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Abstract: In this paper, we obtain the existence–uniqueness of solution to the second-order linear Fredholm integro-
differential equation (FIDE) with Dirichlet boundary condition by hybridizable discontinuous Galerkin (HDG) method.
A key property of these methods is to eliminate all internal degrees of freedom and to construct a linear system that only
includes globally coupled unknowns at the element interfaces. After designing and implementing HDG algorithm, we
provide some necessary and sufficient conditions based on the stabilization parameter and kernel function to guarantee
the existence-uniqueness of the approximate solution. Then, some numerical examples are carried out to assess the
performance of the present method. When comparing with existing some methods in literature, the experimental studies
verify the reliability and feasibility of the HDG method for the problem under consideration.
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1. Introduction
The origins of the work about integral and integro-differential equations (IDEs) may be traced to the study
of Abel, Lotka, Fredholm, Malthus, Verhulst, and Volterra on problems that contain mechanics, mathematical
biology and economics. Outstanding names are associated with the problem of applying these equations to
describe leg effects, but one of the first and most prominent figures is Vito Volterra. Integro–differential
equations (IDEs) appear naturally when studying discontinuous stochastic processes. These equations arise in
many different disciplines such as neutron diffusion, electromagnetic theory, ocean circulations, dispersive waves,
electric circuit problems, heat and mass diffusion processes, etc. (see [14, 15] and references therein). It is usually
difficult to solve these equations analytically due to the integral of the finite range in the equation. Therefore,
it is most natural a growing potential tendency in the study to investigate these problems in the recent years.
Many different numerical methods have been tried so far to find the approximate solution of different types
of IDEs such as multiscale Galerkin method [6], compact finite difference method [24], differential transform
method [8], homotopy perturbation method and sine-cosine wavelet method [12], Taylor polynomial method
[1], B-spline collocation method [13], Legendre polynomial method, and variational iteration method [3], Monte
Carlo method [10], reproducing kernel Hilbert space method [2], Pell–Lucas collocation method [18], operational
matrix method [19], exponential method [20], a Galerkin-like method [21], Bessel collocation method [22], and
Bernstein collocation method [23]. FIDEs are a class of IDEs that contain an unknown function appears under
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the sign of integration and derivatives functional arguments of it.
The main purpose of this paper is to investigate the performance of the HDG method for second order

FIDEs of the form:

u′′(x) = g(x) +

1∫
0

κ(x, t)u(t)dt, x ∈ Ω = [0, 1] , (1.1)

subject to boundary conditions
u(x) = uD(x), x ∈ ∂Ω = {0, 1}, (1.2)

where u : [0, 1] → R , g : [0, 1] → R are continuous functions, the kernel function κ(x, t) is sufficiently smooth
continuous function, and uD is a boundary value function such that

uD(0) = µ1, uD(1) = µ2, µ1, µ2 ∈ R. (1.3)

Similar problems are considered in the literature by Chen et al. [5], Jalius and Abdul–Majid [11], and Xue et
al. [16].

The HDG methods were introduced in [7] on the framework of second order elliptic problems. Scientists
have successfully applied these methods to a wide range of partial differential equations arising in various areas
of science, technology, and engineering. The standard approach of the HDG method is to first compute the
local solver independently on each finite element and then assemble the global linear equation system. The
outstanding property of the method is that the number of the globally-coupled degrees of freedom defined on
the element boundaries is significantly reduced. The approximate solutions can be expressed in an element-by-
element fashion in terms of an approximate trace satisfying a global weak formulation. Therefore, they are easy
to implement. As an indication of HDG approximation, we obtain existence–uniqueness theory of solution to
the problem (1.1)–(1.2) and also confirm this phenomena by condition numbers of the global stiffness matrix
that has simetric, positive definite, and tridiagonal structure. The performance of the HDG method is compared
with a number of numerical methods to provide the accuracy of proposed method. To the best of our knowledge,
this is the first time that HDG methods are used for a second-order FIDE.

This paper is organized as follows. Section 2 provides some necessary notations, approximation spaces,
and HDG formulation for FIDE. Section 3 presents existence-uniqueness theorems of the approximate solution.
Section 4 briefly explain the realization of the algorithm process. Section 5 gives some numerical examples to
obtain a good agreement with the effectiveness of the HDG method.

2. Definition of HDG method
In this section, we introduce some notations, approximate spaces, and define the formulation of the HDG method
for problem (1.1)–(1.2).

2.1. Notations and approximate spaces

Let Ωh denote the partition of Ω = [0, 1] for a given positive integer elements N as follows:

Ωh := {Ii = (xi−1, xi)| 0 = x0 < x1 < · · · < xN−1 < xN = 1}.

We define the nodes and interior nodes as ξh := {x0, x1, . . . , xN} and ξh
0 := ξh\∂Ω , respectively. We introduce

the set of h := maxK∈Ωh
{hK} where hK is the length of K .
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Now, we define P s(K) as the set of all polynomials of degree s ≥ 0 on K . The piecewise polynomial
space on Ω is given as

V s
h := {v ∈ L2(Ω) : v|K ∈ P s(K) for all K ∈ Ωh}.

We also introduce
L2
0(ξh) := {z ∈ L2(ξh) : z = 0 on ∂Ω},

where L2(ξh) is the set of vectors z = (z1, z2, . . . ,zN+1) ∈ RN+1 such that
N+1∑
j=1

zj
2 < ∞ .

2.2. HDG formulation
We now consider second-order FIDE with Dirichlet boundary condition (1.1)-(1.2). The standard basic pro-
cedure of the formulation of HDG method is designed. For this purpose, we introduce an auxiliary unknown
variable q and an operator Lκ acting on the integral terms of (1.1) as follows:

q(x) = −u′(x),

Lκ[u(x)] =

1∫
0

κ(x, t)u(t)dt,

and rewrite (1.1) as a first-order system of equations as

q(x) + u′(x) = 0, in Ω, (2.1a)

q′(x) + Lκ[u(x)] = −g(x), in Ω, (2.1b)

u(x) = uD(x), on ∂Ω. (2.1c)

The above formulation provides an advantage for obtaining the existence-uniqueness of the HDG approximation.
The next step is to multiplying both sides of (2.1a)–(2.1b) by test functions (v1, v2) ∈ [V s

h ]
2 and using integration

by parts formula over Ωh . Then, we implement the HDG method that seeks an approximate solution (qh, uh, ûh)

to the exact solution (q, u, u|εh) in the finite dimensional space [V s
h ]

2xL2(ξh) such that

(qh, v1)Ωh
− (uh, v

′
1)Ωh

+ < v1, ûhn >∂Ωh
= 0, (2.2a)

−(v′2, qh)Ωh
+ < v2, q̂hn >∂Ωh

+(Lκ[uh], v2)Ωh
= −(g, v2)Ωh

, (2.2b)

< q̂hn, µ >∂Ωh
= 0. (2.2c)

The last equation is so-called conservativity condition for µ ∈ V s
h . The numerical trace q̂h is expressed in terms

of the approximate solution as follows:

q̂h = qh + τ(uh − ûh)n, (2.2d)

where τ is a given stabilization function throughout the interval. The outward unit normal vectors are given
as n(x∓) := ±1 for x ∈ ξh . The boundary condition (2.1c) is rewritten as

ûh = uD on ∂Ω.
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We define two inner products used in the weak formulation (2.2) of the HDG method. The boundary inner
product is introduced as

< u1, u2n >∂Ωh
:=

∑
K∈Ωh

< u1, u2n >∂K ,

where < u1, u2n >∂K := u1(x
−
j )u2(x

−
j ) + u1(x

+
j−1)u2(x

+
j−1), u1(x

±) := limϵ↓0 u1(x± ϵ) for x ∈ ξh , and the
volume inner product is given as

(u1, u2)Ωh
:=

∑
K∈Ωh

(u1, u2)K where (u1, u2)K :=

∫
K

u1(x)u2(x) dx.

This completes the description of the HDG method. We require and use numerical quadrature at each step by
HDG method.

2.3. Local solvers
To efficiently implement HDG method, we introduce two local solvers within the local domain K ∈ Ωh (for an
arbitrary K ). They are called local because they are defined on a single element K and they are called solvers
because they form an approximate solution to the problem on K .

The local solvers are defined on the element K ∈ Ωh as mapping

(w, g) ∈ L2(∂K) x L2(K) → (qh
w,g, uh

w,g) ∈ [P s(K)]
2
.

We are now ready to rewrite the HDG formulation (2.2a), (2.2b), and (2.2d) in terms of the local solvers
as follows:

(qh
w,g, v1)K − (uh

w,g, v1
′)K = − < w, v1.n>∂K , (2.3a)

−(v2
′, qh

w,g)K+ < v2, q̂
w,g
h .n>∂K + (Lκuh

w,g, v2)K = −(g, v2)K , (2.3b)

where v1, v2 ∈ P s(K) and numerical trace is given as

q̂w,g
h = qh

w,g + τ(uh
w,g − w).n on ∂K. (2.3c)

The motivation behind the choice of numerical trace (2.3c) is as follows:

• q̂w,g
h is an approximation to qh

w,g assuming that the term τ(uh
w,g − w).n is small.

• Since uh
w,g approximates the function u on K , and that u satisfies the boundary condition (BC) u = w

on ∂K , we expect uh
w,g to be close to w on ∂K . The term τ(uh

w,g −w) weakly enforces the BC u = w

on ∂K .

We then define a new variable λh ∈ L2
0(ξh) as

λh :=

{
ûh, on ∂Ωh\∂Ω,
0, on ∂Ω,

where ûh = λh + uD . Next, we present a characterization of the HDG approximation with respect to the local
solvers.
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Theorem 2.1 The approximate solution (qh, uh) ∈ [V s
h ]

2 obtained via the HDG method can be written in terms
of the local solvers as

(qh, uh) = (qh
λh,uD,g, uh

λh,uD,g), (2.4)

where the equation that determines λh ∈ L2
0(εh) in (2.2c) is written as⟨

q̂λh,uD,g
h n, µ

⟩
∂Ωh

= 0,∀µ ∈ L2
0(εh). (2.5)

We assemble the global system based on (2.5) as

ah(λh, µ) = bh(µ), (2.6)

where

ah(λh, µ) = − < q̂λh,0,0
h n, µ >∂Ωh

, (2.7a)

bh(µ) =< q̂0,uD,g
h n, µ >∂Ωh

. (2.7b)

Proof The proof of the theorem is bulky and nothing different from the proof of the corresponding theorem
in [4, 7]. 2

Theorem (2.1) (the characterization theorem) explains, first of all, how to implement the HDG methods, and
secondly, why these methods are computationally effective. More specifically, this is the theorem that allows
the elimination of interior degrees of freedom (DOF) which in turn gives rise to a much smaller and sparse linear
system. Hence, computing λh means that we have computed qh and uh . This is known as the hybridization
process, and is precisely why, the HDG methods get their name.

3. Existence-uniqueness theorem

Lemma 3.1 Consider the HDG method defined by the weak formulation (2.3). Then, the local solvers
(qh

w,g, uh
w,g) exist and are unique if and only if

1. κ(x, t) ≥ 0 for (x, t) ∈ Ω ,

2. τ > 0 on ∂K .

Proof Using integrating by parts for (2.3b), we rewrite Equations (2.3a)–(2.3b) for v1, v2 ∈ P s(K) as follows:

(qh
w,g, v1)K − (uh

w,g, v1
′)K = − < w, v1.n>∂K , (3.1a)

(v2, (qh
w,g)

′
)K+ < v2, τuh

w,g>∂K + (Lκuh
w,g, v2)K = −(g, v2)K+ < v2, τw>∂K . (3.1b)

We will show that (3.1) has the only solution for w = 0 and g = 0 such that qh
w,g = 0 and uh

w,g = 0 .
Equation (3.1) is defined as a square system with linearity and finite dimensionality. By taking v1 = qh

w,g and
v2 = uh

w,g and adding two equations, we obtain

(qh
w,g, qh

w,g)K+ < τuh
w,g, uh

w,g>∂K +

 1∫
0

κ(x, t) uh
w,gdt, uh

w,g


K

= 0. (3.2)
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This equation implies that qh
w,g = 0 over the simplex K and uh

w,g = 0 on ∂K since we assume that κ(x, t) ≥ 0

for (x, t) ∈ Ω and τ > 0 on ∂K . Thus, we obtain from (3.1a) that

((uh
w,g)′, v1)K = 0, v1 ∈ P s(K). (3.3)

As a consequence, uh
w,g = 0 on K since uh

w,g = 0 on ∂K . This completes the proof. 2

Thus, we require conditions in Lemma 3.1 obtaining the existence-uniqueness and also stability of the approxi-
mate solution.

3.1. A condition for existence-uniqueness of λh

Next, we prove that Eq. (2.6) determines λh and, by (2.4) and Lemma (3.1), qh and uh .

Lemma 3.2 We have, for all η,m ∈ L2(ξh) , that

ah(η,m) =< qh
m,0, qh

η,0>∂Ωh
+ (Lκuh

η,0, uh
m,0)Ωh

+ < uh
m,0 −m, τ(uh

η,0 − η>∂Ωh
. (3.4)

Proof To prove the above result, we rewrite Equations (2.3a)–(2.3b) with g = 0 as

(qh
m,0, v1)Ωh

− (uh
m,0, v1

′)Ωh
= − < m, v1n>∂Ωh

(3.5a)

((qh
η,0)

′
, v2)Ωh

+ < v2, τ(uh
η,0 − η) >∂Ωh

+(Lκuh
η,0, v2)Ωh

= 0 (3.5b)

for all (v1, v2) ∈ P s(K) x P s(K) . The first equation is obtained from (2.3a) by simply replacing g by 0 and
summing over the elements. The second is obtained from (2.3b) by replacing m by η , g by 0, integrating
by parts, summing the resulting equations over all elements and inserting the definition of the numerical trace
(2.3c).
Thus we have

ah(η,m) = − < m, q̂η,0h n>∂Ωh
= − < m, qh

η,0n>∂Ωh
− < m, τ(uh

η,0 − η)>∂Ωh
(3.6)

by (2.3c). Rearranging terms, we get by (3.5a) with v1 = qh
η,0 ,

ah(η,m) = (qh
m,0, qh

η,0)Ωh
− (uh

m,0, (qh
η,0)

′
)Ωh

− < m, τ(uh
η,0 − η)>∂Ωh

. (3.7)

Finally, by (3.5b) with v2 = uh
m,0, we obtain

ah(η,m) =< qh
m,0, qh

η,0>∂Ωh
+ (Lκuh

η,0, uh
m,0)Ωh

+ < uh
m,0 −m, τ(uh

η,0 − η>∂Ωh
. (3.8)

This completes the proof. 2

Theorem 3.3 Assume that all conditions of Lemma (3.1) are satisfied. Then, the solution λh of the variational
formulation (2.6) exists and is unique.

Proof The existence and uniqueness of λh follows if we show that the only solution η ∈ L2
0(εh) of the problem

ah(η,m) = 0, ∀m ∈ L2
0(εh),
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is η = 0 . Taking m = η , by the previous lemma, we then have that

0 =< qh
η,0, qh

η,0>∂Ωh
+

 1∫
0

κ(x, t) uh
η,0dt, uh

η,0


Ωh

+ < uh
η,0 − η, τ(uh

η,0 − η>∂Ωh
. (3.9)

As a consequence, we conclude that qh
η,0 = 0 and uη,0

h = η . After a simple integration by parts, Eq. (3.5a),
with replaced by η , we obtain

((uh
η,0)

′
, v1)Ωh

= 0, ∀v1 ∈ P s(K).

This implies that uh
η,0 is a constant on Ω . η is also a constant on Ωh and, since η ∈ M0

h , we must have that
η = 0 on Ωh . This completes the proof. 2

4. Algorithm steps

• Compute the first local solver (qh
g , uh

g) that we only calculate for the given and fixed function g . The
first local solver is written as

qh
g(x) =

s+1∑
j=1

qKj (x)QK
j (x), uh

g(x) =

s+1∑
j=1

uK
j (x)QK

j (x)

, where qKj (x) , uK
j (x) are coefficients, and QK

j is the monomial basis polynomial. Thus, computing the
first local solver (qh

g, uh
g) means computing 2(s+1) unknown coefficients. We write a loop in which we

compute and store the first local solver (qh
g, uh

g) as follows:

for K = 1 : N

Compute DOF of qh
g and uh

g on the Kth element
Store DOF of qh

g in the Kth column of qh
g

Store DOF of uh
g in the Kth column of uh

g

end
This completes the computation of (qh

g, uh
g) .

• Compute the second local solver (qh
w, uh

w) . In this computation the situation is a little different. It is
computed for the elements Il−1 and Il , respectively and a loop is written as follows:

for j = 1 : N + 1

Compute the DOF of qh
wj

1

, qh
wj

2

, uh
wj

1

, uh
wj

2

Store DOF of qh
wj

1 on the jth column of qh
w1

Store DOF of uh
wj

1 on the jth column of uh
w1

Store DOF of qh
wj

2 on the jth column of qh
w2

Store DOF of uh
wj

2 on the jth column of uh
w2

end
This completes the planning of the coding of the local solvers which is the fundamental portion of an
HDG code.
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• Assemble the global linear system whose unknowns are DOF of λh . The linear system resulting form of
Equation (2.6) is

Aλh = b

where A is an (N + 1)x(N + 1) matrix, λh is the vector of unknowns of size N + 1 , and b is the right
hand side vector of known quantities also of size N + 1 . By solving this linear system, we complete the
assembly of the global system.

• Construct the approximate solution (qh, uh) of the original problem as follows:

qh = qh
λh + qh

uD + qh
g

uh = uh
λh + uh

uD + uh
g

Hence, computing λh means that we have computed qh and uh which are approximations to q and u ,
respectively.

5. Numerical results
In this section, we evaluate the performance of the HDG method with respect to the results of some numerical
examples. In Tables 1-4 and Table 6, for φ = q, u , we compute and show the error in the approximate solution
(qh, uh) that is defined as

∥φ− φh∥∞ = max
e∈ξh

|(φ− φh)(e)|.

The convergence order, pi , at (mesh =i) is given as

pi =
log(

eφ(i)
eφ(i−1) )

log(0.5)
,

where eφ(i) denote the error with uniform mesh 2i and it is calculated with the formula

∥φ− φh∥∞ ≤ Chη,

where the constant C is independent of h and convergence order of the method is given with η . In the following
examples, the stability parameter in the definition of the HDG method τ = 1 on ∂Ω . We start to compute with
a mesh (N = 4) element and refine it up to a mesh (N = 128) element. We do not show the numerical results
for N = 4 mesh since we start displaying the order column after the first refinement of the mesh. It is worth
noting that the global linear system is not sparse due to presence of the integral term appearing on [0, 1] . The
fact is that we do not obtain a convergence order for the numerical traces except of the polynomial function
solution. We emphasize an interesting observation that the convergence order is independent of polynomial
degree s . This is an unusual and surprising result for HDG method.

Example 5.1 Consider the following FIDE [8, 9, 11]

u′′(x) = ex − x+

1∫
0

xtu(t)dt,

u(0) = 1, u(1) = e,
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The unique solution of this problem is given by u(x) = ex . We display the errors and convergence results of
the HDG approximation in Table 1. For any given polynomial of degree s ≥ 1 , we observe that the convergence
orders of qh and uh are equal to 1 and the accuracies are at most 10−8 and 10−9 for k = 6 , respectively. In
Table 2, for N = 10 , we compared our method with three numerical techniques, and the results provided the
superiority of HDG method. We used the following abbreviations for the approximation techniques:

• CFD2 (GE): Composite Simpson’s 1/3 with second-order finite-difference (Gauss elimination) [11]

• B-spline: Cubic B-spline collocation method [9],

• DiffTrans: Differential transformation method [8].

Table 1. The convergence result of Example (5.1).

∥u− uh∥∞ ∥q − qh∥∞
s N error order error order

1

8 3.35e-04 1.09 1.38e-03 0.59
16 1.66e-04 1.01 8.21e-04 0.75
32 8.28e-05 1.00 4.51e-04 0.86
64 4.13e-05 1.00 2.37e-04 0.93
128 2.06e-05 1.00 1.22e-04 0.96
256 1.03e-05 1.00 6.15e-05 0.98
512 5.16e-06 1.00 3.10e-05 0.99

2

8 2.59e-05 1.10 1.26e-04 0.81
16 1.22e-05 1.08 6.48e-05 0.96
32 5.95e-06 1.04 4.14e-05 0.65
64 2.93e-06 1.02 2.32e-05 0.83
128 1.46e-06 1.01 1.23e-05 0.92
256 7.25e-07 1.01 6.32e-06 0.96
512 3.62e-07 1.00 3.21e-06 0.98

3

8 6.68e-06 1.02 3.11e-05 0.62
16 3.28e-06 1.02 1.95e-05 0.68
32 1.63e-06 1.01 1.10e-05 0.82
64 8.14e-07 1.00 5.90e-06 0.90

4
8 3.98e-07 1.07 2.32e-06 0.72
16 1.94e-07 1.04 1.41e-06 0.65
32 9.48e-08 1.03 9.28e-07 0.67

5 8 7.82e-08 1.11 4.06e-07 0.65
16 3.84e-08 1.02 2.59e-07 0.65

6 4 8.07e-09 — 4.09e-08 —
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Table 2. A numerical comparison between HDG (k=5), CFD2(GE), B-spline, and DiffTrans for Example (5.1) with
mesh sizes (h = 1/N ).

N HDG CFD2–GE B-spline DiffTrans
10 6.17e-08 7.94e-05 2.05e-02 4.85e-04

Example 5.2 Consider a FIDE [5] as follows:

u′′(x) = − 1

π
(π3sin(πx) + 2x+ 1) +

1∫
0

(x+ t)u(t)dt, Ω = (0, 1)

u(0) = 0, u(1) = 0, ∂Ω={0,1}

where exact solution is given as u(x) = sin(πx) . The results diplayed in Table 3 validate a similar convergence
order behavior to what we also obtained in Table 1. In Table 4, we conclude that our method provide significiantly
better overall estimation performance than fast multiscale Galerkin (FMG) method in [5]. In Table 5, the
condition number of the global stiffness matrix is in the order of h−1 independent of the polynomial degree s .

Table 3. Convergence result of Example (5.2).

∥u− uh∥∞ ∥q − qh∥∞
s error order error order

1

8 8.00e-03 1.13 3.42e-02 0.80
16 3.79e-03 1.08 1.78e-02 0.94
32 1.84e-03 1.04 9.00e-03 0.99
64 9.04e-04 1.02 4.50e-03 1.00
128 4.48e-04 1.01 2.25e-03 1.00
256 2.23e-04 1.01 1.12e-03 1.00
512 1.11e-04 1.00 5.62e-04 1.00

2

8 8.31e-04 0.01 6.77e-03 -0.83
16 5.13e-04 0.69 5.54e-03 0.29
32 2.89e-04 0.83 3.44e-03 0.69
64 1.52e-04 0.92 1.91e-03 0.85
128 7.82e-05 0.96 1.00e-03 0.93
256 3.96e-05 0.98 5.14e-04 0.96
512 1.99e-05 0.99 2.60e-04 0.98
1024 1.00e-05 1.00 1.31e-04 0.99
2048 5.01e-06 1.00 6.57e-05 1.00
4096 2.51e-06 1.00 3.29e-05 1.00
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Table 4. A numerical comparison (∥u− uh∥∞ ) of two Galerkin method (HDG and FMG) for Example (5.2) with
respect to s = 2 and N = 4096 .

HDG FMG
error order error order
2.51e-06 1.00 5.00e-04 1.00

Table 5. Condition numbers of the global stiffness matrix for Example (5.2).

N s = 1 s = 2 s = 3

8 3.20e+01 3.20e+01 3.20e+01
16 1.10e+02 1.08e+02 1.08e+02
32 4.38e+02 4.33e+02 4.33e+02
64 1.75e+03 1.73e+03 1.73e+03

Example 5.3 Consider a FIDE as follows:

u′′(x) = −41

20
− 1

6

(
x2 − x

)
+

1∫
0

(x− t)
2
u(t)dt, Ω = (0, 1)

u(0) = 0, u(1) = 0, ∂Ω={0,1}

(5.1)

where exact solution is given as u(x) = x(1−x) . For s = 2 , what we obtain from Table 6 that the HDG method
captures the exact solution with up to machine precision as the exact solution is a second order polynomial.
This is the reason why we see errors that are practically zero, and that’s why we do not display the numbers in
the order column for this example.

Table 6. Convergence result of Example (5.3).

∥u− uh∥∞ ∥q − qh∥∞
s N error order error order

1

8 5.76e-04 1.07 2.83e-03 0.51
16 2.86e-04 1.01 1.69e-03 0.75
32 1.43e-04 1.00 9.24e-04 0.87
64 7.14e-05 1.00 4.83e-04 0.93
128 3.57e-05 1.00 1.25e-04 0.98
256 1.78e-05 1.00 5.76e-04 1.07
512 8.92e-06 1.00 6.28e-05 0.99

2 4 7.01e-17 — 2.41e-16 —

6. Conclusion
We investigate the performance analysis of HDG method for second–order FIDE with Dirichlet boundary
condition. We observe the efficiency and reliability of the HDG approximation by the results of three numerical
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examples. Empirically, HDG method consistently outperforms other methods (CFD2 (GE), B-spline, DiffTrans)
as shown in Example 1. For a specific value of polynomial degree s and N, in Example 2, we report that our
method has better results than the Fast Galerkin method. We also show that the HDG method captures
the exact solution up to the machine accuracy for a polynomial function in Example 3. Numerical results
for different examples display that when polynomials of degree at most s ≥ 1 is used for all unknowns, the
convergence order of HDG approximation (qh, uh) is equal to 1. A theoretical work for obtaining proofs of this
convergence order is the subject of ongoing work.
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