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Abstract: Let R be a ring with identity 1 whose tripotents are only −1 , 0 , and 1 . It is characterized the structure
of tripotents in T (R) which is the ring of triangular matrices over R . In addition, when R is finite, it is given number
of the tripotents in Tn(R) which is the ring of n × n dimensional triangular matrices over R with n being a positive
integer.
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1. Introduction
An element x of a ring R is called idempotent (or tripotent) if x2 = x (or x3 = x). Notice that every
idempotent element is tripotent. In addition, if x is tripotent, then x2 is idempotent. In case x2 = −x , the
element x is said to be skew-idempotent. And also, every skew-idempotent element is a tripotent element. If
x2 = e , then the element x is called involutive, where e is the identity element of R . An element x of a ring
R is called an essentially tripotent if x3 = x and x2 ̸= ±x . So, the set of tripotent elements in a ring covers
the sets of idempotent, involutive, skew idempotent, and essentially tripotent. Therefore, studying tripotency
is of particular importance.

Special types of matrices such as idempotent, involutive, tripotent, quadratic, triangular, etc., are
important concepts in linear algebra, number theory, and matrix theory. In literature, there are many works on
the characterization of linear combinations of special types of matrices, see, for instance, [1–7, 10, 16–19, 21, 23].
Similar works are also studied in ring theory. For example, Hirano and Tominaga proved in [[14], Theorem 1]
that a ring R is tripotent if and only if every element of R is a sum of two commuting idempotents. In 2009,
Chen et al. worked on rings whose elements can be expressed uniquely as the sum of an idempotent and a
unit [8]. In 2016, by Ying et al., the class of these rings was extended in [27] to the class of rings R such that
their elements are first the sum of an idempotent and a tripotent that commute, then the sum or difference
of commuting two idempotents, and then the sum of two tripotents that commute. In that work, the authors
proved that R is tripotent ring if and only if every element x of R is a difference of two commuting idempotents
such that x = 1

2 (x
2 + x) − 1

2 (x
2 − x) . In 2017, Sheibani and Chen studied on a matrix ring, each element of

which is the sum of a tripotent and a nilpotent matrix [22]. In 2018, Zhou first studied on rings with each
element being the sum of a nilpotent, an idempotent, and a tripotent that commute, and then on rings with
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each element being the sum of a nilpotent and two tripotent that commute [28]. In 2018, Danchev worked on
rings whose elements are the sum of three idempotents or the negative sum of two idempotents that commute
[11]. In 2019, Cheraghpour and Ghosseiri calculated the number of idempotents and zero divisors of a matrix
ring on a finite field F [9]. In 2019, Tang et al. studied matrices that are the sum of three idempotent and
three involutive matrices on a commutative ring [24] inspired by Hirano and Tomigana’s work on rings whose
each element is the sum of two idempotents (see [14]) and Seguins Pazzis’s work on the decomposition into
idempotents of each matrix on an field with positive characteristics (see [12]).

In 2019, Hou, by characterizing the idempotency of triangular matrices over a ring of identity 1 with
idempotents only 0 and 1 (trivial idempotents), obtained a result that determines the number of such matrices
when the ring is finite [15]. In 2020, Wright characterized the structure of triangular idempotent matrices on
more general rings that do not have to be identity element and whose idempotents do not have to be only 0

and 1 [26]. Petik et al. considered a problem similar to that in [15] for involutive matrices in [20].

The motivation of this work comes from the sources: [15] and [20]. Inspired by Hou’s work, one may
ask: How to characterize tripotent matrices (which contain idempotent and involutive matrices) in triangular
matrix rings? And also, how can we count tripotents in finite dimensional matrix rings? Here we address these
questions for matrices over a ring with identity 1 whose tripotents are only −1 , 0 , and 1 .

Throughout the work, R denotes a ring whose tripotents are only −1 , 0 , and 1 with identity 1 , |R|
denotes the number of the elements in R , T U (R) denotes the ring of upper-triangular matrices over the ring
R . Similarly, T L(R) denotes the ring of lower-triangular matrices whose elements are taken from the ring
R . It is clear that T (R) = T U (R) ∪ T L(R) . In addition, when we want to emphasize the size of triangular
matrices, we will denote the ring of n× n dimensional upper-triangular matrices over R by T U

n (R) . Also, the
notation ⟨f, g⟩ will be used for dot product of the vectors f and g . Finally, 0 denotes zero matrix of suitable
size.

Moreover, in this work, we will also need to use the following concepts. The super diagonal of a matrix
is the diagonal of entries immediately above the main diagonal. The subdiagonal of a matrix is the diagonal of
entries immediately below the main diagonal.

2. A characterization of tripotent matrices in triangular matrix rings

In this section, a main result characterizing structure of tripotent matrices in the matrix ring T U (R) is given.

Theorem 2.1 Let R be a ring whose tripotents are only −1 , 0 , and 1 with identity 1 . Then, X ∈ T U (R) is
tripotent if and only if the entries of X have the following structure:

(i) xii ∈ {−1, 0, 1} for all i .

(ii) For i < j , if xii = xjj = 0 , then

xij =


0, j = i+ 1;
j−1∑

l=i+1

(
l−i∑
m=1

xi,i+mxi+m,l)xlj , j > i+ 1.
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(iii) For i < j , if xii = xjj ∈ {−1, 1} , then

xij =


0, j = i+ 1;

− 1
2

(
j−1∑

l=i+1

(
l−i∑
m=0

xi,i+mxi+m,l)xlj +
j−1∑

m=i+1

ximxmjxjj

)
, j > i+ 1.

(iv) For i < j , if xii ̸= xjj , then xij is arbitrary.

Proof First, let us prove the necessity part of the theorem.

Let X ∈ T U (R) be tripotent. Tripotency of the matrix X yields the following system of equations.

x3
ii = xii

x2
iixi,i+1 + xiixi,i+1xi+1,i+1 + xi,i+1x

2
i+1,i+1 = xi,i+1

x2
iixi,i+2 + xiixi,i+1xi+1,i+2 + xi,i+1xi+1,i+1xi+1,i+2 + xiixi,i+2xi+2,i+2+

xi,i+1xi+1,i+2xi+2,i+2 + xi,i+2x
2
i+2,i+2 = xi,i+2

...
s∑

l=0

(
l∑

m=0
(xi,i+mxi+m,i+l)xi+l,i+s

)
= xi,i+s

...

Let us denote ρi,i+q := x2
ii + xiixi+q,i+q + x2

i+q,i+q − 1 for each q . Therefore, the system above is equivalent to
the following system of equations:

x3
ii = xii

ρi,i+1xi,i+1 = 0
ρi,i+2xi,i+2 + (xii + xi+1,i+1 + xi+2,i+2)xi,i+1xi+1,i+2 = 0

...

ρi,i+sxi,i+s +
s−1∑
l=1

(
l∑

m=0

xi,i+mxi+m,i+l

)
xi+l,i+s +

s−1∑
m=1

xi,i+mxi+m,i+sxi+s,i+s = 0

...

(2.1)

It is easy to see that xii ∈ {−1, 0, 1} from the first equality of the system of equations (2.1) since R is a ring
whose tripotents are only −1 , 0 , and 1 .

Now, we consider two entries on main diagonal of the matrix X , say xii and xjj with i < j . So, either
j − i = 1 or j − i > 1 .

Firstly, suppose that j − i = 1 . From the second equality of (2.1), we know that

(x2
ii + xiixi+1,i+1 + x2

i+1,i+1 − 1)xi,i+1 = 0. (2.2)

If xii = xi+1,i+1 ∈ {−1, 0, 1} , then from the equality (2.2), we get xi,i+1 = 0 . If xii ̸= xi+1,i+1 , then it seen that
xi,i+1 is arbitrary from the equality (2.2) since (xii, xi+1,i+1) ∈ {(0, 1) , (0,−1) , (−1, 0) , (−1, 1) , (1, 0) , (1,−1)} .
So, the item (i) is obvious.

Now, we consider the case j − i > 1 , and denote it as j − i = s . Note that s can be as many as the
number of elements in super diagonal of the matrix X at most. We know that (i, i+ s). entries of both sides
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of the equality X3 = X give (s+ 1). equality of the system of equations (2.1):

ρi,i+sxi,i+s +

s−1∑
l=1

(
l∑

m=0

xi,i+mxi+m,i+l

)
xi+l,i+s +

s−1∑
m=1

xi,i+mxi+m,i+sxi+s,i+s = 0 (2.3)

Since (xii, xi+s,i+s) ∈ {(1, 1) , (−1,−1) , (0, 0)} when xii = xi+s,i+s , it is obtained that

ρi,i+s = x2
ii + xiixi+s,i+s + x2

i+s,i+s − 1 =

{
2, xii ∈ {−1, 1};
−1, xii = 0.

For xii = 0 , premultiplying the equality (2.3) by
(
x2
ii + xiixi+s,i+s + x2

i+s,i+s − 1
)−1 leads to

xi,i+s + ρi,i+s

[
s−1∑
l=1

(
l∑

m=0

xi,i+mxi+m,i+l

)
xi+l,i+s +

s−1∑
m=1

xi,i+mxi+m,i+sxi+s,i+s

]
= 0.

From this, one can easily obtain the equality

xi,i+s =

s−1∑
l=1

(
l∑

m=1

xi,i+mxi+m,i+l

)
xi+l,i+s.

Thus, it is obtained the desired result in item (ii) of the theorem.

Next, let us handle the case xii ∈ {−1, 1} . In this case, we have the equality x2
ii+xiixi+s,i+s+x2

i+s,i+s−

1 = 2 . Since R is a ring with identity 1 , from the last equality, we get
(
x2
ii + xiixi+s,i+s + x2

i+s,i+s − 1
)−1

= 1
2 .

If we premultiply the equality (2.3) by
(
x2
ii + xiixi+s,i+s + x2

i+s,i+s − 1
)−1 , then we obtain

xi,i+s = −1

2

[
s−1∑
l=1

(
l∑

m=0

xi,i+mxi+m,i+l

)
xi+l,i+s +

s−1∑
m=1

xi,i+mxi+m,i+sxi+s,i+s

]

by making the necessory simplifications. This proves the item (iii) of the theorem.

Now, suppose that xii ̸= xi+s,i+s . It is clear that x2
ii+xiixi+s,i+s+x2

i+s,i+s−1 = 0 since xii ∈ {−1, 0, 1} .
From this, considering the equality (2.3) yields

s−1∑
l=1

(
l∑

m=0

xi,i+mxi+m,i+l

)
xi+l,i+s +

s−1∑
m=1

xi,i+mxi+m,i+sxi+s,i+s = 0.

Now, we define a submatrix of the matrix X as

X
(s)
(i) =


xii xi,i+1 · · · xi,i+s

xi+1,i+1 · · · xi+1,i+s

. . . ...
xi+s,i+s

 .

This matrix can be written via block matrices as follows:

X
(s)
(i) =

 xii K xi,i+s

0 L M
0 0 xi+s,i+s

 , (2.4)
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where

K =
(
xi,i+1 · · · xi,i+s−1

)
, L =


xi+1,i+1 xi+1,i+2 · · · xi+1,i+s−1

0 xi+2,i+2 · · · xi+2,i+s−1

...
... . . . ...

0 0 . . . xi+s−1,i+s−1

 ,

and M =


xi+1,i+s

xi+2,i+s

...
xi+s−1,i+s

 . The matrix X
(s)
(i) is tripotent because of the tripotency of the matrix X . Thus,

considering the facts that x3
ii = xii and x3

i+s,i+s = xi+s,i+s , it is seen that the matrices X
(s−1)
(i) =

(
xii K
0 L

)
and X

(s−1)
(i+1) =

(
L M
0 xi+s,i+s

)
are tripotent, too.

The tripotency of the matrices X
(s−1)
(i) and X

(s−1)
(i+1) lead to the equalities

x2
iiK + xiiKL+KL2 = K and L3 = L,

and
L2M + LMxi+s,i+s +Mx2

i+s,i+s = M and L3 = L,

respectively. Thus, we get

(X
(s)
(i) )

3 =

 xii K ω
0 L M
0 0 xi+s,i+s

 ,

where
ω =

(
x2
ii + xiixi+s,i+s + x2

i+s,i+s

)
xi,i+s +KM(xii + xi+s,i+s) +KLM.

Recall that xii ̸= xi+s,i+s . So, from (2.3), we obtain

KM(xii + xi+s,i+s) +KLM =

s−1∑
l=1

(
l∑

m=0

xi,i+mxi+m,i+l

)
xi+l,i+s +

s−1∑
m=1

xi,i+mxi+m,i+sxi+s,i+s = 0.

Thus, we have ω = xi,i+s . Therefore, X
(s)
(i) is tripotent regardless of the value of xi,i+s . Consequently, the

desired result in (iv) is obtained.

Now, let us prove the sufficiency part of the theorem.

Assume that the matrix X satisfies the items (i), (ii), (iii), and (iv) of the theorem. We will now show
that the matrix X is tripotent. For this, we will apply induction on s . It can be easily seen that all the matrices

X
(2)
(i) are tripotent.

Suppose that the matrices X
(2)
(i) , X

(3)
(i) , . . . X

(s−1)
(i) are tripotent for each i . We must show that the matrix
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X
(s)
(i) is also tripotent for each i . From (2.4), we obtain

(X
(s)

(i)
)
3
=

 x3
ii x2

iiK + (xiiK + KL)L x2
iixi,i+s + (xiiK + KL)M + (xiixi,i+s + KM + xi,i+sxi+s,i+s) xi+s,i+s

0 L3 L2M + (LM + Mxi+s,i+s) xi+s,i+s

0 0 x3
i+s,i+s

 .

Since (X
(s−1)
(i) )3 = X

(s−1)
(i) by the induction hypothesis, we get

(
x3
ii x2

iiK + (xiiK +KL)L
0 L3

)
=

(
xii K
0 L

)
. (2.5)

Similarly, from the equality (X
(s−1)
(i+1) )

3 = X
(s−1)
(i+1) , it can be written

(
L3 L2M + (LM + xi+s,i+sM)xi+s,i+s

0 x3
i+s,i+s

)
=

(
L M
0 xi+s,i+s

)
. (2.6)

From the matrix equalities (2.5) and (2.6), we get

x2
iiK + (xiiK +KL)L = K and L2M + (LM + xi+s,i+sM)xi+s,i+s = M. (2.7)

Also, from (2.5) or (2.6), it is clear that
L3 = L. (2.8)

If we postmultiply the first equality of (2.7) by M , and premultiply the second equality of (2.7) by K , then we
obtain

x2
iiKM + xiiKLM +KL2M = KM and KL2M +KLMxi+s,i+s + x2

i+s,i+sKM = KM,

respectively. Therefore, we get

KL2M =
(
1− x2

ii

)
KM − xiiKLM =

(
1− x2

i+s,i+s

)
KM − xi+s,i+sKLM. (2.9)

If xii ̸= xi+s,i+s , then it is clear that

x2
ii + xiixi+s,i+s + x2

i+s,i+s = 1. (2.10)

Also, when xii ̸= xi+s,i+s , from the second and third equalities of (2.9), we have

(xii + xi+s,i+s)KM +KLM = 0. (2.11)

On the other hand, recall that ω which is the (1, 3) -block of the matrix (X
(s)
(i) )

3 is (xii + xi+s,i+s)KM +

KLM +
(
x2
ii + xiixi+s,i+s + x2

i+s,i+s

)
xi,i+s . Here, considering (2.10) and (2.11), we get

ω = xi,i+s. (2.12)

If xii = xi+s,i+s , then from each of the parts (ii) and (iii) of theorem, it is obtained that (xii + xi+s,i+s)KM +

KLM +
(
x2
ii + xiixi+s,i+s + x2

i+s,i+s

)
xi,i+s = xi,i+s . Consequently, (2.12) is satisfied again. Thus, by consid-

ering (2.7), (2.8), and (2.12), it is seen that (X
(s)
(i) )

3 = X
(s)
(i) . So, the proof is completed. 2
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It is noteworthy that if a matrix X is a lower triangular matrix, then the matrix XT which is the
transpose of the matrix X is an upper triangular matrix. Therefore, in case that the matrix X is lower
triangular matrix, the statement of Theorem 2.1 becomes as follows:

Theorem 2.2 Let R be a ring whose tripotents are only −1 , 0 , and 1 with identity 1 . Then, X ∈ T L(R) is
tripotent if and only if the entries of X have the following structure:

(i) xii ∈ {−1, 0, 1} for all i .

(ii) For i > j , if xii = xjj = 0 , then

xij =


0 , i = j + 1;
i−1∑

l=j+1

(
l−j∑
m=1

xj+m,jxl,j+m

)
xil, i > j + 1.

(iii) For i > j , if xii = xjj ∈ {−1, 1} , then

xij =


0 , i = j + 1;

− 1
2

(
i−1∑

l=j+1

(
l−j∑
m=0

xj+m,jxl,j+m

)
xil+

i−1∑
m=j+1

xmjximxii

)
, i > j + 1.

(iv) For i > j , if xii ̸= xjj , then xij is arbitrary.

3. Number of tripotent matrices in triangular matrix rings

In this section, we will give a result that determines the number of tripotents in the matrix ring T U
n (R) when

R is finite, where n is a positive integer.

Theorem 3.1 Let R be a finite ring whose tripotents are only −1 , 0 , and 1 with identity 1 . Then, the number
of tripotents in the matrix ring T U

n (R) with n being a positive integer is

N (n,R) =

n∑
s1=0

n−s1∑
s2=0

(
n
s1

)(
n− s1
s2

)
|R|s1(n−s1)+s2(n−s1−s2).

Proof According to Theorem 2.1, the number of upper triangular tripotents searched depends on the pairs of
main diagonal entries satisfying xii ̸= xjj . To calculate these probabilities, let’s make the following observations.

We consider the vector d =


d1
d2
...
dn

 where di ∈ {−1, 0, 1} for each i . Let ∆ be the number of the pairs

(di, dj) with i < j and di ̸= dj . By the nature of the vector d , there are two column vectors f and g such
that d = f − g and ⟨f, g⟩ = 0 with fi, gi ∈ {0, 1} for each i .

Now, let us denote the number of the pairs (fi, fj) with i < j and fi ̸= fj by ∆1 . Let ∆2 be the number
of the pairs (gi, gj) such that gi ̸= gj with fi, fj ̸= 1 (or equivalently, (fi, gi) ̸= (1, 0) and (fj , gj) ̸= (1, 0))
and i < j . It is clear that ∆ = ∆1 +∆2 .
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Now, let F be an n× n matrix whose i, j -entry is

fi (1− fj) + (1− fi) fj =

{
1, fi ̸= fj
0, fi = fj

. (3.1)

The term in the left-hand side of (3.1) states that the matrix F can be written as

F = f (e− f)
T
+ (e− f) fT ,

where e is n -vector whose all entries are 1 . We know that eTFe is the sum of the entries in F . Also, s1 := eT f

is the sum of the entries in f that gives the number of the entries 1 in d . Moreover, it is easy to see that
n = eT e . Since ∆1 is the half of the sum of the entries in F , it is obtained that

∆1 =
eTFe

2
=
eT
[
f (e− f)

T
+ (e− f) fT

]
e

2

=

(
eT f

) [
(e− f)

T
e
]
+
[
eT (e− f)

] (
fT e

)
2

= s1 (n− s1) .

Now, let G be an n× n matrix whose i, j -entry is

gi (1− fj − gj) + (1− fi − gi) gj =


1, gi ̸= fj + gj , (fi, gi) ̸= (1, 0) and (fj , gj) ̸= (1, 0)
0, gi = fj + gj , (fi, gi) ̸= (1, 0) and (fj , gj) ̸= (1, 0)
0, (fi, gi) = (1, 0) or (fj , gj) = (1, 0).

(3.2)

The left-hand side of (3.2) shows that the matrix G can be written as

G = g(e− f − g)
T
+ (e− f − g) gT .

Now, suppose that s2 := eT g . This gives the number of the entries −1 in d . Also, eTGe is the sum of the

entries in G , and ∆2 = eTGe
2 . Thus, we obtain

∆2 = eTGe
2

=
eT [g(e−f−g)T+(e−f−g)gT ]e

2

=
eT g[(e−f−g)T e]+[eT (e−f−g)gT e]

2

=
s2[eT e−fT e−gT e]+[eT e−eT f−eT g]s2

2

= s2[n−s1−s2]+[n−s1−s2]s2
2

= s2 (n− s1 − s2) .

Since ∆ = ∆1 +∆2 , we get ∆ = s1 (n− s1) + s2 (n− s1 − s2) . ∆ is independent of the order of −1 , 0 , and
1 in d . So, each arrangement of s1 ones, s2 minus ones, and n − s1 − s2 zeros on the main diagonal leads

to |R|s1(n−s1)+s2(n−s1−s2) possible upper triangular tripotent matrices. Since there are
(

n
s1

)(
n− s1
s2

)
possibilities to choose such an arrangement, the number of n × n upper triangular tripotent matrices, whose
main diagonal entries consist of −1 , 0 , and 1 , is as expressed in Theorem 3.1.

2

Let us close this section by giving some examples and remarks.
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Example 3.2 All matrices in T U
2 (R) satisfying Theorem 2.1 have one of the following forms with a ∈ R being

an arbitrary element:(
±1 0
0 ±1

)
,

(
±1 a
0 0

)
,

(
0 a
0 ±1

)
,

(
0 0
0 0

)
,

(
±1 a
0 ∓1

)

Example 3.3 All tripotent matrices in T U
3 (R) satisfying Theorem 2.1 have one of the following forms with

a, b, c ∈ R being arbitrary elements: ±1 0 0
0 ±1 0
0 0 ±1

 ,

 0 0 0
0 0 0
0 0 0

 ,

 ±1 a b
0 ∓1 c
0 0 0

 ,

 0 a b
0 ∓1 c
0 0 ±1

 ,

 ±1 a b
0 0 c
0 0 ∓1

 ,

 ±1 0 b
0 ±1 c
0 0 ∓1

 ,

 ∓1 a b
0 ±1 0
0 0 ±1

 ,

 0 0 b
0 0 c
0 0 ±1

 ,

 0 a ±ac
0 ±1 c
0 0 0

 ,

 ±1 a b
0 0 0
0 0 0

 ,

 ±1 0 b
0 ±1 c
0 0 0

 ,

 0 a b
0 ±1 0
0 0 ±1

 ,

 ±1 a ∓ac
0 0 c
0 0 ±1

 ,

 ±1 a ∓ac
2

0 ∓1 c
0 0 ±1

 .

Example 3.4 All tripotent matrices in T U
4 (R) satisfying Theorem 2.1 are as in the following forms with

a, b, c, d, e ∈ R being arbitrary elements:


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 ,


±1 0 0 0
0 ±1 0 0
0 0 ±1 0
0 0 0 ±1

 ,


±1 0 a b
0 ±1 c d
0 0 ∓1 e
0 0 0 0

 ,


±1 0 a b
0 ±1 c d
0 0 ∓1 0
0 0 0 ∓1

 ,


±1 a ∓ac

2
b

0 ∓1 c ± cd
2

0 0 ±1 d
0 0 0 ∓1

 ,


∓1 0 a ±ac

2

0 ∓1 b ± bc
2

0 0 ±1 c
0 0 0 ∓1

 ,


∓1 a ±ab ±ac
0 0 b c
0 0 ∓1 0
0 0 0 ∓1

 ,


±1 0 a b
0 ±1 c d
0 0 0 0
0 0 0 0

 ,


∓1 a ±ac b
0 0 c ∓cd
0 0 ∓1 d
0 0 0 0

 ,


∓1 a b c
0 0 d e
0 0 ±1 0
0 0 0 ±1

 ,


∓1 a b c
0 ±1 d ∓de
0 0 0 e
0 0 0 ±1

 ,


±1 a ∓ac

2
b

0 ∓1 c d
0 0 ±1 e
0 0 0 0

 ,
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
∓1 a b c
0 ±1 0 d
0 0 ±1 e
0 0 0 0

 ,


±1 a b c
0 0 0 d
0 0 0 e
0 0 0 ∓1

 ,


0 0 a b
0 0 c d
0 0 ∓1 e
0 0 0 ±1

 ,


∓1 0 0 a
0 ∓1 0 b
0 0 ∓1 c
0 0 0 ±1

 ,


±1 a b c
0 ∓1 0 0
0 0 ∓1 0
0 0 0 ∓1

 ,


0 a b c
0 ∓1 0 0
0 0 ∓1 0
0 0 0 ∓1

 ,


∓1 0 0 a
0 ∓1 0 b
0 0 ∓1 c
0 0 0 0

 ,


∓1 a b c
0 0 0 0
0 0 0 0
0 0 0 0

 ,


0 0 0 a
0 0 0 b
0 0 0 c
0 0 0 ∓1

 ,


0 a ±ac b
0 ±1 c d
0 0 0 e
0 0 0 ∓1

 ,


∓1 0 a b
0 ∓1 c d
0 0 0 e
0 0 0 ±1

 ,


±1 a b c
0 ∓1 d e
0 0 0 0
0 0 0 0

 ,


0 a b c
0 ±1 d e
0 0 ∓1 0
0 0 0 ∓1

 ,


0 a ±ac b
0 ±1 c ∓cd
0 0 0 d
0 0 0 ±1

 ,


0 a b ∓(ac+ bd)
0 ∓1 0 c
0 0 ∓1 d
0 0 0 0

 ,


0 a b ace∓ ad± be
0 ∓1 c d
0 0 ±1 e
0 0 0 0

 ,


±1 a b ∓

(
ac+bd

2

)
0 ∓1 0 c
0 0 ∓1 d
0 0 0 ±1

 ,


±1 0 a ∓ac
0 ±1 b ∓bc
0 0 0 c
0 0 0 ±1

 ,


0 0 a b
0 0 c d
0 0 ∓1 0
0 0 0 ∓1

 ,


∓1 a b ±(ac+ bd)
0 0 0 c
0 0 0 d
0 0 0 ∓1

 ,


0 a b c
0 ∓1 0 d
0 0 ∓1 e
0 0 0 ±1

 ,


0 a b c
0 ∓1 d ± de

2

0 0 ±1 e
0 0 0 ∓1

 ,


∓1 a ±ac b
0 0 c d
0 0 ∓1 e
0 0 0 ±1

 ,


0 a ±ab ±ac
0 ±1 b c
0 0 0 0
0 0 0 0

 ,


0 0 a ±ac
0 0 b ±bc
0 0 ±1 c
0 0 0 0

 ,


∓1 a b c
0 0 d ±de
0 0 ±1 e
0 0 0 0

 ,


∓1 a b ±be− 1

2
(ace∓ ad)

0 ±1 c d
0 0 0 e
0 0 0 ∓1

 ,


±1 a b ∓ad− 1

2
(ace± be)

0 0 c d
0 0 ∓1 e
0 0 0 ±1

 ,


∓1 a ±ab

2
±ac

2

0 ±1 b c
0 0 ∓1 0
0 0 0 ∓1


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Note that all the above examples include all the idempotent matrix examples in Hou’s study in [15] and
all the involutive matrix examples in Petik et al.’s study in [20]. It is also easy to see that matrices whose entries
on the main diagonal belong to the set {−1, 0} are skew idempotent. Notice that in the examples above, the
matrices which are neither idempotent nor skew idempotent are essentially tripotent matrices.

Considering Theorem 2.2, it can be seen that the tripotent matrix examples in the lower triangular matrix
rings are also the transpositions of the tripotent matrix examples we have given in the upper triangular matrix
rings.

Remark 3.5 The number of tripotent matrices in the lower triangular matrix rings is exactly the same as in
Theorem 3.1, since the number sought depends only on the main diagonal entries and the main diagonal entries
do not change because the lower triangular matrices are transpose of the upper triangular matrices. On the
other hand, the expression s1(n− s1) + s2(n− s1 − s2) in Theorem 3.1 states the number of arbitrary variables
above the main diagonal of upper triangular matrices whose main diagonal consists of s1 ones, s2 minus ones,
and n − s1 − s2 zeros. It is easy to see that the number of arbitrary variables below the main diagonal equals
exactly the same number when matrices are lower triangular.

Remark 3.6 Consider the number of different forms of matrices in examples given. It is seen that there
are 9 different forms of 2 × 2 dimensional upper (lower) triangular tripotents, 27 different forms of 3 × 3

dimensional upper (lower) triangular tripotents, and 81 different forms of 4 × 4 dimensional upper (lower)
triangular tripotents. Notice that these numbers consist of the numbers 32 , 33 , and 34 . Here, the number 3 in
the base indicates the number of elements of the set {−1, 0, 1} , and the numbers in powers indicate the size of
the matrices. Such examples can also be expanded to integers n > 4 .

4. Discussion
Triangular matrices have an important place in linear algebra and matrix analysis. These matrices form the basis
of matrix decompositions, and many physical problems can be easily solved thanks to matrix decompositions.
For example, the solution of a differential equation can be associated with the solution of a system of linear
equations, and most systems of linear equations are solved using matrix decompositions (for example, LU, LDU,
etc.). These decompositions are useful tricks for many computational reasons. If the matrix of coefficients is
lower triangular or upper triangular, then the systems of linear equations have particularly transparent solutions.

Moreover, tripotent matrices have special importance in digital image encryption (see, for instance, [25]).
In addition, it is well known that a real tripotent matrix can be decomposed into the difference of two disjoint
idempotent matrices. Statistically, tripotent matrices are useful in determining if a real quadratic form can be
decomposed into the difference of two independent chi-square variables (see, for instance, [13]).

Hou’s study is on the rings with trivial idempotents [15]. In [26], the author extended this case to
general rings. Perhaps, based on that study, trivial case in current study can be extended to the general rings.
Also, the current study can be considered for quadratic, generalized quadratic, cubic matrices (which contain
tripotent matrices). Other than all, alternative observations can be made from the facts that a tripotent matrix
is expressed as the difference of two disjoint idempotent matrices and that the square of a tripotent matrix is
an idempotent matrix.
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