function that satisfies φ(0) = 0 . For a suitable function Γ : [0,∞) → R , we
consider the singular integral operator

TΩ,Γ,φ,hf(x) = p.v.
∫
Rn

f(x− Γ(φ(|y|))y′)h(|y|)Ω(y
′)

|y|n
dy. (1.4)

It is clear that if φ(t) = Γ(t) := I(t) = t , then the operator TΩ,Γ,φ,h reduces to the classical operator TΩ,h in
(1.2). In the following few remarks, we shed some light on the history behind the consideration of the class of
operators TΩ,Γ,φ,h in (1.4):

(i) When h ∈ L∞(R+) , φ(t) = t , and Γ is a real valued polynomial, Al-Hasan and Fan [1] proved that the
corresponding special operator

TΩ,Γ,hf(x) = p.v.
∫
Rn

f(x− Γ(|y|)y′)h(|y|)Ω(y
′)

|y|n
dy. (1.5)

is bounded on Lp for all p ∈ (1,∞) if Ω ∈ H1(Sn−1) . Subsequently, when h(t) = 1 and Γ(t) is convex
increasing, Al-Salman (1.5) showed that the corresponding operator TΩ,Γ = TΩ,Γ,1 is bounded on Lp for all
p ∈ (1,∞) provided that Ω ∈ H1(Sn−1) [5].
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(ii) Let TΩ,Γ be the operator given by (1.4) with φ(t) = t and h(t) = 1 , i.e.

TΩ,Γf(x) = p.v.
∫
Rn

f(x− Γ(|y|)y′)Ω(y
′)

|y|n
dy.

In [3], Al-Salman and Al-Qassem generalized the Lp boundedness result in [5] by proving that the operator
TΩ,Γ is bounded on Lp(Rn) for every 1 < p <∞ provide that Ω ∈ H1(Sn−1) and Γ is either convex increasing
with Γ(0) = 0 or a generalized polynomial. A mapping Γ : R+ → R ia a generalized polynomial if it has the
form

Γ(t) = µ1t
d1 + · · ·+ µlt

dl (1.6)

for some l ∈ N , distinct positive real numbers d1, . . . , dl , and real numbers µ1, . . . , µl . In the case of generalized
polynomials, Al-Salman and Al-Qassem showed that the bound for the operator norm ∥TΩ,Γ∥p,p is independent
of the coefficients µ1, . . . , µl . The problem whether the Lp estimates still hold in the case of kernels that are
rough in the radial direction was left open.

(iii) In the recent paper [14], Liu and Zhang considered the operator TΩ,Γ,φ,h for compound polynomial
mappings. They proved the following L2(Rn) result:

Theorem 1.1.([14]). Let TΩ,Γ,φ,h be the operator given by (1.5) . Let φ be a nonnegative (or non-positive)

C1(R+) monotonic function that satisfies
∣∣∣ φ(t)
tφ′(t)

∣∣∣ ≤ Cφ where Cφ is a constant that depends only on φ . If Γ

is a real valued polynomial, Ω ∈ H1(Sn−1) , and h ∈ ∆γ(R+) for some γ > 1 , then

∥TΩ,Γ,φ,hf∥L2 ≤ C ∥h∥∆γ
∥Ω∥H1 ∥f∥L2

where C > 0 is independent of h, γ,Ω, f and the coefficients of the polynomial Γ but depends on φ and deg(Γ) .

The question whether the operator TΩ,Γ,φ,h is bounded for some p ̸= 2 was left open in [14].

In light of the above remarks, it is our aim in this paper to consider the general operator TΩ,Γ,φ,h and to
seek answers to the above stated problems. We shall assume that the function h to be in the class of functions
Λη
γ introduced by Sato [18] (see also Seegeer [19] and [21]). In fact, for η, γ > 0 , we let Λη

γ be the class of all
measurable functions h : R+ → R satisfying

∥h∥Λη
γ
= ∥h∥∆γ

+ ∥h∥Λη <∞,

where
∥h∥Λη = sup

t∈(0,1)

t−ηω(h, t),

and

ω(h, t) = sup
|s|< tR

2

2R∫
R

|h(r − s)− h(r)| dr
r
, t ∈ (0, 1].

The supremum is taken over all s and R such that |s| < tR/2 . Our main result is the following:
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Theorem 1.2. Let TΩ,Γ,φ,h be the operator given by (1.4). Let Ω ∈ H1(Sn−1) be a homogeneous functions of
degree zero on Rn and satisfies the cancellation condition (1.1). Suppose that
(i) h ∈ Λη

1 for some η > 0;

(ii) Γ : [0,∞) → R is a non-constant generalized polynomial of the form (1.6);
(iii) φ is a C2([0,∞)) convex increasing function with φ(0) = 0 ;

Then
∥TΩ,Γ,φ,hf∥Lp ≤ C ∥h∥Λη

1
∥Ω∥H1 ∥f∥Lp

for all 1 < p < ∞ where C > 0 is independent of h, η,Ω, f and the coefficients of the generalized polynomial
Γ but depends on the function φ and the numbers d1, . . . , dl .

It is clear that Theorem 1.2 is a substantial improvement of the corresponding result in [3]. Furthermore,
it substantially generalizes the result in Theorem 1.2 as far as the range of the parameter p is concerned.

The proof of Theorem 1.2 involves a key idea, which is characterized by introducing a new maximal
function that is more general than the directional Hardy–Littlewood maximal function. We shall refer to this
maximal function by the generalized bidirectional Hardy–Littlewood maximal function. For suitable mappings
Γ,Λ, φ : [0,∞) → R , a suitable measurable function h : R+ → R , and two vectors z1, z1 ∈ Rn , consider the
maximal function

H
(z1,z2)
Γ,Λ,φ,h(g)(x) = sup

j∈Z

2j∫
2j−1

g (x− Γ(φ(t))z1 − Λ(φ(t))z2)
h(t)

t
dt. (1.7)

It is clear that if Γ(t) = Λ(t) = φ(t) := I(t) = t and h(t) = 1 , then the operator H
(z1,z2)
Γ,Λ,φ,h reduces to

the classical directional Hardy Littlewood maximal function in the direction of the vector z = z1 + z2 . The
classical directional Hardy–Littlewood maximal function in the direction of a vector z will be denoted by

H(z) = H
( z
2 ,

z
2 )

I,I,I,1 . It is well known that the maximal function H(z) is bounded on Lp for all 1 < p <∞ with Lp

bounds independent of the vector z . If the function h is in L∞(R+) and Γ(t) = t , then the special operator

H
(z)
φ,h = H

(z,0)
I,Λ,φ,h is dominated by the maximal function.

H(z)
φ

(g)(x) = sup
j∈Z

2j∫
2j−1

g (x− φ(t)z)
1

t
dt. (1.8)

The Lp boundedness of the operator H(z)
φ

has been discussed by several authors if the function φ is of special

form. In particular, if φ is a polynomial mapping, then the Lp boundedness of H(z)
φ

follows by a well known

result on page 477 of [20]. On the other hand, if φ is convex increasing, then the Lp boundedness of H(z)
φ

was
discussed in [2], [9], among others. However, for general functions Γ, φ , and h , the boundedness of the general

operators H(z)
Γ,φ,h = H

(z,0)
Γ,Λ,φ,h is not known. Our main result concerning the maximal function H

(z1,z2)
Γ,Λ,φ,h is the

following:

Theorem 1.3. Let Γ and Λ be generalized polynomials of the form in (ii) in Theorem 1.2. Let φ and h

be as in the statement of Theorem 1.2. Let z1, z2 ∈ Rn and let H(z1,z2)
Γ,Λ,φ,h be given as in (1.7). Suppose that
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h ∈ Λη
1(η > 0) . Then ∥∥∥H(z1,z2)

Γ,Λ,φ,h(g)
∥∥∥
p
≤ Cp ∥h∥Λη

1
∥g∥p ,

1 < p < ∞ with constant Cp independent of h, η, g , z1, z2 , and the coefficients of the generalized polynomials
Γ and Λ , but depends on the function φ , and the numbers representing the powers of the monomials involved
in the representations of the generalized polynomials Γ and Λ .

As a consequence of Theorem 1.3, we obtain the following result:

Corollary 1.4. Let Ω ∈ L1(Sn−1) be a homogeneous functions of degree zero on Rn . Let Γ and Λ be
generalized polynomials of the form in (ii) in Theorem 1.2. Let φ and h be as in the statement of Theorem

1.2. For two mappings Φ1,Φ2 : Sn−1 → Rn , let M (Φ1,Φ2)
Ω,Γ,Λ,φ,h be given by

M
(Φ1,Φ2)
Ω,Γ,Λ,φ,h(f)(x) = sup

j∈Z

∫
2j−1≤|y|<2j

f (x− Γ(φ(t))Φ1(y
′)− Λ(φ(t))Φ2(y

′))Ω(y′)
h(|y|)
|y|n

dy.

Suppose that h ∈ Λη
1(η > 0) . Then

∥∥∥M (Φ1,Φ2)
Ω,Γ,Λ,φ,h(f)

∥∥∥
p
≤ Cp ∥Ω∥L1 ∥h∥Λη

1
∥f∥p ,

1 < p < ∞ with constant Cp independent of h, η, g,Φ1,Φ2, z1, z2 , and the coefficients of the generalized
polynomials Γ and Λ , but depends on the function φ , and the numbers representing the powers of the monomials
involved in the representations of the generalized polynomials Γ and Λ .

It is clear that Corollary 1.4 generalizes as well as improves the corresponding result on page 477 of [20].
Throughout this paper, the letter C will stand for a positive constant that may vary at each occurrence,

but it is independent of the essential variables.

2. Lp Bounds of generalized bidirectional Hardy–Littlewood maximal functions

The main aim of this section is to prove the key result of Theorem 1.3. We shall start by establishing the
following lemma:

Lemma 2.1. Let Γ and φ be as in the statement of Theorem 1.3. Let z ∈ Rn and let H(z)
Γ,φ,h be given by (1.7)

with z1 = z and z2 = 0 . Suppose that h ∈ Λη
1(η > 0) . Then

∥∥∥H(z)
Γ,φ,h(g)

∥∥∥
p
≤ Cp ∥h∥Λη

1
∥g∥p ,

1 < p < ∞ with constant Cp independent of h, η, g, z, and the coefficients of the generalized polynomial Γ ,
but depends on the function φ and the numbers d1, . . . , dl .

Proof. Suppose that

Γ(t) = µ1t
d1 + · · ·+ µlt

dl (2.1)
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for some l ∈ N , distinct positive real numbers d1, . . . , dl and real numbers µ1, . . . , µl . We shall argue by
induction on the number of terms l . We start by assuming that l = 1 . Let φ(t) = (φ(t))

d1 and z̃ = µ1z . Since
Γ is not constant, then d1 ̸= 0 and µ1 ̸= 0 . For j ∈ Z , define the measure µj by

∫
gdµj =

2j∫
2j−1

g(φ(t)z̃)
h(t)

t
dt. (2.2)

Then

µ̂j(ξ) =

2j∫
2j−1

e−iφ(t)ξ·z̃ h(t)

t
dt =

1∫
1
2

e−iφ(2jt)ξ·z̃ h(2
jt)

t
dt.

Choose a function ψ ∈ C∞(R) such that supp(ψ) ⊂ (0, 10−9) , ψ ≥ 1 , and
∞∫

−∞
ψ(s)ds = 1 . Set

kj(r) =

r
2∫

0

h(2j(r − s))ψu(s)ds, r > 0, (2.3)

where ψu(s) =
1
uψ(

s
u ) . Define the measure νj by

∫
gdνj =

1∫
1
2

kj(t)

t
g(φ(2jt)z̃)dt.

Thus,
|µ̂j(ξ)| ≤ |µ̂j(ξ)− ν̂j(ξ)|+ |ν̂j(ξ)| .

Now, we use the properties of the function h to estimate |µ̂j(ξ)− ν̂j(ξ)| . In fact,

|µ̂j(ξ)− ν̂j(ξ)| ≤
1∫

1
2

∣∣h(2jt)− kj(t)
∣∣ dt
t

=

1∫
1
2

∣∣∣∣∣
∫
r<t/2

(h(2j(t− r)− h(2jt))ψu(r)dr

∣∣∣∣∣ dtt
≤

∫
r<1/4

∫ 1

1
2

∣∣h(2j(t− r)− h(2jt)
∣∣ dt
t
|ψu(r)| dr

≤
∫

r<1/4

∫ 2j

2j−1

∣∣h(t− 2jr)− h(t)
∣∣ dt
t
|ψu(r)| dr

≤ Cω(h, u) ≤ uηC ∥h∥Λη . (2.4)
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Since φ is convex increasing and φ(0) = 0 , we have

φ(2r) ≥ 2φ(r) (2.5)

rφ′(r) ≥ φ(r) (2.6)

for every r > 0 . Thus, for 1/2 ≤ t < r/2j ≤ 1 , we can easily show that∣∣∣∣ ddt (φ(2jt))
∣∣∣∣ =

∣∣∣d1 (φ(2jt))d1−1
2jφ′(2jt)

∣∣∣
=

∣∣∣d1 (φ(2jt))d1−1
2jtφ′(2jt)

∣∣∣
≥ d1

t

(
φ(2jt)

)d1 ≥ d1φ(2
j−1). (2.7)

Thus, since φ is increasing, by the inequality (2.7) along with van der Corput Lemma [20], we have∣∣∣∣∣∣
r∫

2j−1

e−iφ(t)ξ·z̃ dt

t

∣∣∣∣∣∣ ≤ 1

d1

∣∣φ(2j−1)ξ · z̃
∣∣−1

1

r
+

r∫
2j−1

1

t2
dt


≤ 1

d1

∣∣φ(2j−1)ξ · z̃
∣∣−1

. (2.8)

for all 2j−1 ≤ r ≤ 2j uniformly in r . Therefore, we have

|ν̂j(ξ)| ≤
1

d1

∣∣φ(2j−1)ξ · z̃
∣∣−1

(|kj(1)|+
∫ 1

1
2

∣∣k′j(r)∣∣ dr) ≤ C

u

∣∣φ(2j−1)ξ · z̃
∣∣−1

. (2.9)

Now, if we take u =
∣∣φ(2j−1)ξ · z̃

∣∣− 1
η+1 , then we have

|µ̂j(ξ)| ≤ |µ̂j(ξ)− ν̂j(ξ)|+ |ν̂j(ξ)| ≤ C
∣∣φ(2j−1)ξ · z̃

∣∣− η
η+1 . (2.10)

Next, let

Aj =

2j∫
2j−1

h(t)

t
dt.

Then |Aj | ≤ ∥h∥∆1
and

|µ̂j(ξ)−Aj | =

∣∣∣∣∣∣∣
2j∫

2j−1

(e−iφ(t)ξ·z̃ − 1)h(t)
dt

t

∣∣∣∣∣∣∣ ≤ ∥h∥∆1

∣∣φ(2j)ξ · z̃∣∣ . (2.11)

Now choose θ ∈ S(Rn) such that θ̂(ξ) = 1 if |ξ| < 1
4 and θ̂(ξ) = 0 if |ξ| > 1. Let π̂

j
(ξ) = θ̂(φ(2j)ξ) and define

σj by
σj = µj −Ajπj

. (2.12)
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Thus, by (2.10), (2.11), and the properties of the function θ , we have

|σ̂j(ξ)| ≤ C ∥h∥Λη
1
min{

∣∣φ(2j−1)ξ · z̃
∣∣− η

η+1 ,
∣∣φ(2j)ξ · z̃∣∣}. (2.13)

Moreover, by (2.12), we arrive at the following:

H
(z)
Γ,φ,hg(x) ≤ sup

j∈Z
|σj ∗ g(x)|+ sup

j∈Z

∣∣Ajπj ∗ g(x)
∣∣

≤ (
∑
j

|σj ∗ g(x)|2)
1
2 + ∥h∥∆1

Mg(x)

= Sz,h(g)(x) + ∥h∥∆1
Mg(x), (2.14)

where M is the Hardy–Littlewood maximal function. Hence, the Lp boundedness of the operator follows by a
bootstrapping argument as in [9].

Next, we assume that H(z)
Γ,φ,h is bounded on Lp for all 1 < p <∞ provided that the number of terms l

of the generalized polynomial Γ is less than M ∈ N . Let Γ be given by (2.1) with l = M + 1 . Assume that
d1 ≤ d2 ≤ ... ≤ dM+1 . Let l0 = max{1 ≤ l ≤M : µl ̸= 0} and let

Γl0(t) = µ1t
d1 + · · ·+ µl0t

dl0 . (2.15)

For j ∈ Z , define the measure µ
Γ,j and µ

Γl0
,j by

∫
gdµ

Γ,j =

2j∫
2j−1

g(Γ(φ(t))z̃)
h(t)

t
dt (2.16)

and ∫
gdµΓl0

,j =

2j∫
2j−1

g(Γl0(φ(t))z̃)
h(t)

t
dt. (2.17)

Let kj , ψ , and ψu be as above. Let νΓ,j be given by

∫
gν

Γ,j =

∫ 1

1
2

kj(t)

t
g(Γ(φ(t))z̃)dt.

Then by similar argument as that led to (2.4), we obtain

|µ̂Γ,j(ξ)− ν̂Γ,j(ξ)| ≤ uηC ∥h∥Λη . (2.18)

Now, for 2j−1 ≤ r ≤ 2j , by proposition on page 184 in [16]( van der Corput Lemma for generalized polynomials),
we have ∣∣∣∣∣∣∣

φ(r)∫
φ(2j−1)

e−iΓ(s)ξ·z̃ds

∣∣∣∣∣∣∣ = φ(r)

∣∣∣∣∣∣∣∣
1∫

φ(2j−1)
φ(r)

e−iΓ(φ(r)s)ξ·z̃ds

∣∣∣∣∣∣∣∣ ≤ Cφ(r)
∣∣(φ(2j−1)dM+1Ld,z(ξ)

∣∣−ε (2.19)
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for some 0 < ε < min{ 1
µM+1

, 1
M+1} , with bound C independent of j, r, µ2, ..., µM+1. Here,

Ld,z(ξ) = (µM+1)
dM+1 ξ · z̃.

Thus, by using proper change of variables, we obtain∣∣∣∣∣∣
r∫

2j−1

e−iΓ(φ(t))ξ·z̃ dt

t

∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
φ(r)∫

φ(2j−1)

e−iΓ(s)ξ·z̃ ds

φ−1(s)φ′(φ−1(s))

∣∣∣∣∣∣∣
≤ Cφ(r)

2jφ′(2j)

∣∣(φ(2j−1)dM+1Ld,z(ξ)
∣∣−ε

≤ Cφ(r)

φ(2j)

∣∣(φ(2j−1)dM+1Ld,z(ξ)
∣∣−ε (2.20)

≤ C
∣∣(φ(2j−1)dM+1Ld,z(ξ)

∣∣−ε (2.21)

for all 2j−1 ≤ r ≤ 2j uniformly in r . Therefore, by similar argument as in (2.9), we have

|ν̂Γ,j(ξ)| ≤
C

u

∣∣(φ(2j−1)dM+1Ld,z(ξ)
∣∣−ε

. (2.22)

By (2.22) and (2.18) with

u =
∣∣∣(φ(r))dM+1 Ld,z(ξ)

∣∣∣− 1
η+1

,

we get

|µ̂Γ,j(ξ)| ≤ C
∣∣(φ(2j−1)dM+1Ld,z(ξ)

∣∣− η
η+1 . (2.23)

Next, it can be easily seen that

|µ̂
Γ,j(ξ)− ν̂

Γ,j(ξ)| ≤ ∥h∥∆1

∣∣∣(φ(2j))dM+1
Ld,z(ξ)

∣∣∣ . (2.24)

Again, we choose θ ∈ S(Rn) such that θ̂(ξ) = 1 if |ξ| < 1
4 and θ̂(ξ) = 0 if |ξ| > 1. Let π̂j (ξ) = θ̂(

(
φ(2j)

)dM+1
ξ)

and define σΓ,j by
σΓ,j = µΓ,j − πj ∗ µΓl0

,j . (2.25)

Thus, by (2.23), (2.24), and the properties of function θ , we have

|σΓ,j(ξ)| ≤ C ∥h∥Λη
1
min{

∣∣∣(φ(2j−1)
)dM+1

Ld,z(ξ)
∣∣∣− η

η+1

,
∣∣∣(φ(2j))dM+1

Ld,z(ξ)
∣∣∣}. (2.26)

Moreover, by (2.25), we obtain

H
(z)
Γ,φ,hg(x) ≤ sup

j∈Z
|σΓ,j ∗ g(x)|+ sup

j∈Z

∣∣∣πj
∗ µ

Γl0
,j ∗ g(x)

∣∣∣
≤

∑
j

|σΓ,j ∗ g(x)|2
 1

2

+ ∥h∥∆1
µ∗

Γl0

g(x)

= Gz,h(g)(x) + ∥h∥∆1
µ∗

Γl0

g(x), (2.27)
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where µ∗
Γl0

is the maximal function

µ∗
Γl0

(g)(x) = sup
j

∣∣∣∣∣∣µΓl0
,j

∣∣∣ ∗ g(x)∣∣∣ . (2.28)

Therefore, by induction assumption, we have∥∥∥µ∗
Γl0

(g)
∥∥∥
p
≤ Cp ∥h∥Λη

1
∥g∥p (2.29)

for all 1 < p <∞ . Hence, the Lp boundedness of the operator H(z)
Γ,φ,h follows by a bootstrapping argument as

in [9]. This completes the proof.

Now, we prove Theorem 1.3:

Proof (of Theorem 1.3). Let Γ,Λ, φ, z1, z2, and h be as in the statement of Theorem 1.3. If z1 = 0 or
z2 = 0 , then the result follows by Lemma 2.1. Thus, we assume that z1 ̸= 0 and z2 ̸= 0 . We shall argue by

induction on the number of terms of Γ . Assume that Γ is given by (2.1) with l = 1 and let H
(z2)
Λ,φ,h be the

operator given by (1.7) with z1 = 0 . Then by Lemma 2.1, we have∥∥∥H(z2)
Λ,φ,h(g)

∥∥∥
p
≤ Cp ∥h∥Λη

1
∥g∥p (2.30)

for 1 < p < ∞ with constant Cp independent of h, η, g and the coefficients of the generalized polynomial Λ .
For each j ∈ Z , let νj and ϑj be the measures defined by

∫
fdνj =

2j∫
2j−1

f (Γ(φ(t))z1 + Λ(φ(t))z2)
h(t)

t
dt (2.31)

and ∫
fdϑj =

2j∫
2j−1

f (Λ(φ(t))z2)
h(t)

t
dt. (2.32)

Then
H

(z1,z2)
Γ,Λ,φ,hf(x) = sup

j∈Z
||νj | ∗ f(x)| (2.33)

and
H

(z2)
Λ,φ,hf(x) = sup

j∈Z
||ϑj | ∗ f(x)| . (2.34)

By (2.30) and repeating the same steps (2.16)-(2.29) with the proper modifications, we obtain the desired

estimates for H(z1,z2)
Γ,Λ,φ,h .

Next, we assume that H
(z1,z2)
Γ,Λ,φ,h has the Lp estimates stated in Theorem 1.3 whenever Γ has l terms

with l ≤M. Let Γ be given by (2.1) with l =M + 1 and let

ΓM (t) = Γ(t)− µM+1t
dM+1 . (2.35)

2220



AL-SALMAN/Turk J Math

For each j ∈ Z , let νM+1,j and ϑM,j be the measures defined by

∫
fdνM+1,j =

2j∫
2j−1

f (Γ(φ(t))z1 + Λ(φ(t))z2)
h(t)

t
dt (2.36)

and ∫
fdϑM,j =

2j∫
2j−1

f (ΓM (φ(t))z1 + Λ(φ(t))z2)
h(t)

t
dt. (2.37)

Then
H

(z1,z2)
Γ,Λ,φ,hf(x) = sup

j∈Z
||νM+1,j | ∗ f(x)| . (2.38)

Let
(ϑM )

∗
f(x) = sup

j∈Z
||ϑM,j | ∗ f(x)| . (2.39)

By induction assumption, we have ∥∥(ϑM )
∗
(f)

∥∥
p
≤ Cp ∥h∥Λη

1
∥f∥p (2.40)

1 < p <∞ with constant Cp independent of h, η, f and the coefficients of the generalized polynomial Γ and Λ .

Thus, the desired Lp boundedness of H(z1,z2)
Γ,Λ,φ,h follows by similar argument as in the first step of the induction

argument with minor modifications. This completes the proof.

2.1. Proof of main results
Proof of Theorem 1.3. Since Ω ∈ H1(Sn−1) , there exists complex numbers λj and functions bj on Sn−1 such
that

Ω =
∑
j

λjbj (2.41)

and
∥f∥H1(Sn−1) ≈

∑
j

|λj | ,

where bj is either in L∞(Sn−1) and ∥bj∥∞ ≤ 1 or bj ( ·) satisfies the following properties:

supp(bj) ⊂ Sn−1 ∩B(ζ, ρ), where B(ζ, ρ) = {y ∈ Rn : |y − ζ| < ρ}; (2.42)

∥bj∥∞ ≤ ρ−n+1; (2.43)

∫
Sn−1

bj(y
′)dσ(y′) = 0 (2.44)

for some ζ ∈ Sn−1 and ρ ∈ (0, 2] . If bj satisfies (2.42)-(2.44), then it is called a regular atom. Otherwise, it
is called an exceptional atom. (see [17]). By the decomposition (2.41), we only need to show that the theorem
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holds for regular atoms with Lp norms independent of the particular atom . Let b be a regular atom. By using
a proper rotation, we may assume that supp(b) ⊂ Sn−1∩B(e, ρ) such that e = (0, · · ·, 1) . We shall also assume
that ρ is very small. The case for large ρ follows by similar( but easier) argument. Let Γ be given as in (2.1).
For 1 ≤ s ≤ l , let Γs be given by (2.15) with l0 is replaced by s . Also, for 1 ≤ s ≤ l , let Ψs : [0,∞)×Rn → Rn

be given by

Ψs(t, y) = Γs(t)y
′ −

 l∑
j=s+1

µjt
dj

 e.

Here, we use the convention
∑

j∈∅ = 0 . We shall let Γ0(t) = 0.

For 0 ≤ s ≤ l and k ∈ Z , let σs,k be the measure that is defined in the Fourier transform side by

σ̂s,k(ξ) =

∫
2k≤|y|<2k+1

eiΨs(φ(t),y′)·ξ h(|y|)b(y′)
|y|n

dy. (2.45)

By the cancellation condition (2.44), we have

σ̂0,k(ξ) = 0.

Moreover,

TΩ,Γ,φ,hf(x) =
∑
k

σs,k ∗ f(x). (2.46)

Let
(σs)

∗
(f)(x) = sup

k∈Z
||σs,k| ∗ f(x)| .

By Corollary 1.4, we obtain ∥∥(σs)∗ (f)∥∥p ≤ Cp ∥b∥L1 ∥h∥Λη
1
∥f∥p (2.47)

1 < p <∞ with constant Cp independent of h, η, g,Φ1,Φ2 , and the coefficients of the generalized polynomials
Γ and Λ , but it depends on the function φ , and the numbers representing the powers of the monomials involved
in the representations of the generalized polynomials Γ and Λ .

Now, it is straightforward to see that

|σ̂s,k(ξ)| ≤ ρ−n+1

∫
B(e,ρ)

|Ik(y′, z′)| dσ(y′)dσ(y′), (2.48)

where

Ik,s(y
′
, ξ) =

2j∫
2j−1

e−iΨs(φ(t),y′)·ξ h(t)dt

t
. (2.49)

By similar argument as that led to (2.23), we have∣∣∣Ik,s(y′
, ξ)

∣∣∣ ≤ C
∣∣(φ(2j−1)dsµsξ · y′

∣∣− η
η+1 . (2.50)
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By (2.48) and (2.50), we obtain

|σ̂s,k(ξ)| ≤ C
∣∣(φ(2j−1)dsµsρξ

∣∣− η
η+1 (2.51)

with constant C independent of the essential variables.
On the other hand, it is not hard to see that

|σ̂s,k(ξ)− σ̂s−1,k(ξ)| ≤ C
∣∣(φ(2j)dsµsρξ

∣∣ . (2.52)

Hence, the result follows by (2.46), (2.47), (2.51), (2.52), and Lemma 5.2 in ([10]) 2

Now we show that Corollary 1.4 is an immediate consequence of Theorem 1.3. In fact, by generalized
Minkowsk’s inequality and Theorem 1.3, we have

∥∥∥M (Φ1,Φ2)
Ω,Γ,Λ,φ,h(f)

∥∥∥
p

≤
∫

Sn−1

∣∣∣∣Ω(y′)∥∥∥H(Φ(y′
1),Φ2(y

′))
Γ,Λ,φ,h f(x)

∥∥∥
p

∣∣∣∣ dσ(y′)
≤ Cp ∥h∥Λη

1
∥Ω∥L1 ∥f∥p .
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