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Abstract: Let p ≡ 1 (mod 9) be a prime number and ζ3 be a primitive cube root of unity. Then k = Q( 3
√
p, ζ3) is a

pure metacyclic field with group Gal(k/Q) ≃ S3 . In the case that k possesses a 3 -class group Ck,3 of type (9, 3) , the
capitulation of 3 -ideal classes of k in its unramified cyclic cubic extensions is determined, and conclusions concerning

the maximal unramified pro-3 -extension k
(∞)
3 , that is the 3 -class field tower of k , are drawn.

Key words: Maximal unramified pro-3 -extension, capitulation, Galois action, pure metacyclic S3 -fields, pure cubic
fields, finite 3 -groups, descendant trees, presentations, relation rank, p -group generation algorithm

1. Introduction
For a prime p ≡ 1 (mod 9) , let Γ = Q( 3

√
p) be the pure cubic field with radicand p , and k = Q( 3

√
p, ζ3) ,

with a primitive third root of unity ζ3 , be the normal closure of Γ . Then k is a pure metacyclic field with
automorphism group Gal(k/Q) ' S3 , the symmetric group of order 6 , and, according to [3, Theorem 2.4(1), p.
258], the class number of k is divisible by 3 . Most frequently, the 3 -class group Ck,3 ' C3 is simply the cyclic
group of order 3 . There occur, however, interesting cases where Ck,3 ' C9 ×C3 is nonelementary bicyclic with
four maximal subgroups of index 3 and four second maximal subgroups of index 9 . According to [1, Lemma
2.5, p. 4], the latter situation arises if and only if CΓ,3 ' C9 and Γ is of principal factorization type α , in

the sense of [3, Theorem 2.1, p. 254]. Since only little progress in determining the 3 -class field tower F
(∞)
3 of

number fields F with CF,3 ' C9 ×C3 was achieved in the literature so far, we devote the present paper to the
illumination of these uncharted waters by means of the S3 -fields k = Q( 3

√
p, ζ3) with Ck,3 ' C9 × C3 .

With the aid of classical methods of algebraic number theory, we investigate the possibilities for the
punctured capitulation type κ(k) = (ker(TK1,3/k), . . . , ker(TK3,3/k); ker(TK4,3/k)) consisting of the kernels of
the transfer homomorphisms TKi,3/k : Ck,3 → CKi,3,3 of 3 -classes from k to its four unramified cyclic
cubic extensions K1,3, . . . ,K4,3 , where K4,3 is the distinguished extension corresponding to the product of
the subgroups of index 9 in Ck,3 , by Artin’s reciprocity law.

Since Scholz and Taussky launched the capitulation problem [18], it is known that the type κ(k) can

be used for an attempt to find the second 3-class group G2 = Gal(k
(2)
3 /k) , i.e. the Galois group of the
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second Hilbert 3 -class field k
(2)
3 , of k , which is a two-stage approximation of the entire 3 -class tower group

G∞ = Gal(k
(∞)
3 /k) . The identification of the latter is the point where innovative ideas involving the Galois

action of Gal(k/Q) ' S3 on G∞ and sophisticated techniques estimating the relation rank d2(G∞) become
mandatory. Before these theoretical means were available, fatal errors crept in when investigators tried to get
the precise length ℓ3 of the 3 -class tower. The erroneous claim ℓ3 = 2 for Q(

√
−9748) in [18, p. 41] was

corrected by ℓ3 = 3 eighty years later in [5, Corollary 4.1.1, p. 775]. In the present paper, the type κ(k) is by
far too insufficient in order to identify G2 . Here the Galois action is definitely required. Finally, the relation
rank and the antitony principle for Artin patterns [16] will be employed to find G∞ and ℓ3 for k = Q( 3

√
p, ζ3) .

Let k
(1)
3 be the Hilbert 3 -class field of k . When the 3 -class group Ck,3 of k is of type (9, 3) , the

extension k
(1)
3 /k admits eight intermediate fields as illustrated in Figure 1.

k
(1)
3 hh

PPP
PPP

PPP
PPP

PPP
PP``

AA
AA

AA
AA

A>>

}}
}}
}}
}}
}
66

nnn
nnn

nnn
nnn

nnn
nn

K4,9 hh

QQQ
QQQ

QQQ
QQQ

QQQ
QQaa

BB
BB

BB
BB

B==

||
||
||
||
|
66

mmm
mmm

mmm
mmm

mmm
mm

K3,9 aa

BB
BB

BB
BB

B
K2,9==

||
||
||
||
|

K1,966

mmm
mmm

mmm
mmm

mmm
mm

K1,3 hh

QQQ
QQQ

QQQ
QQQ

QQQ
QQQ

K2,3 aa

CC
CC

CC
CC

CC
K3,3==

{{
{{
{{
{{
{{

K4,366

mmm
mmm

mmm
mmm

mmm
mmm

k

Figure 1. The unramified cubic and nonic subextensions of k
(1)
3 /k .

The layout of this paper is the following. In Theorem 3.1 of Section 3, we construct the family (Ki,j) of all

intermediate fields k ⊆ Ki,j ⊆ k
(1)
3 , where 1 ≤ i ≤ 4 and j ∈ {3, 9} . In Theorem 4.2 of Section 4, we investigate

the capitulation of 3 -ideal classes of k in the fields Ki,j . Our numerical results of subsection 5.1 has been
computed with the aid of Magma [12]. For the 95 relevant cases p < 20 000 in Table , the capitulation kernels
ker(TKi,3/k) of the class extension homomorphisms TKi,3/k : Ck,3 → CKi,3,3 were computed and collected in the
transfer kernel type κ . As an application, we identify in subsection 5.2 the maximal unramified pro-3 -extension

k
(∞)
3 of k = Q( 3

√
p, ζ3) . Finally, we provide computational evidence that the dominating proportion (at least

94%) of the fields k has a metabelian 3 -class field tower k
(∞)
3 with exactly two stages.

Notations:
Throughout this paper, we shall respect the usual notations as follows:

• The letter p designates a prime number congruent to 1 modulo 3 ;

• Γ = Q( 3
√
d) : a pure cubic field, where d ≥ 2 is a cube-free integer;

• k0 = Q(ζ3) : the cyclotomic field, where ζ3 = e2iπ/3 ;
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• k = Γ(ζ3) : the normal closure of Γ ;

• Γ′ and Γ′′ : the two conjugate cubic fields of Γ , contained in k ;

• u = [Ek : E0] : the index of the subgroup E0 generated by the units of intermediate fields of the extension
k/Q in the group of units Ek of k ;

• 〈τ〉 = Gal (k/Γ) , τ2 = id , τ(ζ3) = ζ23 and τ( 3
√
d) = 3

√
d ;

• 〈σ〉 = Gal (k/k0) , σ3 = id , σ(ζ3) = ζ3 and σ( 3
√
d) = ζ3

3
√
d ;

• For an arbitrary algebraic number field F :

– CF,3 : the 3 -class group of F ;

– OF : the ring of integers of F ;

– F
(1)
3 : the Hilbert 3 -class field of F ;

– [I] : the class of a fractional ideal I in the class group of F .

2. Preliminaries

In [11], Ismaili established that the 3 -class group Ck,3 of k = Q( 3
√
d, ζ3) is of type (3, 3) if and only if 3 divides

exactly the class number of Γ and u = 3 , where u is the units index defined in the notations, and he determined
all the integers d which satisfy this property by distinguishing three types of fields k . Here, we present and
discuss a detailed study of the case where the 3 -class group Ck,3 is of type (9, 3) . Let us start with Theorem
2.1 below which describe the structure of Ck,3 .

Theorem 2.1 Let Γ be a pure cubic field, k be its normal closure, Ck,3 (resp. CΓ,3 ) the 3-class group of k

(resp. Γ), and u be the units index defined in the notations, then:

Ck,3 ' Z/9Z× Z/3Z ⇐⇒ [CΓ,3 ' Z/9Z and u = 1].

Proof See [1, Lemma 2.5, p. 4]. 2

Therefore, Theorem 2.2 bellow classifies all the integers d such that the 3 -class group Ck,3 is of type (9, 3) .

Theorem 2.2 Let Γ = Q( 3
√
d) be a pure cubic field, where d ≥ 2 is a cube free integer, k = Q( 3

√
d, ζ3) its

normal closure, and u the units index defined in the notations.

1) If the field k has a 3-class group of type (9, 3) , then d = pe , where p is a prime congruent to 1 (mod 9)

and e = 1 or 2 .

2) Conversely, if p is a prime congruent to 1 (mod 9) , and if 9 divides exactly the class number of Γ = Q( 3
√
p)

and u = 1 , then the 3-class group of k is of type (9, 3) .

Proof See [1, Theorem 1.1, p. 2]. 2
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Therefore, let k be the special field Q( 3
√
p, ζ3) , with p ≡ 1 (mod 9) . Calegari and Emerton [6, Lemma 5.11]

proved that rankCk,3 = 2 if 9 divides the class number of Γ = Q( 3
√
p) . The converse of the Calegari–Emerton

result is shown by Frank Gerth III in [9, Theorem 1, p. 471]. In the following, we assume that 9 divides exactly
the class number of Γ = Q( 3

√
p) , where p ≡ 1 (mod 9) . Under this assumption, Ck,3 is of type (9, 3) if and

only if u = 1 . Theorems 2.3 and 2.4 bellow give the generators of Ck,3 .

Theorem 2.3 Let k = Q( 3
√
p, ζ3) , where p is a prime such that p ≡ 1 (mod 9) . Let C+

k,3 = {C ∈ Ck,3 | Cτ = C} ,

C−
k,3 = {C ∈ Ck,3 | Cτ = C−1} , and C1−σ

k,3 = {A1−σ | A ∈ Ck,3} . Assume that Ck,3 is of type (9, 3) . Then:

1. Ck,3 = 〈A,B〉 , C+
k,3 = 〈A〉 , C−

k,3 = 〈B〉 , where A ∈ Ck,3 such that A9 = 1 , A3 6= 1 , and B ∈ Ck,3 such

that B3 = 1 , B 6= 1 .

2. The ambiguous class group C
(σ)
k,3 of k|k0 is a subgroup of C+

k,3 of order 3 , and C
(σ)
k,3 = 〈A3〉 = 〈B1−σ〉

with A 6∈ C
(σ)
k,3 .

3. C−
k,3 = 〈(A2)σ−1〉 .

4. The principal genus C1−σ
k,3 of Ck,3 is an elementary bicyclic 3-group of type (3, 3) , and C1−σ

k,3 =

C
(σ)
k,3 × C−

k,3 = 〈A3,B〉 .

Proof See [2, Proposition 3.4, pp. 9-10]. 2

Theorem 2.4 Let k = Q( 3
√
p, ζ3) , where p is a prime such that p ≡ 1 (mod 9) . The prime 3 decomposes in

k under the form 3Ok = P2Q2R2 , where P, Q and R are prime ideals of k . Put h = hk

27 , where hk is the
class number of k . Assume 9 divides exactly the class number of Q( 3

√
p) and u = 1 . If 3 is not cubic residue

modulo p , then:

1. [Rh] generates C+
k,3 ;

2. Ck,3 is generated by [Rh] and [Rh][Ph]2 , i.e. Ck,3 = 〈[Rh]〉 × 〈[Rh][Ph]2〉.

Proof See [2, Theorem 3.5, pp. 10-11]. 2

3. Unramified cubic and nonic subextensions of k
(1)
3 /k

Let k = Q( 3
√
p, ζ3) , where p is a prime such that p ≡ 1 (mod 9) , k

(1)
3 the Hilbert 3 -class field of k

(0)
3 = k , k

(2)
3

the Hilbert 3 -class field of k
(1)
3 , and G = Gal(k

(2)
3 /k) . Let Ck,3 be the 3 -ideal class group of k , then by class

field theory, Gal(k
(1)
3 /k) ' Ck,3 .

Assume that Ck,3 is of type (9, 3) . In the sequel, we adopt the conventions of [16, § 4.2, pp. 76–78]
concerning the normal lattice of metabelian 3 -groups G = 〈x, y〉 , with two generators satisfying x9 ∈ G′ and
y3 ∈ G′ , where G/G′ is of type (9, 3) . If we denote by (Hi,j)i the family of all normal intermediate groups
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G′ ⊆ Hi,j ⊆ G, with 1 ≤ i ≤ 4, j ∈ {3, 9} , the 3 -group G has four second maximal normal subgroups of index
9 as follows:

H1,9 = 〈y,G′〉, H2,9 = 〈x3y,G′〉, H3,9 = 〈x3y−1, G′〉, H4,9 = 〈x3, G′〉,

and four maximal normal subgroups of index 3 as follows:

H1,3 = 〈x,G′〉, H2,3 = 〈xy,G′〉, H3,3 = 〈xy−1, G′〉, H4,3 = 〈x3, y,G′〉.

It should be noted that H4,3 =
∏

Hi,9 , the quotient group H4,3/G
′ = 〈x3, y〉 is bicyclic of type (3, 3) , and

H4,9 =
∩
Hi,3 = G3G′ coincides with the Frattini subgroup Φ(G) of G . However, the group Hi,9 is only

contained in H4,3 , for 1 ≤ i ≤ 3 . Figure 2 above illustrate these intermediate groups.
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Figure 2. The group G with G/G′ of type (9, 3) .

In the following Theorem 3.1, we determine via the Galois correspondence of k
(1)
3 /k the family (Ki,j)

of all fields k ⊆ Ki,j ⊆ k
(1)
3 , where 1 ≤ i ≤ 4, j ∈ {3, 9} , satisfying Hi,j = Gal(k

(2)
3 /Ki,j) , Hi,j/G

′ '

NKi,j/k(CKi,j ,3) , and Hi,j/H
′
i,j ' Gal((Ki,j)

(1)
3 /Ki,j) ' CKi,j ,3 .

Theorem 3.1 Let k = Q( 3
√
p, ζ3) , where p is a prime such that p ≡ 1 (mod 9) , C+

k,3 = {C ∈ Ck,3 | Cτ = C} ,

C−
k,3 = {C ∈ Ck,3 | Cτ = C−1} , and C

(σ)
k,3 be the ambiguous ideal class group of k|k0 .

Assume that Ck,3 is of type (9, 3) . Let C+
k,3 = 〈A〉 and C−

k,3 = 〈B〉 , where A ∈ Ck,3 such that A9 = 1 , A3 6= 1 ,

and B ∈ Ck,3 such that B3 = 1 , B 6= 1 . Then, the extension k
(1)
3 /k admits eight intermediate extensions as

follows:

1) Four unramified cyclic extensions of degree 3 denoted Ki,3, 1 ≤ i ≤ 4 , given by:

– The field K1,3 corresponds by class field theory to C+
k,3 = 〈A〉 ,

– The field K2,3 corresponds to 〈AB〉 = 〈Aσ〉 ,

– The field K3,3 corresponds to 〈AB2〉 = 〈Aσ2〉 ,
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– The field K4,3 corresponds to the principal genus C1−σ
k,3 = 〈A3,B〉 .

Furthermore, K4,3 = k( 3
√

π1π2
2) = (k/k0)

∗
= kΓ∗ = k (Γσ)

∗
= k

(
Γσ2

)∗
, where (k/k0)

∗ is the

relative genus field of k/k0 , F ∗ for a number field F is the absolute genus field of F , and π1, π2

are two primes of k0 such that p = π1π2 .

2) Three unramified cyclic extensions of degree 9 denoted Ki,9, 1 ≤ i ≤ 3 , given by:

– The field K2,9 corresponds by class field theory to the subgroup 〈A3B〉 ,

– The field K3,9 corresponds to the subgroup 〈A3B2〉 ,

– The field K1,9 corresponds to the subgroup C−
k,3 = 〈B〉 .

Furthermore, K1,9 = k · Γ3
(1) = k · (Γσ)

(1)
3 = k ·

(
Γσ2

)(1)

3
, where F3

(1) for a number field F is the

Hilbert 3-class field of F .

3) One bicyclic bicubic extension of degree 9 denoted K4,9 , and given by K4,9 = Ki,3 · Kj,3, i 6= j , which

corresponds by class field theory to the ambiguous ideal class group C
(σ)
k,3 = 〈A3〉 of the extension k/k0 .

Proof We will start our proof by assuming that the 3-ideal class group Ck,3 is of type (9, 3) . Then C+
k,3 = 〈A〉

and C−
k,3 = 〈B〉 , where A ∈ Ck,3 such that A9 = 1 , A3 6= 1 , and B ∈ Ck,3 such that B3 = 1 , B 6= 1 . According

to the class field theory, the results of Theorem 3.1 follow immediately from the fact that the 3-ideal class group
Ck,3 = 〈A,B〉 admits

• Four cubic subgroups Hi,3 of order 9 , where 1 ≤ i ≤ 4 , ordered as follows:

– three cyclic subgroups Hi,3 of order 9 , for 1 ≤ i ≤ 3 , given by:

• H1,3 = C+
k,3 = 〈A〉 = {C ∈ Ck,3 | Cτ = C} ,

• H2,3 = 〈AB〉 = 〈Aσ〉 = {C ∈ Ck,3 | Cτσ = C} ,

• H3,3 = 〈AB−1〉 = 〈AB2〉 = 〈Aσ2〉 = {C ∈ Ck,3 | Cτσ2

= C} .

Then, we have:
Ck,3/H1,3 = Ck,3/C

+
k,3 = Ck,3/〈A〉 ' Z/3Z,

Ck,3/H2,3 = Ck,3/〈Aσ〉 ' Z/3Z,

Ck,3/H3,3 = Ck,3/〈Aσ2

〉 ' Z/3Z.

Clearly we see that Gal (K1,3/k) ' Gal (K2,3/k) ' Gal (K3,3/k) ' Z/3Z , which means that K1,3 ,
K2,3 , K3,3 are unramified cyclic extensions of degree 3 over k corresponding respectively to the

subgroups H1,3 = 〈A〉 , H2,3 = 〈Aσ〉 , H3,3 = 〈Aσ2〉 of Ck,3 .

– the fourth subgroup H4,3 of order 9 is exactly the principal genus C1−σ
k,3 , given by

H4,3 =

4∏
i=1

Hi,9 = C1−σ
k,3 = C

(σ)
k,3 × C−

k,3 = 〈A3,B〉.
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We see that Ck,3/H4,3 = Ck,3/C
1−σ
k,3 ' Z/3Z. According to genus theory

Ck,3/C
1−σ
k,3 ' Gal

(
(k/k0)

∗
/k

)
,

which is exactly the genus group, for more details see [7, §2, p. 85]. Then, Gal (K4,3/k) '
Gal

(
(k/k0)

∗
/k

)
' Z/3Z , which means that K4,3 = (k/k0)

∗ is an unramified cyclic extension of
degree 3 over k corresponds, according to Theorem 2.3, to the subgroup H4,3 = 〈A3,B〉 of Ck,3 .

Furthermore, since the discriminant of OΓ is divisible by a single prime number p such that p ≡ 1

(mod 3) , then according to [11, Corollary 2.1, p. 21] we get

Γ∗ = M(p).Γ,

(Γσ)
∗

= M(p).Γσ,(
Γσ2

)∗
= M(p).Γσ2

,

where Γ∗ (respectively (Γσ)
∗ ,

(
Γσ2

)∗
) is the absolute genus field of Γ (respectively Γσ , Γσ2 ), and

M(p) is the unique cubic subfield Q(ζp) of degree 3 . By switching to the composition we obtain

k.Γ∗ = k. (Γσ)
∗
= k.

(
Γσ2

)∗
= k.M(p).

The fact that p ≡ 1 (mod 3) imply according to [10, Chapter 9, Section 1, Proposition 9.1.4, p. 110]
that p = π1π2 with πτ

1 = π2 and π1 ≡ π2 ≡ 1 (mod 3Ok0) , then by [8, § 3, Lemma 3.2, p. 56], we
see that (k/k0)

∗
= k( 3

√
π1π2

2) . We conclude that K4,3 = (k/k0)
∗
= kΓ∗ = k( 3

√
π1π2

2).

• Four cyclic cubic subgroups Hi,9 of order 3 , where 1 ≤ i ≤ 4 , ordered as follows:

• H1,9 = C−
k,3 = 〈B〉 = {C ∈ Ck,3 | Cτ = C−1} ,

• H2,9 = 〈A3B〉 ,

• H3,9 = 〈A3B−1〉 = 〈A3B2〉,

• H4,9 = C
(σ)
k,3 = 〈A3〉 is the ambiguous ideal class group of k/k0 .

Therefore, H4,9 =
∩4

i=1 Hi,3 , and for each 1 ≤ i ≤ 3 , Hi,9 is contained only in H4,3 .

On one hand, we get

Ck,3/H4,9 = Ck,3/C
(σ)
k,3 = Ck,3/〈A3〉 ' Z/3Z× Z/3Z,

we see that Gal (K4,9/k) ' Z/3Z × Z/3Z , which signifies that K4,9 is an unramified bicyclic bicubic

extension of k corresponding to the subgroup H4,9 = C
(σ)
k,3 of Ck,3 .

With the same reasoning, we obtain

Ck,3/H1,9 = Ck,3/C
−
k,3 = Ck,3/〈B〉 ' Z/9Z,
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Ck,3/H2,9 = Ck,3/〈A3B〉 ' Z/9Z,

Ck,3/H3,9 = Ck,3/〈A3B2〉 ' Z/9Z.

Clearly we see that Gal (K1,9/k) ' Gal (K2,9/k) ' Gal (K3,9/k) ' Z/9Z , which means that K1,9 , K2,9 ,
K3,9 are unramified cyclic extensions of degree 9 over k corresponding respectively to the subgroups
H1,9 = 〈B〉 , H2,9 = 〈A3B〉 , H3,9 = 〈A3B2〉 of Ck,3 .

On the other hand, according to [8, § 2, Lemma 2.1, p. 53] we have

Ck,3/H1,9 = Ck,3/C
−
k,3 ' C+

k,3,

by [8, § 2, Lemma 2.2, p. 53] we have
C+

k,3 ' CΓ,3,

and according to class field theory

CΓ,3 ' Gal
(
Γ3

(1)|Γ
)
,

then we obtain
Ck,3/H1,9 ' Gal

(
Γ3

(1)|Γ
)
' Gal

(
kΓ3

(1)|k
)
,

so according to class field theory, kΓ3
(1) is an unramified cyclic extension of degree 9 of k corresponding

to the subgroup H1,9 = C−
k,3 of Ck,3 . Thus, K1,9 = kΓ3

(1) .

Next, we show that kΓ3
(1) = k (Γσ)

(1)
3 = k

(
Γσ2

)(1)

3
. Suppose that Γ3

(1) 6= (Γσ)
(1)
3 , then Γ3

(1) · (Γσ)
(1)
3 is

an unramified extension of Γ3
(1) different to Γ3

(1) . This contradicts the fact that the tower of class fields
of Γ stops at the first stage, since the 3 -ideal class group CΓ,3 of Γ is cyclic.

2

4. Capitulation of 3-ideal classes of Q( 3
√
p, ζ3)

Let k = Q( 3
√
p, ζ3) , where p is a prime such that p ≡ 1 (mod 9) , and Ck,3 the 3 -class group of k . Suppose that

Ck,3 is of type (9, 3) . Let (Ki,j) be the family of all intermediate subfields of k ⊆ Ki,j ⊆ k
(1)
3 , where 1 ≤ i ≤ 4

and j ∈ {3, 9} . We denote by κi,j = ker
(
TKi,j/k

)
the kernel of the homomorphism TKi,j/k : Ck,3 −→ CKi,j ,3

induced by extension of ideals of k to Ki,j . We denote by κ the quartet of Taussky’s conditions [19]: B if
κi,j ∩NKi,j/k(CKi,j ,3) = 1 , A otherwise.

Definition 4.1 Let Ai,j be a generator of the subgroup Hi,j of Ck,3 , with 1 ≤ i ≤ 4, j ∈ {3, 9} corresponding
to the field Ki,j . Let li ∈ {0, 1, 2, 3, 4} with 1 ≤ i ≤ 4 .
We will say that the capitulation is of punctured type κ = (l1, l2, l3; l4) to express the fact that when li = n

for some n ∈ {1, 2, 3, 4} , then only the class An,9 and its powers capitulate in Ki,3 . If all classes of order 3

capitulate in Ki,3 , then we put li = 0 .
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The main result of this paper is as follows:

Theorem 4.2 Let k = Q( 3
√
p, ζ3) , where p is a prime number such that p ≡ 1 (mod 9) , and Ck,3 is its 3-class

group. Assume that Ck,3 is of type (9, 3) . Then:

1. (a) Kσ
1,3 = K2,3 , Kσ

2,3 = K3,3 , and Kσ
3,3 = K1,3 (σ permutes K1,3 , K2,3 and K3,3 ).

(b) Kτ
1,3 = K1,3 , Kτ

2,3 = K3,3 , and Kτ
3,3 = K2,3 ,

(c) Kτ
4,9 = K4,9 , Kτ

2,9 = K3,9 , and Kτ
3,9 = K2,9 ,

for all extensions of the automorphisms σ and τ .

2. The three classes A , Aσ and Aσ2 do not capitulate in Ki,3 , for 1 ≤ i ≤ 4 .

3. Exactly the class A3 and its powers capitulate in K4,3 , i.e. ker
(
TK4,3/k

)
= 〈A3〉 .

4. The capitulation kernels of the fields K2,3 and K3,3 have the same order.

5. The three classes A , Aσ and Aσ2 capitulate in K1,9 .

6. The capitulation kernels of the fields K2,9 and K3,9 have the same order.

7. Possible types of capitulation in Ki,3 , 1 ≤ i ≤ 4 , are κ = (4, 4, 4; 4) , (1, 2, 3; 4) and (0, 0, 0; 4) . Possible
Taussky types in Ki,3 , 1 ≤ i ≤ 4 , are κ = (AAA;A) or (BBB;A) .

Proof Let C
(σ)
k,3 be the 3 -ambigous class group of k/k0 and C1−σ

k,3 = {A1−σ | A ∈ Ck,3} the principal genus
of Ck,3 .

By Theorem 2.3 we have C
(σ)
k,3 = 〈A3〉 = 〈B1−σ〉 , and C1−σ

k,3 = C−
k,3 × C

(σ)
k,3 = 〈B,A3〉 is a 3 -group of Ck,3 of

type (3, 3) , where B ∈ Ck,3 such that C−
k,3 = 〈B〉 = 〈(A2)σ−1〉 .

1. We will agree that for all i , 1 ≤ i ≤ 4 , j = 3 or 9 , and for all ω ∈ Gal (k|Q) , Hω
i,j = {Cω/C ∈ Hi,j}.

(a) According to Theorem 3.1, H1,3 = C+
k,3 = 〈A〉,H2,3 = {C ∈ Ck,3|Cτσ = C} = 〈Aσ〉, and H3,3 = {C ∈

Ck,3|Cτσ2

= C} = 〈Aσ2〉. Then, Hσ
1,3 = H2,3 , Hσ

2,3 = H3,3 and Hσ
3,3 = H1,3 (σ permutes H1,3 , H2,3

and H3,3 ).

(b) As H1,3 = C+
k,3 = {C ∈ Ck,3 | Cτ = C} , then Hτ

1,3 = H1,3 . We have Hτ
2,3 = 〈(Aσ)τ 〉 = 〈Aτσ〉 , and

since Aτσ = Aσ2τ = (Aτ )σ
2

= Aσ2 ∈ H3,3 , then Hτ
2,3 = H3,3. Hτ

3,3 = 〈(Aσ2

)τ 〉 = 〈Aτσ2〉 = 〈Aστ 〉 =
〈(Aτ )σ〉 = 〈Aσ〉 , then Hτ

3,3 = H2,3 .

(c) We proceed as in (b) . Hτ
1,9 = H1,9 because H1,9 = C−

k,3 = {C ∈ Ck,3 | Cτ = C−1} . We have

H2,9 = 〈A3B〉 , and H3,9 = 〈A3B2〉 , and since Aτ = A and Bτ = B−1 = B2 , then Hτ
2,9 = H3,9 and

Hτ
3,9 = H2,9 .

The relations between the fields Ki,j in (1) are nothing else than the translations of the corresponding
relations for the subgroups Hi,j via class field theory.
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2. For each 1 ≤ i ≤ 4 , Ki,3 is an unramified cyclic extension of degree 3 over k . It is clear that for each
class C ∈ Ck,3 we have C3 = (NKi,3/k ◦TKi,3/k)(C) . If the class C capitulates in Ki,3 , then TKi,3/k(C) = 1

and C3 = 1 . We conclude that the ideal classes which capitulate in Ki,3 are of order 3 . Since the classes

A, Aσ , and Aσ2 are of order 9 , then these classes cannot capitulate in Ki,3 .

3. By Theorem 3.1 we have K4,3 = (k/k0)
∗ is the relative genus field of k/k0 , and by Theorem 2.3 we

have 〈A3〉 = 〈A3σ〉 = 〈A3σ2〉 = C
(σ)
k,3 . We conclude according to Tannaka–Terada theorem [20], that all

ambiguous ideal classes of Ck,3 capitulate in the relative genus field (k/k0)
∗ . Thus, the class A3 and its

powers capitulate in K4,3 . We shall prove that the unique classes which capitulate in K4,3 are only the

ambiguous ideal classes. We have C−
k,3 = 〈B〉 = 〈(A2)σ−1〉 and C

(σ)
k,3 = 〈A3〉 = 〈B1−σ〉 . On one hand we

have A1+2σ = Aσ(1−σ) = ((A−1)σ−1)σ = ((A2)σ−1)σ = Bσ

because (A3)σ−1 = 1 . One the other hand, we have B1−σB2 = B3−σ = B−σ , then (B1−σB2)−1 = Bσ .
So we get Bσ ∈ 〈B1−σB2〉 = 〈A3B2〉 , because 〈A3〉 = 〈B1−σ〉 . Since Ck,3 = 〈A,B〉 is of type (9, 3) , then
a class χ ∈ Ck,3 of order 3 capitulates in the cubic cyclic unramified extension K4,3/k , if and only if B
capitulates in the extension K4,3/k , because a class χ of order 3 is in one of the subgroups 〈B〉 , 〈A3B〉 ,
〈A3B2〉 and that Bσ ∈ 〈A3B2〉 .
If B capitulates in the extension K4,3/k , then Bσ capitulates also in K4,3/k . Since A1+2σ = Bσ , then
A1+2σ capitulates also in K4,3/k , so TK4,3/k

(
A1+2σ

)
= 1 . Then

(
TK4,3/k (A

σ)
)2

= TK4,3/k

(
A−1

)
= TK4,3/k

(
A2

)
because TK4,3/k

(
A3

)
= 1 , so

(
TK4,3/k (Aσ)

)2
=

(
TK4,3/k (A)

)2 and then

TK4,3/k (Aσ) = TK4,3/k (A) , so we get (Γ′
3)

(1)
= Γ

(1)
3 , where Γ

(1)
3 (resp. (Γ′

3)
(1)

= (Γσ
3 )

(1) ) is the Hilbert
3 -class field of Γ (resp. Γ′ ), which is a contradiction.
Thus B does not capitulate in K4,3/k , and then only A3 and its powers capitulate in K4,3/k .

4. The capitulation kernels of the fields K2,3 and K3,3 have the same order, because K2,3 and K3,3 are
isomorphic by (1)(b).

5. Let I be an ideal of Γ such that [I] generates CΓ,3 . Then [Iσ] generates CΓ′,3 , and [Iσ2

] generates

CΓ′′,3 . Let A = [Tk/Γ(I)] , so Aσ = [Tk/Γ(I)σ] = [Tk/Γ′(Iσ)] and Aσ2

= [Tk/Γ(I)σ
2

] = [Tk/Γ′′(Iσ2

)] .

The ideal I (resp. Iσ and Iσ2 ) becomes principal in Γ
(1)
3 (resp. (Γ′

3)
(1) and (Γ′′

3)
(1) ) because Γ

(1)
3

(resp. (Γ′
3)

(1) and (Γ′′
3)

(1) ) is the Hilbert 3 -class field of Γ (resp. Γ′ and Γ′′ ). Then I (resp. Iσ and

Iσ2 ) becomes principal in k.Γ
(1)
3 (resp. k. (Γ′

3)
(1) and k. (Γ′′

3)
(1) ). So, the class A (resp. Aσ and Aσ2 )

capitulates in k.Γ
(1)
3 (resp. k. (Γ′

3)
(1) and k. (Γ′′

3)
(1) ). Thus, A, Aσ and Aσ2 capitulate in K1,9 because

k.Γ
(1)
3 = k. (Γ′

3)
(1)

= k. (Γ′′
3)

(1)
= K1,9 .

6. According to (1)(c), the fields K2,9 and K3,9 are isomorphic. Then, the capitulation kernels of K2,9 and
K3,9 have the same order.
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7. Let C be an ideal class of Ck,3 of order 3 .

(i) Assume that all classes C of order 3 capitulate in Kj,3/k for each j ∈ {1, 2, 3} . Since exactly the
class A3 and its powers capitulate in K4,3 , we deduce that the type of capitulation is (0, 0, 0; 4) and
the Taussky type is (AAA;A).

(ii) Now, assume that exactly the class C capitulates in the extension K1,3/k . According to assertion
(1)(a) we have Kσ

1,3 = K2,3 , Kσ
2,3 = K3,3 , and Kσ

3,3 = K1,3 . Then exactly one class of Ck,3 of order
3 and its powers capitulate in the extensions K2,3/k and K3,3/k . Here there are two cases:

case 1: Assume that exactly the class A3 capitulates in the extension K1,3/k . By assertion (1)(a) we
have Kσ

1,3 = K2,3 , Kσ
2,3 = K3,3 , then exactly the class (A3)σ capitulates in the extension K2,3/k

and exactly the class (A3)σ
2 capitulates in the extension K3,3/k . Since exactly the class A3

and its powers capitulate in K4,3 , we conclude that the possible type of capitulation is (4, 4, 4; 4)

and the Taussky type is (AAA;A).

case 2: According to Theorem 2.3, C−
k,3 = 〈B〉 and C

(σ)
k,3 = 〈A3〉 = 〈B1−σ〉 . Since B1−σB2 = B3−σ =

B−σ, then (B1−σB2)−1 = Bσ. It follows that Bσ ∈ 〈B1−σB2〉 = 〈A3B2〉 because 〈A3〉 = 〈B1−σ〉 .
Now, assume that exactly the class B capitulates in K1,3/k . Since Kσ

1,3 = K2,3 and Kσ
2,3 = K3,3

by assertion (1)(a), we deduce that exactly the class Bσ capitulates in K2,3/k and exactly the

class Bσ2 capitulates in K3,3/k . Then, exactly the class A3B2 capitulates in K2,3/k and exactly
the class A3B capitulates in K3,3/k . As exactly the class A3 and its powers capitulate in K4,3 ,
the possible type of capitulation is (1, 2, 3; 4) and the Taussky type is (BBB;A).

2

5. Computational results and applications

5.1. Computational results

Let k = Q( 3
√
p, ζ3) be the normal closure of the pure cubic field Γ = Q( 3

√
p) with prime radicand p ≡ 1 (mod 9)

of Dedekind’s second species. Then k is a pure metacyclic field with absolute group Gal(k/Q) ' S3 the
symmetric group of order six. Assume that k possesses a 3 -class group Ck,3 ' C9×C3 . According to Theorem
2.1, the 3 -class group of Γ is CΓ,3 ' C9 , and Γ is of principal factorization type α , in the sense of [3, Theorem.
2.1, p. 254].

In Theorem 4.2, we investigated the principalization of k in its four unramified cyclic cubic extensions
K1,3, . . . ,K4,3 , and we found three possibilities for the kernels ker(TKi,3/k) of the transfer homomorphisms
TKi,3/k : Ck,3 → CKi,3,3 , aPk 7→ (aOKi,3

)PKi,3
.

Table has been computed with the aid of the computational algebra system MAGMA [12]. ∗ For
each of the 95 pure metacyclic fields k = Q( 3

√
p, ζ3) with prime radicands p ≡ 1 (mod 9) in the range

0 < p < 20 000 and 3 -class group of type (9, 3) , the capitulation kernels ker(TKi,3/k) of the class extension
homomorphisms TKi,3/k : Ck,3 → CKi,3,3 were computed and collected in the transfer kernel type κ . An

∗http://magma.maths.usyd.edu.au
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asterisk indicates the second variant of harmonically balanced capitulation κ = (123; 4) with abelian type
invariants α = [(27, 3)3; (9, 9, 3)] .

Table . Capitulation types κ of k = Q( 3
√
p, ζ3) in the range p < 20 000 .

No. p κ No. p κ No. p κ No. p κ
1 199 4444 25 4951 4444 49 9829 4444 73 14293 4444
2 271 4444 26 5059 4444 50 10243 4444 74 14419 4444
3 487 4444 27 5077 1234∗ 51 10459 0004 75 14563 4444
4 523 4444 28 5347 4444 52 10531 1234∗ 76 14779 4444
5 1297 1234∗ 29 5437 1234 53 10657 4444 77 14923 4444
6 1621 4444 30 5527 1234∗ 54 10837 0004 78 15121 0004
7 1693 4444 31 5851 4444 55 10909 4444 79 15319 4444
8 1747 1234 32 6067 4444 56 11251 4444 80 15427 4444
9 1999 4444 33 6247 4444 57 11287 4444 81 16381 1234∗
10 2017 4444 34 6481 1234 58 11467 4444 82 16417 4444
11 2143 1234∗ 35 6949 4444 59 11503 4444 83 16633 4444
12 2377 4444 36 7219 0004 60 11593 4444 84 16993 1234∗
13 2467 1234 37 7507 1234∗ 61 11701 4444 85 17137 1234
14 2593 1234 38 7687 4444 62 11719 4444 86 17209 1234∗
15 2917 4444 39 8011 1234 63 12097 4444 87 17497 1234∗
16 3511 4444 40 8209 4444 64 12511 1234 88 17569 4444
17 3673 4444 41 8677 1234 65 12637 4444 89 18379 0004
18 3727 4444 42 8821 4444 66 12853 4444 90 18451 1234
19 3907 4444 43 9001 4444 67 12907 0004 91 18523 4444
20 4159 4444 44 9109 4444 68 13159 4444 92 18541 4444
21 4519 1234∗ 45 9343 1234 69 13177 4444 93 19387 1234
22 4591 4444 46 9613 1234∗ 70 13339 4444 94 19441 1234∗
23 4789 1234 47 9631 4444 71 13411 4444 95 19927 1234∗
24 4933 4444 48 9721 4444 72 13807 1234

The following distribution of capitulation types κ arises in Table :

1. 61 (64%) with κ = (444; 4) (distinguished capitulation),

2. 14 (15%) with κ = (123; 4) , α = [(27, 3), (27, 3), (27, 3); (9, 3, 3)] (1st variant),

3. 14 (15%) with κ = (123; 4∗) , α = [(27, 3), (27, 3), (27, 3); (9, 9, 3)] (2nd variant),

4. 6 (6%) with κ = (000; 4) (total capitulation).

Our numerical results confirm the occurrence of precisely three situations for the punctured capitulation
type κ(k) = (ker(TK1,3/k), . . . , ker(TK3,3/k); ker(TK4,3/k)) , which we want to dub with succinct names in
Definition 5.1. Recall that H4,9 = ∩4

j=1 Hj,3 in Figure 2 is the distinguished subgroup of Ck,3 which is
generated by third powers of 3 -ideal classes, i.e. the Frattini subgroup. We also mention the corresponding
types in [13, Tables 1 and 2].

Definition 5.1 The punctured capitulation type, with puncture at the fourth component, for the subfield K4,3

associated with the subgroup H4,3 =
∏4

j=1 Hj,9 in Figure 2, is called
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1. distinguished, if κ(k) = (H4,9,H4,9,H4,9;H4,9) , briefly (444; 4) or type A.20 ,

2. harmonically balanced, if κ(k) = (H1,9,H2,9,H3,9;H4,9) , briefly (123; 4) or type E.12 ,

3. total, if κ(k) = (H4,3,H4,3,H4,3;H4,9) , briefly (000; 4) or type b.15 .

For the actual numerical determination of the (punctured) capitulation type κ , we introduce the concept of
Artin pattern of k .

Definition 5.2 Let α(k) = [ATI(CKi,3,3)]1≤i≤4 be the family of abelian type invariants (ATI) (i.e. 3-primary
type invariants) of the 3-class groups CKi,3,3 of the four unramified cyclic cubic extensions of k . Then the pair
AP(k) = (κ(k), α(k)) is called the Artin pattern of k .

It turns out that there is a bijective correspondence between κ and α for the distinguished and total
capitulation, whereas there are two variants of harmonically balanced capitulation.

Anyway, it is never required to perform the difficult computation of the capitulation type κ . It is sufficient
to determine the abelian type invariants α , which is computationally easier. Remark 5.3 is a consequence of
our results in Table , for which both, κ and α , were computed but only κ is listed, for brevity.

Remark 5.3 For a pure metacyclic field k = Q( 3
√
p, ζ3) with prime radicand p ≡ 1 (mod 9) , bounded by

p ≤ 20 000 , and 3-class group Ck,3 ' C9 × C3 , the following statements determine κ(k) by means of α(k) :

1. κ(k) = (444; 4) ⇐⇒ α(k) = [(9, 3)3; (9, 3)] (briefly for [(9, 3), (9, 3), (9, 3); (9, 3)]).

2. κ(k) = (000; 4) ⇐⇒ α(k) = [(9, 3, 3)3; (3, 3, 3, 3)] .

3. κ(k) = (123; 4) ⇐⇒ α(k) =

{
either [(27, 3)3; (9, 3, 3)] (1st variant)
or [(27, 3)3; (9, 9, 3)] (2nd variant, with an asterisk in Table ).

Conjecture 5.4 Based on the computations for Table , we conjecture the truth of the statements in Remark
5.3 for any prime p ≡ 1 (mod 9) , not necessarily bounded from above by 20 000 . (In fact, item 1. will be proved
rigorously in Theorem 5.9.)

5.2. Applications

Now, we are in the position to employ the strategy of pattern recognition via Artin transfers † [17] in order to

determine the 3 -class field tower k
(∞)
3 of k by means of AP(k) = (κ(k), α(k)) .

5.2.1. Relation rank and Galois action

Constraints arise from two issues, bounds for the relation rank of the tower group G = Gal(k
(∞)
3 /k) , and the

Galois action of Gal(k/Q) on Ck,3 ' G/G′ . By 〈o, i〉 we denote groups in the SmallGroups database of Magma
[12]. In the subsequent figures, the order o is given on a scale, and we abbreviate the identifiers by 〈i〉 .

†http://www.algebra.at/DCM@ICMA2020Casablanca.pdf
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Theorem 5.5 For any pure metacyclic field k = Q( 3
√
d, ζ3) with cube free radicand d ≥ 2 and 3-class rank

ϱ = 2 , the Galois group G = Gal(k
(∞)
3 /k) of the 3-class field tower must satisfy the following conditions.

1. The relation rank d2 of G must be bounded by 2 ≤ d2 ≤ 5 .

2. The automorphism group Aut(Q) of the Frattini quotient Q = G/Φ(G) must contain a subgroup isomor-
phic to S3 = 〈6, 1〉 . (This is true for any S3 -field k , not necessarily pure metacyclic.)

Proof According to the Burnside basis theorem, the generator rank d1 of G coincides with the generator
rank of the Frattini quotient Q = G/Φ(G) = G/(G′ ·G3) , resp. the derived quotient G/G′ ' Ck,3 , that is the
3 -class rank ϱ of k .

1. According to the Shafarevich Theorem [15, Theorem 5.1, p. 28], the relation rank d2 of G is bounded
by d1 ≤ d2 ≤ d1 + r + ϑ , where the torsion free unit rank r = r1 + r2 − 1 of the totally complex field k

with signature (r1, r2) = (0, 3) is r = 2 , and ϑ = 1 , since k contains the primitive third roots of unity.
Together with the generator rank d1 = ϱ = 2 this gives the bounds 2 ≤ d2 ≤ 2 + 2 + 1 = 5 . (For other
complex, resp. totally real, S3 -fields k , we have ϑ = 0 and the upper bound changes to 4 , resp. 7 .)

2. The absolute Galois group Gal(k/Q) ' S3 of k acts on the 3 -class group Ck,3 ' G/G′ and thus also
on the Frattini quotient Q = G/Φ(G) = G/(G′ ·G3) , whence Aut(Q) contains a subgroup isomorphic to
S3 = 〈6, 1〉 .

2

By the same proof as for item 2. of Theorem 5.5, with G/G′ ' Ck,3 replaced by

Gn/G
′
n ' Gal(k

(n)
3 /k)/Gal(k

(n)
3 /k

(1)
3 ) ' Gal(k

(1)
3 /k) ' Ck,3

we obtain the same requirement for the Galois action on Gn (but not for the relation rank of Gn !):

Corollary 5.6 Let n be a positive integer, and denote by Gn = Gal(k
(n)
3 /k) the Galois group of the n-th

Hilbert 3-class field k
(n)
3 of k . The automorphism group Aut(Q) of the Frattini quotient Q = Gn/Φ(Gn) must

contain a subgroup isomorphic to S3 = 〈6, 1〉 .

Furthermore, it will also be required to exploit data concerning the second layer of unramified abelian (three
cyclic nonic and a single bicyclic bicubic) extensions.

Definition 5.7 Let κ2(k) = (ker(TK1,9/k), . . . , ker(TK3,9/k); ker(TK4,9/k)) be the punctured capitulation type
and α2(k) = [ATI(CKi,9,3)]1≤i≤4 be the family of abelian type invariants of the 3-class groups CKi,9,3 of the
four unramified abelian nonic extensions of k , and put AP2(k) = (κ2(k), α2(k)) .

According to item 5. of Theorem 4.2, we know that ker(TK1,9/k) = Ck,3 .
By a 3 -group of type (9, 3) we understand a finite group G with derived quotient G/G′ ' C9 × C3 .

Such groups of second maximal class, that is of coclass cc(G) = 2 , were called CF-groups by Ascione et al. [4,
§ 7, pp. 272-274]. Ascione denoted those of nilpotency class cl(G) = 3 by capital letters A, . . . ,H as in Figure

3. However, most of our 3 -class tower groups G = Gal(k
(∞)
3 /k) arise as descendants of step size s = 2 of the

group 〈81, 3〉 with remarkable metabelian bifurcation to coclass cc = 3 , in the sense of [14].
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Figure 3. Finite 3 -groups G with commutator quotient G/G′ ≃ C9 × C3 .

5.2.2. Distinguished capitulation

Proposition 5.8 A power commutator presentation of the finite metabelian 3-group 〈81, 4〉 with class 2 and
coclass 2 in terms of the commutator s2 = [y, x] is given by

〈x, y, s2 | x9 = 1, y3 = s2〉. (5.1)

Proof The presentation of 〈81, 4〉 is part of the SmallGroups database, implemented in Magma [12]. 2

Theorem 5.9 Let k = Q(ζ3, 3
√
p) be a pure metacyclic S3 -field with prime radicand p ≡ 1 (mod 9) , 3-class

group Ck,3 of type (9, 3) and distinguished capitulation κ(k) = (444; 4) . Then

1. The Galois group G2 of the second Hilbert 3-class field k
(2)
3 of k is unambiguously determined as

Gal(k
(2)
3 /k) ' 〈81, 4〉 (see Figure 3) with κ2(k) = ((Ck,3)

3;Ck,3) and α2(k) = [(9)3; (3, 3)] .

2. The abelian type invariants of the 3-class groups CKi,3,3 of the four unramified cyclic cubic extensions
Ki,3 , 1 ≤ i ≤ 4 , of k are given by α(k) = [(9, 3)3; (9, 3)] .

3. The 3-class field tower of k must stop at the second stage, that is, k
(2)
3 = k

(∞)
3 is the maximal unramified

pro-3-extension of k .
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Proof In [16, §§ 5.1–5.4, pp. 78–87] we proved the theorem on the antitony κ(P ) ≥ κ(D) and α(P ) ≤ α(D)

of the components of the Artin pattern (κ, α) with respect to (parent, descendant)-pairs (P,D) , where P is a
quotient of D . If we search the descendant tree in Figure 3 for groups G with punctured transfer kernel type
κ = (444; 4) (A.20), we must therefore also consider possible parents with κ = (044; 4) (b.31) or κ = (044; 0)

(c.27), since the kernel 0 may shrink to 4 for a descendant. We conduct the search by ascending order of the
groups in the tree with abelian root 〈27, 2〉 ' C9 × C3 . The smallest order with a candidate is 81 and yields
the unique hit 〈81, 4〉 , which shares the kernels κ and the abelian type invariants α = [(9, 3)3; (9, 3)] with its
terminal child 〈243, 22〉 (a leaf of the tree). There are no further hits with coclass cc = 2 among the eight
descendants with step size s = 1 of the ramification vertex 〈81, 3〉 , i.e. all the CF-groups A, . . . ,H of Ascione
are discouraged as candidates. At this point, we have to enter a realm which did not occur in the literature
yet: We follow the metabelian bifurcation to coclass cc = 3 and check the type κ of the thirteen descendants
with step size s = 2 of 〈81, 3〉 . It turns out that only three of them are relevant, 〈729, 10〉 with κ = (044; 4) ,
〈729, 11〉 with κ = (044; 0) and 〈729, 12〉 with κ = (444; 4) . Indeed, 〈729, 10〉 has the child 〈2187, 139〉 with
κ = (444; 4) , and 〈729, 11〉 has two descendants 〈6561, i〉 , i ∈ {179, 181} , with κ = (444; 4) . Clearly, all
descendants of 〈729, 12〉 have κ = (444; 4) , since this type is not able to shrink further. Consequently, as
mentioned in the Introduction, § 1, the type κ is by far too insufficient in order to identify G2 , since there are
infinitely many candidates. Here the Galois action of S3 on G2 is definitely required: 〈729, 10〉 and 〈729, 11〉
are forbidden, because they have only an action by C2 × C2 = 〈4, 2〉 , and 〈729, 12〉 can be omitted, since
only C6 = 〈6, 2〉 acts on it. The same is true for all descendants of these three parents. Finally, 〈243, 22〉 is
discouraged, due to its poor action by C2 = 〈2, 1〉 only. So the unique remaining candidate for G2 is 〈81, 4〉 ,
as claimed.

The abelian type invariants α = [(9, 3)3; (9, 3)] which are common to the metabelian 3 -groups 〈81, 4〉 and
〈243, 22〉 , cannot occur for any other finite 3 -group of type (9, 3) which must be descendant of the metabelian
root R = 〈81, 3〉 with pc-presentation 〈x, y, s2 | x9 = 1, y3 = 1, s2 = [y, x]〉 and α(R) = [(9, 3)3, (3, 3, 3)] .
Consequently, at least one component of α(D) will always be of rank three, for any descendant D of the
root R . This argument shows that there cannot be a nonmetabelian 3 -group G of type (9, 3) with second
derived quotient G/G′′ isomorphic to either 〈81, 4〉 or 〈243, 22〉 , since G would necessarily be required to
have α(G) = [(9, 3)3); (9, 3)] , which is not compatible with being a descendant of R . According to the Artin

reciprocity law of class field theory, applied to k
(2)
3 , the 3 -class field tower of k must therefore have precise length

ℓ3(k) = 2 . Eventually, the unique candidate G = 〈81, 4〉 for G2 = G∞ satisfies the inequalities 2 ≤ d2 ≤ 5

for the relation rank in Theorem 5.5, since it has d2 = 3 , and the automorphism group Aut(Q) of its Frattini
quotient Q = G/Φ(G) contains a subgroup isomorphic to S3 = 〈6, 1〉 , as required. 2

5.2.3. Harmonically balanced capitulation

We shall see that harmonically balanced capitulation κ = (123; 4) occurs in two variants with distinct fourth
components (9, 3, 3) , resp. (9, 9, 3) , in the abelian type invariants α . It turns out that the first variant leads
to sporadic groups outside of coclass trees, and the second variant is connected with periodic groups on coclass
trees.

Proposition 5.10 A power commutator presentation of the finite metabelian 3-group 〈729, i〉 of class 3 in
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terms of the commutators s2 = [y, x] , s3 = [s2, x] , t3 = [s2, y] is given by{
〈x, y, s2, s3, t3 | x9 = t3, y3 = s3〉 if i = 17,

〈x, y, s2, s3, t3 | x9 = t23, y3 = s3〉 if i = 20.
(5.2)

The groups are sporadic of class 3 and coclass 3 .

Proof Presentations of these groups are part of the SmallGroups database, implemented in Magma [12]. 2
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Legend: • . . . metabelian with action by S3

◦ . . . other metabelian

. . . nonmetabelian with action by S3

□ . . . other nonmetabelian

Figure 4. Descendant tree of ⟨729, 17⟩ with stable κ = (123; 4) , α = [(27, 3)3; (9, 3, 3)] .

Theorem 5.11 For a pure metacyclic field k = Q( 3
√
p, ζ3) with p ≡ 1 (mod 9) having harmonically balanced

capitulation κ(k) = (123; 4) and the first variant of α = [(27, 3)3; (9, 3, 3)] , the sporadic Galois group G2 of

k
(2)
3 , the second Hilbert 3-class field of k , is given by Gal(k

(2)
3 /k) '

{
〈729, ℓ〉 if κ2(k) = ((Ck,3)

3;H4,3), α2(k) = [(9, 3)3; (9, 3, 3)],

〈2187,m〉 if κ2(k) = ((Ck,3)
3;H4,3), α2(k) = [(9, 9)3; (9, 9, 3)],

(5.3)

where ℓ ∈ {17, 20} , m ∈ {177, 178, 187, 188} . See Figures 4 and 5.

Proof All vertices of the entire descendant trees of the roots 〈729, i〉 with i ∈ {17, 20} share the required
Artin pattern (κ, α) with harmonically balanced capitulation κ = (123; 4) and the first variant of α =

[(27, 3)3; (9, 3, 3)] . Since the trees are isomorphic as structured graphs, we focus on 〈729, 17〉 , which gives rise
to a finite mainline, standing out through an action by the direct product S3 × C2 ' 〈12, 4〉 . The metabelian
vertices of this finite mainline are 〈729, 17〉 , 〈2187, 178〉 , 〈6561, 1733〉 , and 〈6561, 1733〉−#1; 2 . The other two
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Legend: • . . . metabelian with action by S3

◦ . . . other metabelian

. . . nonmetabelian with action by S3

□ . . . other nonmetabelian

Figure 5. Descendant tree of ⟨729, 20⟩ with stable κ = (132; 4) , α = [(27, 3)3; (9, 3, 3)] .

immediate descendants of the root 〈729, 17〉 are 〈2187, 177〉 with action by S3 and 〈2187, 179〉 with action by
C2 only. There are exactly two further candidates for G2 with action by S3 , namely the metabelian groups
〈6561, 1731〉 and 〈6561, 1733〉−#1; 3 . However, 〈6561, n〉 with n ∈ {1731, 1733} and 〈6561, 1733〉−#1; s with
s ∈ {2, 3} share the forbidden second layer κ2 = (H1,3,H2,3,H3,3;H4,3) , α2 = [(27, 9)3; (9, 9, 3)] . 2

Corollary 5.12 For the fields k with harmonically balanced capitulation κ = (123; 4) and first variant of

α = [(27, 3)3; (9, 3, 3)] (Theorem 5.11) the 3-class tower of k must stop at the second stage, that is, k
(2)
3 = k

(∞)
3

is the maximal unramified pro-3-extension of k .

Proof The groups G2 in Theorem 5.11 are not second derived quotients G/G′′ of nonmetabelian 3 -groups
G . 2

Proposition 5.13 A power commutator presentation of the finite metabelian 3-group 〈2187, i〉 in terms of the
commutators s2 = [y, x] , s3 = [s2, x] , s4 = [s3, x] , t3 = [s2, y] is given by{

〈x, y, s2, s3, s4, t3 | x9 = t3, y3 = s23, s32 = s24〉 if i = 180,

〈x, y, s2, s3, s4, t3 | x9 = t23, y3 = s23, s32 = s24〉 if i = 190.
(5.4)

The groups are periodic of class 4 and coclass 3 .

Proof Presentations of these groups are part of the SmallGroups database, implemented in Magma [12]. 2
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α = [(27, 3), (27, 3), (27, 3); (9, 9, 3)]

κ0 = (132; 0)
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• . . . metabelian with κ4 , α and action by S3

◦ . . . other metabelian

□ . . . nonmetabelian

Figure 6. Descendant tree of ⟨729, 18⟩ .

Theorem 5.14 For a pure metacyclic field k = Q( 3
√
p, ζ3) with p ≡ 1 (mod 9) having harmonically balanced

capitulation κ(k) = (123; 4) and the second variant of α = [(27, 3)3; (9, 9, 3)] , the periodic Galois group G2 of

the second Hilbert 3-class field k
(2)
3 is given by Gal(k

(2)
3 /k) '{

〈2187,m〉 if κ2(k) = ((Ck,3)
3;H4,3), α2(k) = [(9, 9)3; (9, 9, 3)],

〈6561, n〉 if κ2(k) = ((Ck,3)
3;H4,3), α2(k) = [(27, 9)3; (9, 9, 9)],

(5.5)

where m ∈ {180, 190} and n ∈ {1737, 1738, 1739, 1775, 1776, 1777} . See Figures 6 and 7.

Proof The required Artin pattern (κ, α) with harmonically balanced capitulation κ = (123; 4) and second
variant of α = [(27, 3)3; (9, 9, 3)] cannot occur for descendants of the roots 〈729, i〉 with i ∈ {17, 20} , because
on the entire descendant trees of these sporadic roots α = [(27, 3)3; (9, 3, 3)] remains stable.

The only possibility are vertices of the coclass trees with roots 〈729, i〉 for i ∈ {18, 21} . Since the trees
are isomorphic as structured graphs, we focus on 〈729, 21〉 , which has three immediate descendants, 〈2187, 190〉
with κ = (123; 4) , α = [(27, 3)3; (9, 9, 3)] , the mainline group 〈2187, 191〉 with host type κ = (123; 0) like
the parent 〈729, 21〉 , and 〈2187, 192〉 with inadequate κ = (123; 2) . Due to the antitony principle for the
components of the Artin pattern (κ, α) , all descendants of 〈2187, 191〉 can be eliminated, because they have
α ≥ [(27, 3)3; (27, 9, 3)] . The group 〈2187, 190〉 has the required action by S3 = 〈6, 1〉 , and this is also true
for three of its immediate descendants 〈6561, n〉 with 1775 ≤ n ≤ 1777 but not for n = 1778 with action by
C3 = 〈3, 1〉 only. Each of the three former has an immediate descendant 〈6561, n〉−#1; 1 with 1775 ≤ n ≤ 1777

and action by S3 . The other descendant 〈6561, n〉 − #1; 2 has action by C3 , and three further descendants
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〈6561, n〉−#1; 1−#1; i with 1 ≤ i ≤ 3 have only an action by C2 = 〈2, 1〉 . Further suitable candidates for G2

are impossible. Finally, the groups 〈6561, n〉 −#1; 1 with n ∈ {1775, 1776, 1777} are discouraged by a wrong
transfer kernel in the second layer with κ2 = (H1,3,H2,3,H3,3;H4,3) , α2 = [(27, 27)3; (9, 9, 9)] . 2
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α = [(27, 3), (27, 3), (27, 3); (9, 9, 3)]

κ0 = (123; 0)

κ4 = (123; 4)

κ1 = (123; 1)

κ2 = (123; 2)

• . . . metabelian with κ4 , α and action by S3

◦ . . . other metabelian

□ . . . nonmetabelian

Figure 7. Descendant tree of ⟨729, 21⟩ .

Corollary 5.15 For the fields k with harmonically balanced capitulation κ = (123; 4) and second variant of

α = [(27, 3)3; (9, 9, 3)] (Theorem 5.14) the 3-class tower of k must stop at the second stage, that is, k
(2)
3 = k

(∞)
3

is the maximal unramified pro-3-extension of k .

Proof According to the antitony principle, there cannot exist nonmetabelian 3 -groups G whose metabelian-

ization G/G′′ is isomorphic to one of the 14 candidates for G2 in Theorem 5.14. Thus k
(2)
3 = k

(∞)
3 . 2

Figures ?? illustrate the location in descendant trees of all metabelian groups M and certain non-
metabelian groups G which occur in subsection § 5.2.
The proofs of the Corollaries 5.12 and 5.15 are based on the following fact. All the candidates for G2 in
Theorems 5.11 and 5.14 satisfy the inequalities 2 ≤ d2 ≤ 5 for the relation rank in Theorem 5.5, since they
even satisfy the more severe estimates 3 ≤ d2 ≤ 4 . So there is no reason which precludes a metabelian tower
with length ℓ3(k) = 2 .

Remark 5.16 We emphasize that the strict limitation ℓ3(k) = 2 for the length of the 3-class field tower of k

in Corollary 5.12 is only due to item 5. of Theorem 4.2, i.e. the requirement ker(TK1,9/k) = Ck,3 for the second
layer.
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Although we also had ℓ3(k) = 2 if G2 = 〈6561, n〉 , n ∈ {1731, 1769} , were admissible, ℓ3(k) = 3 would be
enabled for r ∈ {1733, 1771} , and 〈6561, r〉 ' G/G′′ with G = 〈6561, r〉−#1; 4 , resp. 〈6561, r〉−#1; s ' G/G′′

with G = 〈2187,m〉−#2; 1−#1; s , m ∈ {178, 188} , s ∈ {2, 3} . The groups G are nonmetabelian with action by
S3 , in contrast to 〈6561, r〉 with r ∈ {1735, 1773} . On the other hand, it is known that the descendant trees of the
roots 〈729, i〉 with i ∈ {17, 20} contain vertices with unbounded derived length, whence any finite value ℓ3(k) ≥ 4

would also be possible. (Note that the tree continues at the nonmetabelian vertex 〈2187,m〉−#2; 1−#1; 2 with
m = 178 , resp. m = 188 .)

5.2.4. Total capitulation

Due to the wealth of metabelian groups M of low orders #M ≤ 38 in the descendant tree of the root 〈729, 9〉 ,
we restrict ourselves to immediate descendants of the root with action by S3 .

Proposition 5.17 A power commutator presentation of the finite metabelian 3-group 〈729, 9〉 is given by

〈x, y, s2, s3, t3 | x9 = 1, y3 = 1, s2 = [y, x], s3 = [s2, x], t3 = [s2, y]〉. (5.6)

The group is periodic of class 3 and coclass 3 .

Proof The presentation of 〈729, 9〉 is part of the SmallGroups database, implemented in Magma [12]. 2

Theorem 5.18 For a pure metacyclic field k = Q( 3
√
p, ζ3) with p ≡ 1 (mod 9) having total capitulation

κ(k) = (000; 4) and abelian type invariants α(k) = [(9, 3, 3)3; (3, 3, 3, 3)] , the smallest possible Galois groups

G2 of the second Hilbert 3-class field k
(2)
3 are given by

Gal(k
(2)
3 /k) '



〈729, 9〉 if α2(k) = [(3, 3, 3)3; (3, 3, 3, 3)],

〈2187, 123〉 if α2(k) = [(3, 3, 3, 3)3; (3, 3, 3, 3, 3)],

〈2187, 124〉 if α2(k) = [(9, 3, 3)3; (3, 3, 3, 3, 3)],

〈6561, i〉 if α2(k) = [(3, 3, 3, 3)3; (3, 3, 3, 3, 3, 3)],

〈6561, 109〉 if α2(k) = [(3, 3, 3, 3)3; (9, 3, 3, 3, 3)],

〈6561, j〉 if α2(k) = [(9, 3, 3)3; (9, 3, 3, 3, 3)],

(5.7)

where i ∈ {103, 105} and j ∈ {110, 111} .

Corollary 5.19 For the fields k with total capitulation κ(k) = (000; 4) in Theorem 5.18, the length of the

3-class field tower k
(∞)
3 is given by

1. ℓ3(k) ≥ 2 , if G2 ∈ {〈729, 9〉, 〈2187, 124〉, 〈6561, 109〉, 〈6561, 110〉, 〈6561, 111〉} ,

2. ℓ3(k) ≥ 3 , if G2 ∈ {〈2187, 123〉, 〈6561, 103〉, 〈6561, 105〉} .

Proof (Proof of Theorem 5.18 and Corollary 5.19) Since the root 〈729, 9〉 has nuclear rank ν = 3 , it has
descendants of step sizes s ∈ {1, 2, 3} . The 37 children with s = 3 are of order 39 = 19683 and possess abelian
quotient invariants α beyond the threshold [(9, 9, 3)3; (3, 3, 3, 3)] . Among the 15 , resp. 61 , children with s = 1 ,
resp. s = 2 , and order 37 = 2187 , resp. 38 = 6561 , only the two, resp. five, mentioned possess an action by
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S3 . Concerning the length of 3 -class field towers, the groups G2 in item 1. of the corollary have relation ranks
4 ≤ d2 ≤ 5 , thus admitting a two-stage tower, whereas those in item 2. have 6 ≤ d2 ≤ 7 , which definitely
excludes ℓ3(k) = 2 . 2
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