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Abstract: We present the existence and uniqueness of strong solutions for the continuous coagulation-fragmentation
equation with singular fragmentation and essentially bounded coagulation kernel using semigroup theory of operators.
Initially, we reformulate the coupled coagulation-fragmentation problem into the semilinear abstract Cauchy problem
(ACP) and consider it as the nonlinear perturbation of the linear fragmentation operator. The existence of the
substochastic semigroup is proved for the pure fragmentation equation. Using the substochastic semigroup and some
related results for the pure fragmentation equation, we prove the existence of global nonnegative, strong solution for the
coagulation-fragmentation equation.
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1. Introduction
The particle-particle interactions in a closed system bears significant importance in our daily life. As a result it is
an important branch of study in several applied science sectors. In pharmaceutical engineering, food processing
industry, chemical engineering and chemistry the study of crystal growth and analysis of nanoparticles bears
immense significance for product development like whey powder, coffee powder, medicated tablets and capsules
etc. These events of particulate processes are mathematically represented by an integro-partial differential
equation, well known in the literature as coagulation-fragmentation (CF) equations [4, 5, 7, 11, 14, 15, 23, 25].
Therefore, theoretical researchers find it interesting to analyze the mathematical concepts underlying the CF
equations involving different kinetic rates of particle interactions. In this article, we consider the following
general nonlinear continuous CF equation

∂u(x, t)

∂t
=
1

2

∫ x

0

K(x− y, y)u(x− y, t)u(y, t) dy − u(x, t)

∫ ∞

0

K(x, y)u(y, t) dy

+

∫ ∞

x

b(x, y)S(y)u(y, t) dy − S(x)u(x, t), (1.1)

with the initial condition
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u(x, 0) = u0(x) ≥ 0. (1.2)

Here, u(x, t) defines the number density of particles of mass x ≥ 0 at time t ≥ 0 . The coagulation kernel
K(x, y) gives the rate at which particles of mass x unite to particles of mass y to form larger particles of mass
x+ y . The function S(x) denotes the rate at which a particle of mass x is selected for further disintegration.
The function b(x, y) is a nonnegative measurable function which describes the distribution particles of mass
x produced upon by breaking up of particle of mass y . Therefore, the first and the second term of Equation
(1.1) arise due to the particle aggregation, and the third and fourth term are due to particle fragmentation. It
can be observed that the aggregation phenomena comprises the nonlinearity of the model (1.1), whereas, the
fragmentation is a linear one.

In general, the breakage function b(x, y) is considered to satisfy the following properties,

b(x, y) = 0, for all x ≥ y, and
∫ y

0

xb(x, y) dx = y, for all y > 0. (1.3)

From the definition of the breakage function, the relation (1.3) follows naturally. Additionally, the
second equation in (1.3) bears significant physical interpretation as it represents the local conservation of mass
(or volume) during fragmentation events occurring in the closed system.

In the literature, the CF-equations have been dealt with an alternative representation of the fragmentation
kernels by considering a single function γ(x, y) to represent the multiple fragmentation events. This function
γ(x, y) denotes the rate at which a particle of mass x undergo fragmentation to produce smaller particles of
mass y , and bears the following relations with the selection and breakage functions

γ(x, y) = b(y, x)S(x), and S(x) =

∫ x

0

y

x
γ(x, y) dy. (1.4)

Hence, the alternative characterization of the CF-equations with the multifragmentation kernel γ(x, y)

takes the following form

∂u(x, t)

∂t
=

1

2

∫ x

0

K(x− y, y)u(x− y, t)u(y, t) dy − u(x, t)

∫ ∞

0

K(x, y)u(y, t) dy

+

∫ ∞

x

γ(y, x)u(y, t) dy −
∫ x

0

y

x
γ(x, y)u(x, t) dy. (1.5)

In analysis of a mathematical model, our primary objective is to study existence and uniqueness of the
solutions. Due to its immense real life applications, the study of existence and uniqueness result for the CF
equations (1.1) has become a topic of great interest. Several articles can be found in the literature where the
authors have discussed the existence and uniqueness, large time behavior etc. of solutions for (1.1) by consider-
ing different form of kernels. In this regard, it is to be noted that the kernels considered in the mathematical
analysis of CF equations should be physically meaningful. Theoretical works analyzing existence and uniqueness
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of the solutions of CF-equations are available in the articles [3, 6, 9, 10, 12, 17, 18, 22]. Due to the limited avail-
ability of the solutions in closed form, study on efficient numerical solutions have also gained much attention
[13, 19, 20]. In the subsequent discussion, let us briefly review some of the notable works, which have paved the
motivation towards the present study.

In the article of [16], the authors have analyzed the solution for the CF equation (1.1) with K(x, y) = 0

and

S(x) = xα+1, b(x, y) = (ν + 2)

[
x

y

]ν
y−1 for α < 1, −2 < ν ≤ 0.

It is obtained by [16] that due to the above considered fragmentation rates, a rapid breakdown of the
particle fragments occurs resulting in the formation of zero-size or dust particles which cause mass loss from
the system. It is to be noted that the breakage function considered in the work of [16] describes the power-law
fragmentation rate of particles, popularly known as the power-law kernels. These power-law kernels are widely
used in different engineering experiments [1, 8]. The breakage function for power-law kernels mentioned above
can also be represented in the following form [21]

b(x, y) =
p(c+ (c+ 1)(p− 1))!

yc!(c+ (c+ 1)(p− 2))!

[
x

y

]c [
1− x

y

]c+(c+1)(p−2)

. (1.6)

Here, p and c are nonnegative parameters. Physically, p denotes the number of sister particles formed,
and c represents the shape factor. In particular, p = 2 and c = 0 corresponds to the well-known binary
breakage function 2/y .

1.1. State of the art
Our aim is to apply semigroup theory of operators to establish the existence and uniqueness of strong solution
to (1.1) in the case where coagulation kernel satisfies

K(x, y) ∈ L∞(R+ × R+),

and for a wide class of singular fragmentation kernel having bounds

S(x) = s1x
α, and b(x, y) ≤ C

y

[
x

y

]ν [
1− x

y

]β
, (1.7)

with positive constants s1 , C and α ∈ [1,∞) , ν > −1 , β ≥ 0 , and β ≥ ν such that b(x, y) obeys the mass
conservation law (1.3). Similar kind of bounds on the fragmentation kernel was considered in [9, 18]. Note that
for the abovementioned bounds, the multiple fragmentation kernel γ(x, y) can be equivalently represented as

γ(x, y) ≤ Cs1
x1−α

[y
x

]ν [
1− y

x

]β
. (1.8)

Now by substituting α = β = 0 and Cs1 = (ν + 2) , the above inequality yields
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γ(x, y) ≤ (ν + 2)
[y
x

]ν
x−1, ν > −1.

It can be noted that setting α = 0 in the relation (1.8) indicates that the selection rate of fragmentation
(1.7) is independent of the particle size. Similarly, setting β = 0 and C = ν+2 we obtain the general breakage
function exhibiting power-law kinetic rate [24]. Therefore, in this study we are able to include a wider range
of practically relevant daughter distribution functions which are extensively used in different industries like
communition engineering, mineral processing engineering, etc.

The application of semigroup theory requires the problems (1.1) and (1.2) to be reformulated as the
semilinear abstract Cauchy problem (ACP). Arguing as in [17], we write (1.2) as the following semilinear ACP

du(t)

dt
= Fu(t) + Cu(t), (t ≥ 0),

u(0) = u0.

 (1.9)

In (1.9), the fragmentation operator F and coagulation operator C are defined on suitable domains by

[Ff ](x) :=

∫ ∞

x

b(x, y)S(y)f(y) dy − S(x)f(x), (1.10)

and

[Cf ](x) := 1

2

∫ x

0

K(x− y, y)f(x− y)f(y) dy − f(x)

∫ ∞

0

K(x, y)f(y) dy. (1.11)

For a pure fragmentation problem, we study the fragmentation problem in X1 := L1(R+, xdx) which is
the space of equivalence classes of measurable, real-valued functions f such that

∥f∥1 =

∫ ∞

0

x|f(x)| dx < ∞. (1.12)

In our present analysis, to study the combined coagulation-fragmentation problem (1.9), we use a more
general space X0,θ = X0 ∩Xθ := L1(R+, (1 + xθ)dx) , where θ ∈ R+ ∪ {0} .

2. Main result
The approach we adopt to establish existence and uniqueness results for the coagulation-fragmentation equation
involves the application of perturbation methods from the theory of semigroups of operators. Consequently, we
shall treat the initial-value problem (1.9) as a nonlinear perturbation of the linear ACP (2.1) for F .

Throughout our analysis we have taken the following assumptions:

(A1) for all x ≥ 0 , the selection function satisfies S(x) = s1x
α where α ∈ [1,∞) and s1(> 0) is a constant;
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(A2) b(x, y) ≤ C
y

[
x
y

]ν [
1− x

y

]β
for ν > −1, β ≥ 0, β ≥ ν and C ≤ (ν+β+2)!

(ν+1)!β! ;

(A3) K(x, y) is a nonnegative, symmetric function for all x, y ≥ 0 and satisfies K(x, y) ∈ L∞(R+ × R+) .

From the assumption (A2) it can be easily verified that there a positive constant N such that
∫ y

0
b(x, y) dx =

n(y) ≤ N , for all y > 0 .
First we shall consider the pure fragmentation equation and prove the existence of substochastic semigroup

corresponding to the fragmentation operator (1.10). Later we shall use the results to prove the existence of
strong solution of the coupled coagulation-fragmentation equation.

2.1. The fragmentation equation

Putting K(x, y) = 0 , the semilinear ACP (1.9) reduces to the linear ACP as

du(t)

dt
= Fu(t). (2.1)

For the convenience of our analysis, we rewrite Equation (2.1) as

du(t)

dt
= Au(t) + Bu(t), (2.2)

where

[Af ](x) := −S(x)f(x) = −s1x
αf(x), (2.3)

and

[Bf ](x) :=
∫ ∞

x

b(x, y)S(y)f(y) dy ≤ Cs1

∫ ∞

x

1

y

[
x

y

]ν [
1− x

y

]β
yαf(y) dy. (2.4)

We take D(F) = D(A) = {f ∈ X1;x
αf ∈ X1} . In the following theorem, we prove the existence of

substochastic semigroup in the space X1 by using modified Kato’s perturbation theorem in L1 setting [Corollary
5.17 of [2]].

Theorem 2.1 Let the operators A and B be define (2.3) and (2.4), respectively. Then there exists a smallest
substochastic semigroup (SG(t))t≥0 in X1 generated by the extension G of F = A+ B .

Proof

(i) According to the definition (2.3), (A, D(A)) generates substochastic semigroup.

(ii) Moreover, it easily follows that D(B) ⊃ D(A) . Let us denote D(A)+ and D(B)+ to be the cone of
the nonnegative functions in D(A) and D(B) , respectively. Therefore, for any f ∈ D(B)+ , we obtain
Bf ≥ 0 .
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(iii) Also for any f ∈ D(A)+ , we obtain

∫ ∞

0

x ([Bf ](x)) dx ≤ Cs1

∫ ∞

0

x

∫ ∞

x

1

y

[
x

y

]ν [
1− x

y

]β
yαf(y) dy dx

Changing the order of integration, we have

∫ ∞

0

x ([Bf ](x)) dx ≤ Cs1

∫ ∞

0

(∫ y

0

[
x

y

]ν+1 [
1− x

y

]β
dx

)
yαf(y) dy

= Cs1
(ν + 1)!β!

(ν + β + 2)!

∫ ∞

0

yα+1f(y) dy

≤ s1

∫ ∞

0

yyαf(y) dy

= −
∫ ∞

0

y[[Af ](y)] dy.

This yields

∫ ∞

0

x ([Af + Bf ](x)) dx ≤ 0.

So all the necessary conditions of Kato’s theorem are satisfied. Hence there exists a smallest substochastic
semigroup say, (SG(t))t≥0 in X1 generated by the extension G of F . 2

The next theorem shows the invariance property of the semigroup (SG(t))t≥0 over a subspace of X1 .

Theorem 2.2 Suppose that S(x) and b(x, y) satisfy the assumptions (A1−A4) . Then the space X0,α :=

L1(R+, (1 + xα)dx) is invariant under the semigroup (SG(t))t≥0 .

Proof According to the definition of X0,α and X1 , it is clear that X0,α is embedded in X1 . Mathematically,
we denote it as X0,α ↪→ X1 . Further, we denote the part of A in X0,α by Aα . Therefore, for 0 ≤ f ∈ D(Aα) ,
S(x)(1 + xα) is integrable, yielding, of course, integrability of each component. Take Bα = B |D(Aα) . For
0 ≤ f ∈ D(Aα) ,∫ ∞

0

(∫ ∞

x

b(x, y)S(y)f(y) dy

)
xα dx =

∫ ∞

0

(∫ y

0

xαb(x, y) dx

)
S(y)f(y) dy

≤
∫ ∞

0

S(y)f(y)

(∫ y

0

xxα−1b(x, y) dx

)
dy

≤
∫ ∞

0

S(y)yα−1f(y)

(∫ y

0

xb(x, y) dx

)
dy, α ≥ 1

=

∫ ∞

0

S(y)yαf(y) dy
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which gives

∫ ∞

0

(∫ ∞

x

b(x, y)S(y)f(y) dy − S(x)f(x)

)
xα dx ≤ 0. (2.5)

Again for 0 ≤ f ∈ D(Aα)

∫ ∞

0

∫ ∞

x

b(x, y)S(y)f(y) dy dx−
∫ ∞

0

S(x)f(x) dx

=

∫ ∞

0

S(y)n(y)f(y) dy −
∫ ∞

0

S(x)f(x) dx

≤
∫ ∞

0

S(y)n(y)f(y) dy

≤ s1N

∫ ∞

0

(1 + yα) f(y) dy. (2.6)

Using the inequalities (2.5) and (2.6), we obtain for any 0 ≤ f ∈ D(Aα)

∫ ∞

0

[(Aαf)(x) + (Bαf)(x)] (1 + xα) dx ≤
∫ ∞

0

[(Aαf)(x) + (Bαf)(x)] dx

≤ s1N

∫ ∞

0

(1 + yα) f(y) dy = s1N∥f∥0,α. (2.7)

Hence, X0,α is invariant under the semigroup (SG(t))t≥0 . 2

Moreover, relation (2.7) gives the existence of a positive semigroup
(
SG0,α

(t)
)
t≥0

on X0,α . In this

regard, we observe that the norm in X0,α is stronger than X1 and the lattice structure in X1 is same as X0,α .
Therefore,

(
SG0,α

(t)
)
t≥0

is restriction of (SG(t))t≥0 to X0,α [3].

2.2. The coagulation-fragmentation equation

We now return to the fragmentation-coagulation equation (1.1). Here we introduce the expression N defined
by

N [f, g](x) :=
1

2

∫ x

0

K(x− y, y)f(x− y)g(y) dy − f(x)

∫ ∞

0

K(x, y)g(y) dy,

for all x > 0 and set ∥K(x, y)∥L∞ = K0 . We shall now prove the following proposition.

Proposition 2.3 The expression N restricted to X0,α × X0,α is an X0,α valued, continuous and bilinear
operator. Denote C0,α(f) := N [f, f ] for f ∈ X0,α , then C0,α is locally Lipschitz on X0,α and is continuously
Fréchet differentiable at any point f ∈ X0,α . Consequently, for 0 ≤ u0 ∈ X0,α , there exist a unique nonnegative
mild solution, and for any 0 ≤ u0 ∈ D(G0,α) , where G0,α is the part of G in X0,α , there exist a unique,
nonnegative strong solution, u(t) = U0,α(t, u0) of
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du(t)

dt
= G0,αu(t) + C0,αu(t), (2.8)

defined on a maximal interval of existence [0, T̂ [ where T̂ > 0 .

Proof For any f, g ∈ X0,α , we can have

∫ ∞

0

(1 + xα)N [f, g](x) dx =
1

2

∫ ∞

0

∫ ∞

0

(1 + (x+ y)α)K(x, y)f(x)g(y) dx dy

−
∫ ∞

0

∫ ∞

0

(1 + xα)K(x, y)f(x)g(y) dx dy. (2.9)

For α ≥ 1 , using the following inequality

(x+ y)α ≤ 2α(xα + yα),

we obtain from (2.9)

∫ ∞

0

(1 + xα)N [f, g](x) dx ≤
(
2α−1 − 1

) ∫ ∞

0

∫ ∞

0

xαK(x, y)f(x)g(y) dx dy︸ ︷︷ ︸
I1

+ 2α−1

∫ ∞

0

∫ ∞

0

yαK(x, y)f(x)g(y) dxdy︸ ︷︷ ︸
I2

(2.10)

Next we estimate I1 :

I1 =

∫ ∞

0

∫ ∞

0

xαK(x, y)f(x)g(y) dx dy

≤ K0

∫ ∞

0

∫ ∞

0

xαf(x)g(y) dx dy

≤ K0

∫ ∞

0

(1 + xα)f(x) dx

∫ ∞

0

(1 + xα)g(y) dy

≤ K0∥f∥0,α∥g∥0,α.

Using similar analysis as above for I2 , we obtain

I2 ≤ K0∥f∥0,α∥g∥0,α.

Inserting the bound of I1 and I2 in (2.10), we get

∥N [f, g]∥0,α ≤ M∥f∥0,α∥g∥0,α, (2.11)
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for constant M := K0 (2
α − 1) . Hence N is a bounded bilinear operator. Next we show that C0,α is

locally Lipschitz on X0,α and is continuously Fréchet differentiable at any point f ∈ X0,α . The idea to prove
these properties is recalled from the literature [3].

In order to show C0,αf is locally Lipschitz on X0,α , we take f, g ∈ B(u0, ς) := {f ∈ X0,α : ∥f − u0∥ ≤ ς}
for any u0 ∈ X0,α and ς > 0 . Then

∥C0,αf − C0,αg∥0,α ≤ ∥N [f − g, g]∥0,α + ∥N [g, f − g]∥0,α

≤ M∥f − g]∥0,α∥g]∥0,α +M∥g]∥0,α∥f − g]∥0,α

≤ 2M(ς + ∥u0∥0,α)∥f − g]∥0,α.

Now to prove the Fréchet differentiability of C0,α at any point f ∈ X0,α , we choose the function
N

f
: B(u0, ς) ⊂ X0,α → X0,α such that N

f
g := N [f, g] +N [g, f ] . Since N is a bounded bilinear operator, it

follows that N
f

bounded linear operator on B(u0, ς) . For any f ∈ X0,α

lim
g→0

∥C0,α(f + g)− C0,αf −N
f
g∥0,α

∥g∥0,α
= lim

g→0

∥N [f + g, f + g]−N [f, f ]−N
f
g∥0,α

∥g∥0,α

= lim
g→0

∥N [f, f ] +N [f, g] +N [g, f ] +N [g, g]−N [f, f ]−N
f
g∥0,α

∥g∥0,α

= lim
g→0

∥N [g, g]∥0,α
∥g∥0,α

≤ M lim
g→0

∥g∥20,α
∥g∥0,α

= 0.

Therefore, C0,α is Fréchet differentiable at any f ∈ X0,α with Fréchet derivative N
f

. Also for f, g, h ∈
X0,α ,

∥N
f
g −N

h
g∥0,α = ∥N [f, g] +N [g, f ]−N [h, g]−N [g, h]∥0,α

= ∥N [f − h, g]−N [g, f − h]∥0,α

≤ 2M∥g∥0,α∥f − h∥0,α.

Therefore, ∥N
f
g −N

h
g∥0,α → 0 , whenever ∥f − h∥0,α → 0 . This implies that the Fréchet derivative is

also continuous with respect to f . Hence the result follows. 2

In the next theorem we shall prove that the solution is global in time, that is, for every t ∈ [0,∞) .

Theorem 2.4 The semilinear ACP (2.8) has a unique, nonnegative, globally defined strong solution for
0 ≤ u0 ∈ D(A0,α) .

Proof Let 0 ≤ u0 ∈ D(A0,α) and we denote
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Ml(t) =

∫ ∞

0

xlu(x, t) dx, for l ≥ 0. (2.12)

Then

dM1(t)

dt
=
1

2

∫ ∞

0

x

∫ x

0

K(x− y, y)u(x− y, t)u(y, t) dy dx

−
∫ ∞

0

xu(x, t)

∫ ∞

0

K(x, y)u(y, t) dy dx

+

∫ ∞

0

x

∫ ∞

x

b(x, y)S(y)u(y, t) dy dx−
∫ ∞

0

xS(x)u(x, t) dx.

Changing the order of integration of the first and the third integral in the right hand side of the above equation,
we get

dM1(t)

dt
=
1

2

∫ ∞

0

∫ ∞

y

xK(x− y, y)u(x− y, t)u(y, t) dx dy

−
∫ ∞

0

xu(x, t)

∫ ∞

0

K(x, y)u(y, t) dy dx

+

∫ ∞

0

S(y)u(y, t)

∫ y

0

xb(x, y) dx dy −
∫ ∞

0

xS(x)u(x, t) dx.

Taking x− y = z in the first integral and using Equation (1.3) of the above equation, yields

dM1(t)

dt
=
1

2

∫ ∞

0

u(y, t)

∫ ∞

0

(x+ y)K(x, y)u(x, t)u(y, t) dx dy

−
∫ ∞

0

xu(x, t)

∫ ∞

0

K(x, y)u(y, t) dy dx

+

∫ ∞

0

yS(y)u(y, t) dy −
∫ ∞

0

xS(x)u(x, t) dx.

Since u(x, t) is a local strong solution of Equation (2.8) for any 0 ≤ u0 ∈ D(A0,α) so all the integrals
exists finitely. Moreover, using symmetric property of K(x, y) , we obtain

dM1(t)

dt
= 0.

Therefore, M1(t) = M̄1 (a constant).

Again,
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dM2(t)

dt
= −

∫ ∞

0

x2S(x)u(x, t) dx+

∫ ∞

0

∫ ∞

x

x2S(y)b(x, y)u(y, t) dy dx

+
1

2

∫ ∞

0

∫ x

0

x2K(x− y, y)u(x− y, t)u(y, t) dy dx

−
∫ ∞

0

x2u(x, t)

∫ ∞

0

K(x, y)u(y, t) dy dx

=
1

2

∫ ∞

0

∫ ∞

0

[
(x+ y)

2 − x2 − y2
]
K(x, y)u(x, t)u(y, t) dy dx

≤ k0

∫ ∞

0

∫ ∞

0

xyu(x, t)u(y, t) dy dx

≤ k0M̄
2
1

Hence by integrating

M2(t) ≤ M̄2 for all t ∈ [0, T̂ ).

we can proceed further in a similar way to obtain the uniform boundedness of the truncated moments,
that is,

Mi(t) ≤ M̄i where, i = 1, 2, . . . , r = ⌈α⌉. (2.13)

Using the continuity of u(x, t) , we obtain

dM0(t)

dt
= −1

2

∫ ∞

0

∫ ∞

0

K(x, y)u(x, t)u(y, t) dx dy +

∫ ∞

0

S(x) [n(x)− 1]u(x, t) dx,

≤ −k0
2

∫ ∞

0

∫ ∞

0

u(x, t)u(y, t) dx dy + s1N

∫ ∞

0

xαu(x, t) dx,

≤ C1M0(t) + C2M̄r, (2.14)

for some constants C1 , C2 depending only on the coefficients but not on the initial value for u . Integrating
(2.14), we obtain

M0(t) ≤ M̄0, M̄0 > 0 for all t ∈ [0, T̂ ).

To search the bound for Mα(t) , first we notice that for any realnumber p( not necessary integer) satisfying
β − 1 ≤ p ≤ β , where β ∈ (1, α] .

Mp(t) =

∫ ∞

0

xpu(x, t) dx =

∫ 1

0

xpu(x, t) dx+

∫ ∞

1

xpu(x, t) dx

≤ M⌈p−1⌉(t) +M⌈p⌉(t)

≤ M̄p(Constant) for all t ∈ [0, T̂ ) (2.15)
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In particular β = α from (2.15)

Mα(t) ≤ M̄α = constant, for all t ∈ [0, T̂ ). (2.16)

Now,

∥u(x, t)∥0,α =

∫ ∞

0

(1 + xα)u(x, t) dx = M0(t) +Mα(t).

Since, M0(t) and Mα(t) do not blow up in finite time, hence u(x, t) is defined globally in time for any
u0 ∈ D(A0,α) . 2

3. Conclusion
We have obtained the existence and uniqueness of nonnegative strong solution of the coagulation-fragmentation
equation with singular fragmentation kernel and essentially bounded coagulation kernel. First the existence of
the substochastic semigroup corresponding to the fragmentation operator in the space X1 is established. Then
the existence of local strong solution is obtained for the combined coagulation-fragmentation equation in the
space X0,α . Moreover, we have obtained the global existence of the solution. The large class of fragmentation
kernels are representing power-law rates are taken from the literature as described by [21].
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