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Abstract: In this paper, a second-order mock theta function D5(q) given by Hikami [11] is studied. By using basic
hypergeometric transformation formulae, we attain some new representations of Hikami’s mock theta function D5(q) .
Meanwhile, dual nature of bilateral series associated to mock theta function D5(q) is also discussed.
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1. Introduction
Throughout this paper, we assume that |q| < 1 and adopt the standard notations [7]. Let N be the set of
natural number with N0 = N

∪
{0} . For an indeterminate a , q -shifted factorial of order n ∈ N0 is defined by

(a; q)0 := 1,

(a; q)n := (1− a)(1− aq) · · · (1− aqn−1), n ∈ N,

and

(a; q)−n :=
(−q/a)nq(

n
2)

(q/a; q)n
, n ∈ N.

For conveniences, we adopt the following compact notation for multiple q -shifted factorials:

(a1, a2, · · · , am; q)n := (a1; q)n(a2; q)n · · · (am; q)n,

where n is an integer or ∞ .
Basic hypergeometric series (q -series) is called q -analogue of hypergeometric series. For some studies on various
results of q -series and hypergeometric series, readers can refer to [1, 2, 6, 14, 15, 19, 21, 22].
The unilateral basic hypergeometric series rφs is defined by

rφs

[
a1, a2, · · · , ar
b1, b2, · · · , bs

; q, z

]
=

∞∑
n=0

(a1, a2, · · · , ar; q)n
(q, b1, · · · , bs; q)n

[
(−1)nq(

n
2)
]1+s−r

zn,

where q ̸= 0 when r > s+ 1 .
The bilateral basic hypergeometric series is given by

rψs

[
a1, · · · , ar
b1, · · · , bs

; q, z

]
=

∞∑
n=−∞

(a1, · · · , ar; q)n
(b1, · · · , bs; q)n

(−1)(s−r)nq(s−r)(n2)zn.
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In his letter to Hardy, Ramanujan listed 17 functions which he called mock theta functions. He defined each
mock theta function as a q -series in Eulerian form and divided them into four classes: one class of third order,
two of fifth order, and one of seventh order. However, he did not explain what he meant by the order of the
mock theta functions. Ramanujan did not give explicit definition for mock theta functions. Nobody knows what
Ramanujan had in his mind when he mentioned the ”order” of the mock theta functions. Later, Ramanujan’s
statements were interpreted by Andrews and Hickerson [3] to mean a function f(q) defined by a q -series which
converges for |q| < 1 and satisfies the following two conditions:
(1) For every root of unity ξ , there is a theta function θξ(q) such that the difference f(q) − θξ(q) is bounded
as q → ξ radially.
(2) There is no single theta function which works for all ξ ; i.e. for every theta function θ(q) there is some root
of unity ξ for which f(q)− θξ(q) is unbounded as q → ξ radially.
A similar definition was given by Gordon and McIntosh (cf. [8]). For second-order mock theta functions,
McIntosh considered three second-order mock theta functions and gave transformation formulas for them [16].
For more details on other mock theta functions, one may refer to [8, 10, 23]. In his work on mathematical
physics and the quantum invariant of a three manifold, Hikami [11, 12] came across the q -series

D5(q) =

∞∑
n=0

(−q; q)nqn

(q; q2)n+1
(1.1)

and proved this function is indeed a mock theta function and called it of “2nd” order. This q -series can be
rewritten as

D5(q) =
1

(q; q2)2∞

∞∑
n=0

(q; q2)2nq
2n. (1.2)

And he further showed that

D5(q) = 2h1(q)− (−q; q)2∞ω(q), (1.3)

where ω(q) denotes the third-order mock theta function defined by (cf. [23]):

ω(q) =

∞∑
n=0

q2n(n+1)

(q; q2)2n+1

and h1(q) denotes the second-order mock theta function defined by (cf. [8]):

h1(q) =

∞∑
n=0

qn(−q; q)2n
(q; q2)2n+1

=
J2
J2
1

∞∑
n=0

(−1)nqn(n+2)

1− q2n+1

=
J2
2J2

1

∞∑
n=−∞

(−1)nqn(n+2)

1− q2n+1
. (1.4)

Let Z be the set of integer number and recall that the Appell-Lerch sums [10] are defined by

m(x, q, z) :=
1

j(z; q)

∑
r∈Z

(−1)rq(
r
2)zr

1− qr−1xz
, (1.5)
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where

j(z; q) := (z,
q

z
, q; q)∞ =

∑
n∈Z

(−1)nq(
n
2)zn. (1.6)

Let a and m be integers with m ∈ N . Define
Ja,m := j(qa; qm),

Jm := Jm,3m =
∏
i≥1

(1− qmi).

Let C be the set of complex number with C∗ = C− {0} .
In the sequel, we will use the following properties of the Appell-Lerch sums [10, 18, 24]:

m(x, q, z) = m(x, q, qz), (1.7)

m(x, q, z) = x−1m(x−1, q, z−1), (1.8)

m(x, q, z1)−m(x, q, z0) =
z0J

3
1 j(z1/z0; q)j(xz0z1; q)

j(z0; q)j(z1; q)j(xz0; q)j(xz1; q)
, (1.9)

for generic x, z0, z1 ∈ C∗ . In this paper, we shall make use of the following definition of Hecke-type double sums
[10].

Definition 1.1 (cf. [10]) Let x, y ∈ C∗ and define sg(r) := 1 for r ≥ 0 and sg(r) := −1 for r < 0 . Then

fa,b,c(x, y, q) : =
∑

sg(r)=sg(s)

sg(r)(−1)r+sxrysqa(
r
2)+brs+c(s2)

=

 ∑
r,s≥0

−
∑
r,s<0

 (−1)r+sxrysqa(
r
2)+brs+c(s2),

which is an indefinite theta series when ac < b2 . Here, we assume a, c > 0 .

Jackson’s transformation of 2φ1 and 3φ2 series [7, Eq. (III.5)], Heine’s first transformation of 2φ1 series
([7, Eq. (III.1)]) and transformation formula [7, E.x. 3.4] are restated respectively as follows:

2φ1

[
a, b

c
; q, z

]
=

(abzc ; q)∞

( bzc ; q)∞
3φ2

[
a, c

b , 0
c, cq

bz

; q, q

]

+
(a, bz, cb ; q)∞

(c, z, c
bz ; q)∞

3φ2

[
z, abz

c , 0

bz, bzq
c

; q, q

]
. (1.10)

2φ1

[
a, b

c
; q, z

]
=

(b, az; q)∞
(c, z; q)∞

2φ1

[
c/b, z

az
; q, b

]
. (1.11)

and
∞∑

m=0

∞∑
n=0

(a, c; q)m+n(b
2; q2)m

(q; q)m(q; q)n(d; q)m+n(b2; q)m
(−z)mzn

= 4φ3

[
a, aq, c, cq

d, dq, qb2
; q2, z2

]
, |z| < 1. (1.12)
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The following bilateral sum plays an essential role in constructing bilateral series for the mock theta function.
Now, we state it as a lemma.

Lemma 1.2 ([18, Proposition 2.7]). For a, b ̸= 0 ,

∞∑
n=−∞

a−n−1b−nqn
2

(− 1
a ; q)n+1(− q

b ; q)n
=

∞∑
n=−∞

(−aq; q)n(−b; q)n+1q
n+1

=
(−aq; q)∞j(−b; q)
b(q; q)∞(− q

b ; q)∞
m(

a

b
, q,−b). (1.13)

In addition to the above notations, we also need the following bilateral series of mock theta function defined by

B(M ; q) :=

∞∑
n=−∞

c(n; q),

where M(q) :=

∞∑
n=0

c(n; q) is a mock theta function and the tail of the bilateral series B(M ; q) is

−1∑
n=−∞

c(n; q) = D(M ; q).

In this paper, we first make the replacement n→ −n in D(M, q) to obtain the new q-hypergeometric series in
terms of Appell-Lerch sums. These q-series are referred to as duals of the second type [18]. Then, by using the
substitution q → q−1 and the heuristic [10, 18]

m(x, q, z) ∼
∞∑
r=0

(−1)rxrq−(
r+1
2 )

in D(M, q) , where ”∼” means up to the addition of a theta function, we attempt to attain the dual in terms of
partial theta functions defined by Hickerson and Mortenson of dual of the second type in terms of Appell-Lerch
sums of such bilateral series associated to mock theta function D5(q) . However, it is regretted that we find it
does not exist.

Recently, mock theta functions were studied by Hickerson and Mortenson [10]. They gave representations
of mock theta functions in terms of Appell-Lerch sums. Choi [5] and Mc Laughlin[17] used bilateral basic
hypergeometric series to estabish some mock theta function identities. Chen [4], Hu et al. [13] gave the Appell-
Lerch sums representations of the bilateral series associated to mock theta functions, and studied their dual
nature. Motivated by the abovementioned results, we study new representations of the second-order mock theta
function D5(q) and the dual nature of the bilateral series associated to it in this paper.

This paper is organized as follows. In Section 2 , we mainly make use of basic hypergeometric transfor-
mation formulae to obtain some new representations concerning Hikami’s second mock theta function D5(q) .
Finally, we close this paper with dual nature of bilateral series associated to D5(q) .
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2. Main results and proofs
In this section, we mainly use the mentioned results in the previous section to give some new representations
for the second-order mock theta function D5(q) and discuss the dual nature of the bilateral series associated to
D5(q) .

In Theorem 2.1 below, D5(q) is expressed as the linear sum of the second-order mock theta function
B(q) and the third-order mock theta function ν(q) .

Theorem 2.1 The following identity holds true:

√
qD5(q) = B(

√
q)− J2

2

J2
1

ν(−√
q), (2.1)

where B(q) =

∞∑
n=0

(−q; q2)nqn

(q; q2)n+1
and ν(q) =

∞∑
n=0

qn(n+1)

(−q; q2)n+1
are the second-order and third-order mock theta

functions (cf. [8, 10]), respectively.

Proof Taking a = q, b = −q 1
2 , c = q

3
2 , z = q

1
2 in (1.10), we gain that

∞∑
n=0

(−q 1
2 ; q)nq

n
2

(q
3
2 ; q)n

=
1

1 + q−
1
2

∞∑
n=0

(−q; q)nqn

(q3; q2)n

+
(q2; q2)∞(−q; q)∞

(1 + q
1
2 )(q3; q2)∞(q

1
2 ; q)∞

∞∑
n=0

(q
1
2 ; q)nq

n

(q2; q2)n
.

Multiplying both sides of the above identity by 1
1−q , we achieve that

1

1− q

∞∑
n=0

(−q 1
2 ; q)nq

n
2

(q
3
2 ; q)n

=
1

1 + q−
1
2

∞∑
n=0

(−q; q)nqn

(q; q2)n+1

+
(q2; q2)∞(−q; q)∞

(1 + q
1
2 )(q; q2)∞(q

1
2 ; q)∞

∞∑
n=0

(q
1
2 ; q)nq

n

(q2; q2)n
.

Through certain simplifications, we have that

∞∑
n=0

(−q 1
2 ; q)nq

n
2

(q
1
2 ; q)n+1

= q
1
2

∞∑
n=0

(−q; q)nqn

(q; q2)n+1
+

(q2; q2)∞(−q; q)∞
(q; q2)∞(q

1
2 ; q)∞

∞∑
n=0

(q
1
2 ; q)nq

n

(q2; q2)n
.

Making the substitution q → q2 , we obtain that

∞∑
n=0

(−q; q2)nqn

(q; q2)n+1
= q

∞∑
n=0

(−q2; q2)nq2n

(q2; q4)n+1
+

(q4; q4)∞(−q2; q2)∞
(q2; q4)∞(q; q2)∞

∞∑
n=0

(q; q2)nq
2n

(q4; q4)n
,

i.e.

B(q) = qD5(q
2) +

J3
4

J1J2

∞∑
n=0

(q; q2)nq
2n

(q4; q4)n
. (2.2)
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Replacing q, a, b, c, z by q2, q, 0,−q2, q2 in (1.11), respectively, we attain that

∞∑
n=0

(q; q2)nq
2n

(q4; q4)n
=

(q3; q2)∞
(−q2, q2; q2)∞

∞∑
n=0

qn
2+n

(q3; q2)n

=
(q; q2)∞
(q4; q4)∞

∞∑
n=0

qn
2+n

(q; q2)n+1

=
(q; q2)∞
(q4; q4)∞

ν(−q)

=
J1
J2J4

ν(−q). (2.3)

Combining (2.2) with (2.3), we derive that

qD5(q
2) = B(q)− J2

4

J2
2

ν(−q).

Making the substitution q → q1/2 , we have that

√
qD5(q) = B(

√
q)− J2

2

J2
1

ν(−√
q).

This completes the proof of the identity (2.1). 2

Remark: Making use of the results of the previously mentioned and h1(q
2) = B(q)−B(−q)

4q ([8, P. 136]), the

identity (2.1) can be reduced to ν(q) + qω(q2) =
J3
4

J2
2

([23, P. 71]).

In Theorem 2.2 below, we give three different representations of D5(q) .

Theorem 2.2 Each of the following identities holds true:

D5(q) = −1

q
m(1, q2, q3/2) +

J2
2

qJ2
1

(
m(q, q6, q3/2) +m(q, q6, q9/2)

)
(2.4)

=
J2
2

J2
1

(
m(q, q6, q2) +m(q, q6, q4)

)
− J2j(q; q

2)

qJ2
1

m(1, q2,−1) +
J2
2

4qJ2
1

j(−q; q2)3

J2
4

(2.5)

=
J2
2

J2
1

(
m(q, q6, q2) +m(q, q6, q4)

)
− J2j(q; q

2)

qJ2
1

m(1, q2, q). (2.6)

Proof Plugging the identity of the second-order mock theta function B(q) in terms of the Appell-Lerch sums
([10, Eq. (4.2)])

B(q) = −q−1m(1, q4, q3),

and the identity of the second-order mock theta function ν(q) in terms of the Appell-Lerch sums ([10, Eq.
(4.9)])

ν(q) = q−1m(q2, q12,−q3) + q−1m(q2, q12,−q9),

into (2.1), we get that
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q
1
2D5(q) = −q− 1

2m(1, q2, q3/2) + q−
1
2
J2
2

J2
1

(
m(q, q6, q3/2) +m(q, q6, q9/2)

)
.

Multiplying both sides by q
−1
2 , we obtain our desired result

D5(q) = −1

q
m(1, q2, q3/2) +

J2
2

qJ2
1

(
m(q, q6, q3/2) +m(q, q6, q9/2)

)
.

This completes the proof of the identity (2.4).
Recall that two identities obtained by Mortenson: [18, Eq. (4.15)]

∞∑
n=0

q2n+1(−aq,− q
a
; q2)n

= −qg(−aq, q2) + a
j(−aq; q2)

J2
m(a2, q2,−1)− 1

2

aj(aq; q2)3j(a2; q4)

J2
4 j(a

4; q4)
(2.7)

and [18, Eq. (4.16)]

∞∑
n=0

q2n+1(−aq,− q
a
; q2)n

= −qg(−aq, q2) + a
j(−aq; q2)

J2
m(a2, q2,−a−1q), (2.8)

where g(x, q) =
∞∑

n=0

qn(n+1)

(x; q)n+1(
q
x ; q)n+1

.

By using (1.7), (1.8) and g(x, q) = −x−1m(q2x−3, q3, x2) − x−2m(qx−3, q3, x2) (cf. [9]), the identities
(2.5) and (2.6) follow from (2.7) and (2.8) with a = −1 , respectively. 2

Using (2.4) and the known results, we easily deduce the following result stated by Corollary 2.3 below.

Corollary 2.3 The following theta identity holds true:

q2J1,12
J3,12J2,12

− qJ5,12
J6,12J1,12

=
J4
4J4,12
qJ2

2J
3
12

.

Proof In terms of (1.4) and the definition of the Appell-Lerch sums, we have that

h1(q) = − 1

2q
m(1, q2, q3).

Since ([10, Eq. (4.8)])

ω(q) = −q−1m(q, q6, q2)− q−1m(q, q6, q4), (2.9)

then by (1.3) we get that

qD5(q) = −m(1, q2, q3) +
J2
2

J2
1

(
m(q, q6, q2) +m(q, q6, q4)

)
. (2.10)
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Combining (2.4) with (2.10) and after some simplifications, we derive that

m(1, q2, q3/2)−m(1, q2, q3)

=
J2
2

J2
1

(
m(q, q6, q3/2) +m(q, q6, q9/2)−m(q, q6, q2)−m(q, q6, q4)

)
.

Making the substitution q → q2 , we derive that

m(1, q4, q3)−m(1, q4, q6)

=
J2
4

J2
2

(
m(q2, q12, q3) +m(q2, q12, q9)−m(q2, q12, q4)−m(q2, q12, q8)

)
.

By (1.9) and after some simplifications, we obtain Corollary 2.3. This completes the proof. 2

In addition, the second-order mock theta function D5(q) can also be expressed in terms of the Hecke-type
double sums as follows.

Theorem 2.4 The representation of D5(q) in terms of the Hecke-type double sums is as follows:

D5(q) =
J2
J2
1

f3,2,1(q
6, q3, q2).

Proof Recall that [18, Eq. (4.17)]:

∞∑
n=0

q2n+1(−aq,− q
a
; q2)n =

qf3,2,1(q
6,−aq3, q2)
J2

.

Taking a = −1 , we get that
∞∑

n=0

q2n+1(q; q2)2n =
qf3,2,1(q

6, q3, q2)

J2
.

Multiplying both sides of the above identity by 1
(q;q2)2∞

and after some simplifications, we derive that

1

(q; q2)2∞

∞∑
n=0

q2n(q; q2)2n =
J2
J2
1

f3,2,1(q
6, q3, q2).

This completes the proof. 2

It is all known that the basic hypergeometric series is a basic tool to study mock theta functions. Making use
of certain transformation formula, we can derive the following result as follows.

Theorem 2.5 The following representation of D5(q) in terms of q -hypergeometric double sums holds true:

D5(q) =
J2
2

J1

∞∑
m=0

∞∑
n=0

(−1)mqm+mn+n (q; q2)m
(q; q)m(q2; q)m+n

. (2.11)
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Proof Taking a = c = q, b = q
1
2 , d = 0, z = q in (1.12), we get that

∞∑
n=0

(q; q2)2nq
2n =

∞∑
m=0

∞∑
n=0

(q; q)2m+n(q; q
2)m(−1)mqm+n

(q; q)2m(q; q)n
.

Multiplying both sides of the above identity by 1
(q;q2)2∞

and after certain simplifications, we obtain that

1

(q; q2)2∞

∞∑
n=0

(q; q2)2nq
2n =

J2
2

J2
1

∞∑
m=0

∞∑
n=0

(q; q)2m+n(q; q
2)m(−1)mqm+n

(q; q)2m(q; q)n

=
J2
2

J2
1

∞∑
m=0

(q; q2)m(−q)m2φ1

[
qm+1, qm+1

0
; q, q

]
.

By using (1.11) in the above identity, we obtain that

1

(q; q2)2∞

∞∑
n=0

(q; q2)2nq
2n =

J2
2

J2
1

∞∑
m=0

(q; q2)m(−q)m J1
(q; q)m(q2; q)m

∞∑
n=0

q(m+1)n

(qm+2; q)n

=
J2
2

J1

∞∑
m=0

∞∑
n=0

(−1)mqm+mn+n (q; q2)m
(q; q)m(q2; q)m+n

.

Thus, we obtain our desired result (2.11). 2

The bilateral series B(D5; q) = 1
(q;q2)2∞

∞∑
n=−∞

(q; q2)2nq
2n was studied by Srivastava [20]. He derived a

bilateral representation of D5; q) and established a relationship between B(D5; q) and the third-order mock
theta function B(ω; q) . Motivated by these developments, we study the bilateral series of D5(q) again. First,
we attain the following new representation of B(D5; q) in terms of the Appell-Lerch sums by using the identity
(1.13).

Theorem 2.6 The following representation of B(D5; q) in terms of the Appell-Lerch sums holds true:

B(D5; q) = −1

q
m(1, q2, q), (2.12)

where B(D5; q) =
1

(q;q2)2∞

∞∑
n=−∞

(q; q2)2nq
2n .

Proof Making the substitution q → q2 in (1.13), we get that

∞∑
n=−∞

(−aq2; q2)n(−b; q2)n+1q
2n+2 =

(−aq2; q2)∞j(−b; q2)
b(q2; q2)∞(− q2

b ; q
2)∞

m(
a

b
, q2,−b).

Taking a = b = −q−1 , we attain that

(1− q−1)q2
∞∑

n=−∞
(q; q2)2nq

2n =
(q; q2)∞j(q

−1; q2)

−q−1(q2; q2)∞(q3; q2)∞
m(1, q2, q−1).
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By using (1.7) and after some simplifications, we derive that

∞∑
n=−∞

(q; q2)2nq
2n = − j(q; q2)

q(q2; q2)∞
m(1, q2, q).

Multiplying both sides of the last equation by 1
(q;q2)2∞

and after certain simplifications, we get our desired result.

This completes the proof. 2

Corollary 2.7 The following identity of the Appell-Lerch sums holds true:

m(1, q2, q) =
J2
2J1,4
J2
1J4

m(q2, q4, q). (2.13)

Proof Recall [13, Eq. (42)]

B(ω; q) = −1

q

J1,4
J4

m(q2, q4, q), (2.14)

and the bilateral third-order mock theta function B(ω; q) [20, Eq. (3.5)]:

(q; q2)2∞B(D5; q) = B(ω; q). (2.15)

Plugging (2.14) into (2.15), we get that

B(D5; q) = −J
2
2J1,4
qJ2

1J4
m(q2, q4, q) (2.16)

Combining (2.12) with (2.16) and after certain simplifications, we derive our desired result (2.13). This completes
the proof. 2

Finally, we close this paper with the dual nature of the bilateral series associated to mock theta function
D5(q) .

Theorem 2.8 For the second-order mock theta function D5(q) , the dual of the second type in terms of
Appell-Lerch sums of such mock theta function is the following,

D(D5; q) =
1

(q; q2)2∞

∞∑
n=0

q2n(n+1)

(q; q2)2n+1

= − J2
2

qJ2
1

(
m(q, q6, q2) +m(q, q6, q4)

)
. (2.17)

Proof

D(D5; q) =
1

(q; q2)2∞

−1∑
n=−∞

(q; q2)2nq
2n

=
1

(q; q2)2∞

∞∑
n=1

q2n
2−2n

(q; q2)2n

=
1

(q; q2)2∞

∞∑
n=0

q2n(n+1)

(q; q2)2n+1

=
1

(q; q2)2∞
ω(q).
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Using (2.9), we obtain that

D(D5; q) = − J2
2

qJ2
1

(
m(q, q6, q2) +m(q, q6, q4)

)
.

This completes the proof. 2

Remark: By using the substitution q → q−1 in D(∗, q) of the dual of the second type for the second-order mock
theta function D5(q) and after computing, we find the associated Eulerian series is not absolutely convergent
for |q| < 1 , so its dual does not exist.

3. Conclusion
This paper is motivated essentially by some representations of Hikami’s mock theta functions. In our present
investigation, we have established some new presentations of Hikami’s mock theta function D5(q) . Meanwhile,
we have also obtained a new representation of B(D5; q) in terms of the Appell-Lerch sums, and further discussed
the dual of the bilateral series associated to the second-order mock theta function B(D5; q) . Finally, we have
found that the dual in terms of partial theta functions of the dual of the second type in terms of Appell-
Lerch sums of such mock theta function does not exists. Mock theta functions involve some problems about
mock modular forms, partition function, etc. And there are very widely applications in areas of number theory,
algebra, combinatorial mathematics, etc. Therefore, research on mock theta functions will be a valuable subject.
Different generalizations of D5(q) and its bilateral series will be also worth studying.
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