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Abstract: In this research article, a novel Φ -fractional Bielecki-type norm introduced by Sousa and Oliveira [23] is
used to obtain results on uniqueness and Ulam stability of solutions for a new class of multiterms fractional differential
equations in the framework of generalized Caputo fractional derivative. The uniqueness results are obtained by employing
Banach’ and Perov’s fixed point theorems. While the Φ -fractional Gronwall type inequality and the concept of the
matrices converging to zero are implemented to examine different types of stabilities in the sense of Ulam–Hyers (UH)
of the given problems. Finally, two illustrative examples are provided to demonstrate the validity of our theoretical
findings.
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1. Introduction
Over these years, there has been a significant interest in the study of fractional differential equations (FDEs).
This is due to their applications in many disciplines of science and engineering. For more details and applications
about fractional calculus (FC), we refer the reader to [3, 8, 10, 17]. With the great progress of FC different
definitions of fractional operators have appeared in the literature. In 2017, Almeida [2] formulated a new
category of fractional operators called generalized fractional derivatives (GFDs) that contain kernels depending
on a function Φ (or Φ–Caputo fractional derivative). Just one year later Sousa and Oliveira [21] extended
Almeida’s work to the Φ–Hilfer fractional derivative which yields a large class of fractional derivatives for
some special cases of the function Φ . On the other hand, different techniques have been adopted to tackle
the existence and uniqueness of solutions, as well as different types of stabilities in the sense of Ulam–Hyers
(UH) for nonlinear ordinary differential equations (ODEs) and nonlinear FDEs involving various categories of
fractional derivatives, for more details, see [1, 4–6, 11, 12, 15, 19, 23, 26–29], and the references cited therein.
As far as we know, there are no contributions associated with the solutions of multiterms fractional differential
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equations in the frame of Φ–Caputo derivative, especially in generalized Banach spaces. Therefore, this paper
comes to fill this gap. More specifically, we are interested in proving the uniqueness and the Eµ -UH stability
of solutions for the following Φ–Caputo fractional multiterms differential equation (Φ–Caputo FMTDE) of the
form {

cDµ;Φ
u+ m(ℓ) + ϱ cDκ;Φ

u+ m(ℓ) = H(ℓ,m(ℓ)), ℓ ∈ Σ := [u, v],

m(u) = θ,
(1.1)

where cDµ;Φ
u+ and cDκ;Φ

u+ denote the Φ -Caputo fractional derivatives, with the orders µ and κ respectively such
that 0 < κ < µ ≤ 1, ϱ > 0 , H ∈ C(Σ× R,R) and θ ∈ R .

Next, we switch onto the coupled system version of the above problem. Namely, we study the uniqueness
and the UH stability of solutions for the Φ–Caputo fractional multiterms differential system (Φ–Caputo
FMTDS) of the type

{
cDµ1;Φ

u+ m1(ℓ) + ϱ1
cDκ1;Φ

u+ m1(ℓ) = K1(ℓ,m1(ℓ),m2(ℓ)),
cDµ2;Φ

u+ m2(ℓ) + ϱ2
cDκ2;Φ

u+ m2(ℓ) = K2(ℓ,m1(ℓ),m2(ℓ)),
ℓ ∈ Σ, (1.2)

augmented with the initial conditions given by:

{
m1(u) = θ1,

m2(u) = θ2,
(1.3)

where 0 < κi < µi ≤ 1, ϱi > 0 , Ki ∈ C(Σ× R× R,R), and θi ∈ R, i = 1, 2 .
It is worth noting that the results obtained in this paper are generalizations and partial continuation of

some results obtained in [11, 12].
The rest of this paper is structured in the following way. Section 2 is dedicated to the primary definitions

and notations. In Section 3 by the implementation of Banach’s fixed point theorem associated with a new Φ -
fractional Bielecki-type norm introduced by Sousa and Oliveira [23] and the Φ -fractional Gronwall’s inequality
we study the uniqueness and different kinds of the Eµ -UH stability of the proposed problem (1.1). In Section
4 a new uniqueness result for the Φ–Caputo FMTDS is guaranteed by Perov’s fixed point theorem, while Urs’s
approach is utilized to obtain the UH-stability of solutions for the proposed problem system. Our main results
are well illustrated by two particular examples presented in Section 5.

2. Preliminaries
In the current section, we state some basic concepts of fractional calculus, related to our work.

First of all, we recall the definition of the Mittag–Leffler functions (MLFs).

Definition 2.1 ([7]) For p, q > 0 and ϖ ∈ R , the Mittag–Leffler functions (MLFs) of one and two parameters
are given by

Ep(ϖ) =

∞∑
k=0

ϖk

Γ(pk + 1)
, Ep,q(ϖ) =

∞∑
k=0

ϖk

Γ(pk + q)
. (2.1)

Clearly, Ep,1(ϖ) = Ep(ϖ) .
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Lemma 2.2 ([7, 26]) Let p ∈ (0, 1), q > p be arbitrary and ϖ ∈ R . The functions Ep,Ep,p and Ep,q are
nonnegative and have the following properties:

1. Ep(ϖ) ≤ 1,Ep,q(ϖ) ≤ 1
Γ(q) , for any ϖ < 0 ,

2. Ep,q(ϖ) = ϖEp,p+q(ϖ) + 1
Γ(q) , p, q > 0, ϖ ∈ R.

Let Σ = [u, v] (0 ≤ u < v < ∞) be a finite interval and Φ: Σ −→ R be an increasing differentiable
function such that Φ′(ℓ) ̸= 0 , for all ℓ ∈ Σ.

Definition 2.3 ([2, 10]) The RL fractional integral of order µ > 0 for an integrable function m : Σ −→ R
with respect to Φ is described by

Iµ;Φu+ m(ℓ) =

∫ ℓ

u

Φ′(η)(Φ(ℓ)− Φ(η))µ−1

Γ(µ)
m(η)dη,

where Γ(µ) =
∫ +∞
0

ℓµ−1e−ℓdℓ, µ > 0 is called the gamma function.

Definition 2.4 ([2]) Let Φ,m ∈ Cj(Σ,R) . The Caputo fractional derivative of m of order j− 1 < µ < j with
respect to Φ is defined by

cDµ;Φ
u+ m(ℓ) = Ij−µ;Φ

u+ m
[j]
Φ (ℓ),

where j = [µ] + 1 for µ /∈ N , j = µ for µ ∈ N , and m
[j]
Φ (ℓ) =

(
d
dℓ

Φ′(ℓ)

)j
m(ℓ).

Some basic properties of the Φ -fractional operators are listed in the following Lemma.

Lemma 2.5 ([2]) Let µ, κ, β > 0, and m ∈ C := C(Σ,R) . Then for each ℓ ∈ Σ ,

1. cDµ;Φ
u+ Iµ;Φu+ m(ℓ) = m(ℓ) ,

2. Iµ;Φu+
cDµ;Φ

u+ m(ℓ) = m(ℓ)−m(u), 0 < µ ≤ 1 ,

3. Iµ;Φu+ (Φ(ℓ)− Φ(u))κ−1 = Γ(κ)
Γ(κ+µ) (Φ(ℓ)− Φ(u))κ+µ−1,

4. cDµ;Φ
u+ (Φ(ℓ)− Φ(u))κ−1 = Γ(κ)

Γ(κ−µ) (Φ(ℓ)− Φ(u))κ−µ−1,

5. Iµ;Φu+

(
Eµ

(
β(Φ(ℓ)− Φ(u))µ

)
= 1

β

(
Eµ

(
β(Φ(ℓ)− Φ(u))µ − 1

)
Definition 2.6 ([9]) A function z : [u,∞) → R is said to be of Φ(ℓ)-exponential order if there exist nonnegative
constants c1, c2, v such that

|z(ℓ)| ≤ c1e
c2(Φ(ℓ)−Φ(u)), ℓ ≥ v.
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Definition 2.7 ([9]) Let m,Φ : [u,∞) → R be real valued functions such that Φ(ℓ) is continuous and Φ′(ℓ) > 0

on [u,∞) . The generalized Laplace transform of m is denoted by

LΦ

{
m(ℓ)

}
=

∫ ∞

u

e−λ(Φ(ℓ)−Φ(u))m(ℓ)Φ′(ℓ) dℓ, for all λ > 0, (2.2)

provided that integral on the right-hand side exists.

Definition 2.8 ([9]) Let z1 and z2 be two functions which are piecewise continuous at each interval [u, v] and
of exponential order. We define the generalized convolution of z1 and z2 by

(z1 ∗Φ z2)(ℓ) =

∫ ℓ

u

Φ′(η)z1(η)z2
(
Φ−1

(
Φ(ℓ) + Φ(u)− Φ(η)

))
dη.

Lemma 2.9 ([9]) Let z1 and z2 be two functions which are piecewise continuous at each interval [u, v] and of
exponential order. Then

LΦ

{
z1 ∗Φ z2

}
= LΦ

{
z1
}
LΦ

{
z2
}
.

In the following lemma, we present the generalized Laplace transforms of some elementary functions as well as
the generalized Laplace transforms of the generalized fractional integrals and derivatives.

Lemma 2.10 ([9]) The following properties are satisfied:

1. LΦ

{
1
}
= 1

λ , λ > 0,

2. LΦ

{
(Φ(ℓ)− Φ(u))r−1

}
= Γ(r)

λr , r, λ > 0,

3. LΦ

{
Ep

(
±ϱ(Φ(ℓ)− Φ(u))p

)}
= λp−1

λp∓ϱ , p > 0 and
∣∣ ϱ
λp

∣∣ < 1 ,

4. LΦ

{
(Φ(ℓ)− Φ(u))q−1Ep,q

(
±ϱ(Φ(ℓ)− Φ(u))p

)}
= λp−q

λp∓ϱ , p > 0 and
∣∣ ϱ
λp

∣∣ < 1 ,

5. LΦ

{
Iµ;Φu+ m(ℓ)

}
=

LΦ

{
m(ℓ)
}

λµ , µ, λ > 0 ,

6. LΦ

{
cDµ;Φ

u+ m(ℓ)
}
= λµLΦ

{
m(ℓ)

}
− λµ−1m(u), 0 < µ ≤ 1 and λ > 0 ,

Lemma 2.11 ([4]) Let µ, β > 0 . Then for all ℓ ∈ Σ we have

Iµ;Φu+ eβ(Φ(ℓ)−Φ(u)) ≤ eβ(Φ(ℓ)−Φ(u))

βµ
.

The following lemma is a generalization of Gronwall’s inequality.

Lemma 2.12 ([22]) Let Σ be the domain of the nonnegative integrable functions a1, a2 . Also, a3 is a
continuous, nonnegative and nondecreasing function defined on Σ and Φ ∈ C1(Σ,R+) is an increasing function
with the restriction that Φ′(ℓ) ̸= 0,∀ℓ ∈ Σ . If

a1(ℓ) ≤ a2(ℓ) + a3(ℓ)

∫ ℓ

u

Φ′(η)(Φ(ℓ)− Φ(η))µ−1a1(η)dη, ℓ ∈ Σ.
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Then

a1(ℓ) ≤ a2(ℓ) +

∫ ℓ

u

∞∑
n=0

(a3(ℓ)Γ(µ))
n

Γ(nµ)
Φ′(η)(Φ(ℓ)− Φ(η))nµ−1a2(η)dη, ℓ ∈ Σ.

Corollary 2.13 ([22]) Under the conditions of Lemma 2.12, let a2 be a nondecreasing function on Σ . Then
we get that

a1(ℓ) ≤ a2(ℓ)Eµ

(
Γ(µ)a3(ℓ)

(
Φ(ℓ)− Φ(u)

)µ)
, ℓ ∈ Σ. (2.3)

Now, we are ready to present our main results.

3. Uniqueness and Eµ -UH stability results for the Φ–Caputo FMTDE (1.1)

Based on the work in [19, 28], we introduce different types of stabilities in the sense of Eµ–Ulam–Hyers (Eµ -UH)
for problem (1.1).

Let ε > 0,LH > 0 and ζ : Σ → R+ , be a continuous function. We consider the following inequalities:

|cDµ;Φ
u+ n(ℓ) + ϱ cDκ;Φ

u+ n(ℓ)−H(ℓ, n(ℓ))| ≤ ε, ℓ ∈ Σ; (3.1)

|cDµ;Φ
u+ n(ℓ) + ϱ cDκ;Φ

u+ n(ℓ)−H(ℓ, n(ℓ))| ≤ ζ(ℓ), ℓ ∈ Σ; (3.2)

|cDµ;Φ
u+ n(ℓ) + ϱ cDκ;Φ

u+ n(ℓ)−H(ℓ, n(ℓ))| ≤ εζ(ℓ), ℓ ∈ Σ. (3.3)

Definition 3.1 ([28]) Equation (1.1) is Eµ -UH stable if there exists a real number c > 0 such that, for each
ε > 0 and for each solution n ∈ C := C(Σ,R) of inequalities (3.1), there exists a solution m ∈ C of (1.1) with∣∣n(ℓ)−m(ℓ)

∣∣ ≤ cεEµ

(
LH(Φ(ℓ)− Φ(u))µ

)
, ℓ ∈ Σ.

Definition 3.2 ([28]) Equation (1.1) is generalized Eµ -UH stable if there exists φ : C(R+,R+) with φ(0) = 0

such that, for each ε > 0 and for each solution n ∈ C of inequalities (3.1), there exists a solution m ∈ C of
(1.1) with ∣∣n(ℓ)−m(ℓ)| ≤ φ(ε)Eµ

(
LH(Φ(ℓ)− Φ(u))µ

)
, ℓ ∈ Σ.

Definition 3.3 ([28]) Equation (1.1) is Eµ–Ulam–Hyers–Rassias (Eµ -UHR) stable with respect to ζ if there
exists a real number cζ > 0 such that, for each ε > 0 and for each solution n ∈ C of inequalities (3.3), there
exists a solution m ∈ C of (1.1) with∣∣n(ℓ)−m(ℓ)

∣∣ ≤ cζεζ(ℓ)Eµ

(
LH(Φ(ℓ)− Φ(u))µ

)
, ℓ ∈ Σ.

Definition 3.4 ([28]) Equation (1.1) is generalized Eµ -UHR stable with respect to ζ if there exists a real
number cζ > 0 such that, for each solution n ∈ C of inequalities (3.2), there exists a solution m ∈ C of (1.1)
with ∣∣n(ℓ)−m(ℓ)

∣∣ ≤ cζζ(ℓ)Eµ

(
LH(Φ(ℓ)− Φ(u))µ

)
, ℓ ∈ Σ.

Remark 3.5 ([28]) It is clear that
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(i) Definition 3.1 ⇒ Definition 3.2,

(ii) Definition 3.3 ⇒ Definition 3.4,

(iii) Definition 3.3 for ζ(·) = 1 ⇒ Definition 3.1.

Remark 3.6 ([28]) A function n ∈ C is a solution of inequality (3.3) if and only if there exists a function
z ∈ C (which depends on solution n) such that

(i) |z(ℓ)| ≤ εζ(ℓ), ℓ ∈ Σ ,

(ii) cDµ;Φ
u+ n(ℓ) + ϱ cDκ;Φ

u+ n(ℓ) = H(ℓ, n(ℓ)) + z(ℓ), ℓ ∈ Σ .

We shall prove our results concerning the Φ–Caputo FMTDE (1.1) under the following assumptions:

(H1) The function H : Σ× R −→ R is continuous.

(H2) There exists LH > 0 such that

|H(ℓ, b2)−H(ℓ, b1)| ≤ LH|b2 − b1|, ℓ ∈ Σ, b1, b2 ∈ R.

(H3) There exists an increasing function ζ ∈ C (Σ,R+) and there exists γζ > 0 such that for any ℓ ∈ Σ

Iµ;Φu+ ζ(ℓ) ≤ γζζ(ℓ).

Before going to our main results, we state the following special linear cases of the Φ–Caputo FMTDE (1.1).

Lemma 3.7 For a given z ∈ C(Σ,R), 0 < κ < µ ≤ 1 and ϱ > 0 , the linear Φ–Caputo FMTDE{
cDµ;Φ

u+ m(ℓ) + ϱ cDκ;Φ
u+ m(ℓ) = z(ℓ), ℓ ∈ Σ := [u, v],

m(u) = θ,
(3.4)

has a unique solution given explicitly as

m(ℓ) = θ +

∫ ℓ

u

Φ′(η)(Φ(ℓ)− Φ(η))µ−1Eµ−κ,µ

(
−ϱ(Φ(ℓ)− Φ(η))µ−κ

)
z(η)dη. (3.5)

Proof Applying the generalized Laplace transform to both sides of Equation (3.4) and then using Lemma
2.10, one gets

λµLΦ

{
m(ℓ)

}
− λµ−1m(u) + ϱλκLΦ

{
m(ℓ)

}
− ϱλκ−1m(u) = LΦ

{
z(ℓ)

}
.

So,

LΦ

{
m(ℓ)

}
= ϱ

λ−1

λµ−κ + ϱ
θ +

λµ−κ−1

λµ−κ + ϱ
θ +

λ−κ

λµ−κ + ϱ
LΦ

{
z(ℓ)

}
= ϱLΦ

{
(Φ(ℓ)− Φ(u))µ−κEµ−κ,µ−κ+1

(
−ϱ(Φ(ℓ)− Φ(u))µ−κ

)}
θ

+ LΦ

{
Eµ−κ

(
−ϱ(Φ(ℓ)− Φ(u))µ−κ

)}
θ

+ LΦ

{
(Φ(ℓ)− Φ(u))µ−1Eµ−κ,µ

(
−ϱ(Φ(ℓ)− Φ(u))µ−κ

)}
LΦ

{
z(ℓ)

}
.
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Taking the inverse generalized Laplace transform to both sides of the last expression, we get

m(ℓ) =
(
Eµ−κ

(
−ϱ(Φ(ℓ)− Φ(u))µ−κ

)
+ ϱ(Φ(ℓ)− Φ(u))µ−κEµ−κ,µ−κ+1

(
−ϱ(Φ(ℓ)− Φ(u))µ−κ

))
θ

+ z(ℓ) ∗Φ (Φ(ℓ)− Φ(u))µ−1Eµ−κ,µ

(
−ϱ(Φ(ℓ)− Φ(u))µ−κ

)
= θ +

∫ ℓ

u

Φ′(η)(Φ(ℓ)− Φ(η))µ−1Eµ−κ,µ

(
−ϱ(Φ(ℓ)− Φ(η))µ−κ

)
z(η)dη.

This ends the proof of Lemma 3.7. 2

As a result of Lemma 3.7, the Φ–Caputo FMTDE (1.1) can be converted to an integral equation which takes
the following form

m(ℓ) = θ +

∫ ℓ

u

Φ′(η)(Φ(ℓ)− Φ(η))µ−1Eµ−κ,µ

(
−ϱ(Φ(ℓ)− Φ(η))µ−κ

)
H(η,m(η))dη. (3.6)

Now, we transform the integral representation (3.6) of the Φ–Caputo FMTDE (1.1) into a fixed point problem
as follows:

m = Qm, m ∈ C := C(Σ,R),

where Q : C −→ C is defined by

Qm(ℓ) = θ +

∫ ℓ

u

Φ′(η)(Φ(ℓ)− Φ(η))µ−1Eµ−κ,µ

(
−ϱ(Φ(ℓ)− Φ(η))µ−κ

)
H(η,m(η))dη. (3.7)

Clearly, the operator Q is well-defined. Moreover, the existence of a fixed point for the operator Q will ensure
the existence of the solution of the Φ–Caputo FMTDE (1.1).

Theorem 3.8 If assumptions (H1) and (H2) are satisfied, then there exists a unique solution of the Φ–Caputo
FMTDE (1.1) on Σ . Furthermore, if the hypotheses (H3) holds, then the Φ–Caputo FMTDE (1.1) is Eµ -UHR
stable.

Proof The proof of this theorem is divided into two parts. In the first part, we shall prove that the Φ–Caputo
FMTDE (1.1) has a unique solution by using the Banach contraction principle, and the second one is devoted
to the Eµ -UHR stability of solutions for the mentioned problem.

Part 1: In this part we shall prove that the Φ–Caputo FMTDE (1.1) has a unique solution. For this
end, let us consider on the space C := C(Σ,R) the Φ -fractional Bielecki-type norm ∥ · ∥C,B,µ given by previous
studies [20, 23] and defined by

∥m∥C,B,µ := sup
ℓ∈Σ

|m(ℓ)|
Eµ

(
β(Φ(ℓ)− Φ(u))µ

) , β > 0. (3.8)

Consequently,
(
C, ∥ · ∥C,B,µ

)
is a Banach space. Our aim is to show that Q is a contraction operator with

respect to the Φ -fractional Bielecki-type norm. To do this, let m, n ∈ C and ℓ ∈ Σ , then, by (H2) and Lemmas
2.2 and 2.5 one has

|Qm(ℓ)−Qn(ℓ)| ≤ LH∥m− n∥C,B,µ

∫ ℓ

u

Φ′(η)(Φ(ℓ)− Φ(η))µ−1

Γ(µ)
Eµ

(
β(Φ(η)− Φ(u))µ

)
dη

≤ LH

β

(
Eµ

(
β(Φ(ℓ)− Φ(u))µ − 1

)
∥m− n∥C,B,µ,
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that is,

∥Qm−Qn∥C,B,µ ≤ LH

β
∥m− n∥C,B,µ.

Undoubtedly, the mapping Q is a contraction for β sufficiently large as we wish. Then, by using the well-known
Banach fixed point theorem, we get a unique fixed point m of Q . Consequently, the Φ–Caputo FMTDE (1.1)
has a unique solution.

Part 2: Now, we discuss the Eµ -UHR stability of solutions for the Φ–Caputo FMTDE (1.1). The
arguments are based on the Φ -fractional Gronwall’s inequality Eq. (2.3).

Let ε > 0 and let n ∈ C be a function which satisfies the inequality (3.3) and let m ∈ C the unique
solution of the following problem{

cDµ;Φ
u+ m(ℓ) + ϱ cDκ;Φ

u+ m(ℓ) = H(ℓ,m(ℓ)), ℓ ∈ Σ,

m(u) = θ.

By Lemma 3.7, we have

m(ℓ) = θ +

∫ ℓ

u

Φ′(η)(Φ(ℓ)− Φ(η))µ−1Eµ−κ,µ

(
−ϱ(Φ(ℓ)− Φ(η))µ−κ

)
H(η,m(η))dη.

Since we have assumed that n is a solution of (3.3), hence by Remark 3.6 we can get{
cDµ;Φ

u+ n(ℓ) + ϱ cDκ;Φ
u+ n(ℓ) = H(ℓ, n(ℓ)) + z(ℓ), ℓ ∈ Σ,

n(u) = θ.

Another application of Lemma 3.7, it yields

n(ℓ) = θ +

∫ ℓ

u

Φ′(η)(Φ(ℓ)− Φ(η))µ−1Eµ−κ,µ

(
−ϱ(Φ(ℓ)− Φ(η))µ−κ

)
H(η, n(η))dη.

On the other side, for each ℓ ∈ Σ we obtain

|n(ℓ)−m(ℓ)| ≤
∫ ℓ

u

Φ′(η)(Φ(ℓ)− Φ(η))µ−1Eµ−κ,µ

(
−ϱ(Φ(ℓ)− Φ(η))µ−κ

)
|z(η)|dη

+

∫ ℓ

u

Φ′(η)(Φ(ℓ)− Φ(η))µ−1Eµ−κ,µ

(
−ϱ(Φ(ℓ)− Φ(η))µ−κ

)
× |H(η, n(η))−H(η,m(η))|dη.

Using part (i) of Remark 3.6, (H2) and (H3) we can arrive at

|n(ℓ)−m(ℓ)| ≤ε

∫ ℓ

u

Φ′(η)(Φ(ℓ)− Φ(η))µ−1

Γ(µ)
ζ(η)dη

+ LH

∫ ℓ

u

Φ′(η)(Φ(ℓ)− Φ(η))µ−1

Γ(µ)
|n(η)−m(η)|dη

≤εγζζ(ℓ) +
LH

Γ(µ)

∫ ℓ

u

Φ′(η)(Φ(ℓ)− Φ(η))µ−1|n(η)−m(η)|dη.
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Applying Corollary 2.13 (the Φ -fractional Gronwall’s inequality Eq. (2.3)), to above inequality with a1(ℓ) =

|n(ℓ)−m(ℓ)|, a2(ℓ) = εγζζ(ℓ) and a3(ℓ) =
LH

Γ(µ) . Since a2(ℓ) is nondecreasing function on Σ , we conclude that

|n(ℓ)−m(ℓ)| ≤ εγζζ(ℓ)Eµ

(
LH
(
Φ(ℓ)− Φ(u)

)µ)
, ℓ ∈ Σ. (3.9)

Thus, the Φ–Caputo FMTDE (1.1) is Eµ -UHR stable. 2

Remark 3.9 It is important to notice that by combining the results of the above theorem along with Remark 3.5
the Eµ -UH stability, generalized Eµ -UH stability, and generalized Eµ -UHR stability of the Φ–Caputo FMTDE
(1.1) can be obtained as corollaries.

Remark 3.10 Notice that in our analysis we do not assume that LH(Φ(v)−Φ(u))µ

Γ(µ+1) < 1 in Theorem 3.8, while it

is required in Theorem 22 in the article of Liu et al. [11].

4. Uniqueness and stability results for the coupled systems (1.2)–(1.3)

We start this section by recalling the basic results of matrix analysis.
Let x, y ∈ Rm with x = (x1, x2, . . . , xm), y = (y1, y2, . . . , ym) .
By x ≤ y we mean xi ≤ yi, i = 1, . . . ,m . Also,

|x| = (|x1|, |x2|, . . . , |xm|),

max(x, y) = (max(x, y),max(x̄, ȳ), . . . ,max(xm, ym)),

and
Rm

+ =
{
x ∈ Rm : xi ∈ R+, i = 1, . . . ,m

}
.

If c ∈ R , then x ≤ c means xi ≤ c, i = 1, . . . ,m .

Definition 4.1 ([13]) Let X be a nonempty set. By a vector-valued metric on X we mean a map d : X×X →
Rm with the following properties:

(i) d(x, y) ≥ 0 for all x, y ∈ X , and if d(x, y) = 0 , then x = y ;

(ii) d(x, y) = d(y, x) for all x, y ∈ X ;

(iii) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X .

We call the pair (X, d) a generalized metric space with

d(x, y) :=


d1(x, y)
d2(x, y)

...
dm(x, y)

 .

Notice that d is a generalized metric space on X if and only if di, i = 1, . . . ,m , are metrics on X .
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Definition 4.2 ([25]) A square matrix B of real numbers is said to be convergent to zero if and only if its
spectral radius ρ(B) is strictly less than 1 . In other words, this means that all the eigenvalues of B are in
the open unit disc, i.e., |α| < 1 for every α ∈ C with det(B − αI) = 0 , where I denotes the unit matrix of
Bm×m(R) .

Theorem 4.3 ([25]) For any nonnegative square matrix B , the following properties are equivalent

(i) B is convergent to zero;

(ii) ρ(B) < 1 ;

(iii) the matrix I− B is nonsingular and

(I− B)−1 = I+ B+ · · ·+ Bn + · · · ;

(iv) I− B is nonsingular and (I− B)−1 is a nonnegative matrix.

Definition 4.4 ([16, 18]) Let (E,d) be a generalized metric space. An operator T : E → E is said to be
contractive if there exists a matrix B convergent to zero such that

d(T(x),T(y)) ≤ Bd(x, y), for all x, y ∈ E.

We employ the following fixed point theorem as a basic tool for proving our main existence result for a coupled
system of the proposed problem.

Theorem 4.5 ([14, 16]) Let (E,d) be a complete generalized metric space and T : E → E be a contractive
operator with Lipschitz matrix B . Then T has a unique fixed point x0 , and for each x ∈ E , we have

d(Tk(x), x0) ≤ Bk(I− B)−1d(x,T(x)) for all k ∈ N.

Theorem 4.6 Let the following assumptions hold:

(H ′
1) K1,K2 : Σ× R× R −→ R are continuous functions.

(H ′
2) There exist a positive cantants ci, di, i = 1, 2, such that

|Ki(ℓ,m1,m2)−Ki(ℓ, n1, n1)| ≤ ci|m1 − n1|+ di|m2 − n1|, ℓ ∈ Σ and m1, n1,m2, n2 ∈ R,

then the Φ–Caputo FMTDS (1.2)–(1.3) has a unique solution.

Proof Consider the Banach space C := C(Σ,R) equipped with the Φ -fractional Bielecki-type norm defined
in (3.8) with specific value of µ = 1 . As results, the product space Y := C× C is a generalized Banach space,
endowed with the Bielecki vector-valued norm

∥(m1,m2)∥Y,B,1 =

(
∥m1∥C,B,1

∥m2∥C,B,1

)
.
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Next, in light of Lemma 3.7 we define an operator F =
(
F1,F2

)
: Y → Y as:

F(m1,m2) =
(
F1(m1,m2),F2(m1,m2)

)
, (4.1)

where

Fi(m1,m2)(ℓ) =θi +

∫ ℓ

u

Φ′(η)(Φ(ℓ)− Φ(η))µi−1Eµi−κi,µi

(
−ϱi(Φ(ℓ)− Φ(η))µi−κi

)
×Ki(η,m1(η),m2(η))dη, i = 1, 2.

(4.2)

It should be noted that F is well-defined since both K1 and K2 are continuous. Now, we apply Perov’s
fixed point theorem to prove that F has a unique fixed point. In this moment, we must show that F is a
contraction mapping on Y with the Bielecki vector-valued norm. Note that by definition of operator F , for any
(m1,m2), (m̄1, m̄2) ∈ Y and ℓ ∈ Σ , using (H ′

2) , and Lemmas 2.2, 2.11 we can get∣∣Fi(m1,m2)(ℓ)− Fi(m̄1, m̄2)(ℓ)
∣∣

≤
(
ci∥m1 − m̄1∥C,B,1 + di∥m2 − m̄2∥C,B,1

) ∫ ℓ

u

Φ′(η)(Φ(ℓ)− Φ(η))µi−1

Γ(µi)
eβ(Φ(η)−Φ(u))dη

≤eβ(Φ(ℓ)−Φ(u))

βµi

(
ci∥m1 − m̄1∥C,B,1 + di∥m2 − m̄2∥C,B,1

)
.

Hence ∥∥Fi(m1,m2)− Fi(m̄1, m̄2)
∥∥
C,B,1

≤ 1

βµi

(
ci∥m1 − m̄1∥C,B,1 + di∥m2 − m̄2∥C,B,1

)
.

This leads to ∥∥F(m1,m2)− F(m̄1, m̄2)
∥∥
C,B,1

≤ Mβ∥(m1,m2)− (m̄1, m̄2)∥C,B,1,

where

Mβ =

(
c1
βµ1

d1

βµ1

c2
βµ2

d2

βµ2

)
. (4.3)

It is easy to see that the matrix Mβ converges to zero for β large enough. Thus, our conclusion follows from
Perov’s fixed point theorem.

Now we close this section by studying the UH stability of solutions of the proposed Φ–Caputo FMTDS
(1.2)–(1.3).

For some ε1, ε2 > 0 , we consider the following inequalities:{
|cDµ1;Φ

u+ m̃1(ℓ) + ϱ1
cDκ1;Φ

u+ m̃1(ℓ)−K1(ℓ, m̃1(ℓ), m̃2(ℓ))| ≤ ε1,

|cDµ2;Φ
u+ m̃2(ℓ) + ϱ2

cDκ2;Φ
u+ m̃2(ℓ)−K2(ℓ, m̃1(ℓ), m̃2(ℓ))| ≤ ε2.

ℓ ∈ Σ, (4.4)

Motivated by the work of Urs [24] we give the following definition

Definition 4.7 ([24]) The Φ–Caputo FMTDS (1.2)–(1.3) is UH stable if we can find a positive constants
νi, i = 1, 4 such that for every ε1, ε1 > 0 and for each solution (m̃1, m̃2) ∈ Y of the inequalities (4.4), there
exists a solution (m1,m2) ∈ Y of the Φ–Caputo FMTDS (1.2)–(1.3) with{

|m̃1(ℓ)−m1(ℓ)| ≤ ν1ε1 + ν2ε2,

|m̃2(ℓ)−m2(ℓ)| ≤ ν3ε1 + ν4ε2.
ℓ ∈ Σ,
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Remark 4.8 A function (m1,m2) ∈ Y is a solution of the inequalities (4.4) if and only if there exist a functions
z1, z2 ∈ C(Σ,R) ( which depend upon m̃1 and m̃2 respectively), such that

(i) |z1(ℓ)| ≤ ε1, |z2(ℓ)| ≤ ε2, ℓ ∈ Σ ;

(ii) and {
cDµ1;Φ

u+ m̃1(ℓ) + ϱ1
cDκ1;Φ

u+ m̃1(ℓ) = K1(ℓ, m̃1(ℓ), m̃2(ℓ)) + z1(ℓ),
cDµ2;Φ

u+ m̃2(ℓ) + ϱ2
cDκ2;Φ

u+ m̃2(ℓ) = K2(ℓ, m̃1(ℓ), m̃2(ℓ)) + z2(ℓ).
ℓ ∈ Σ,

.

Lemma 4.9 Let (m̃1, m̃2) ∈ Y be a solution of the inequalities (4.4), then the following inequalities will be
satisfied: ∣∣m̃i(ℓ)− Fi(m̃1, m̃2)(ℓ)

∣∣ ≤ εiAµi,Φ, i = 1, 2.

where Fi, i = 1, 2 are defined by (4.2), and Aµi,Φ = (Φ(v)−Φ(u))µi

Γ(µi+1) .

Proof By Remark 4.8 (ii), we have{
cDµ1;Φ

u+ m̃1(ℓ) + ϱ1
cDκ1;Φ

u+ m̃1(ℓ) = K1(ℓ, m̃1(ℓ), m̃2(ℓ)) + z1(ℓ),
cDµ2;Φ

u+ m̃2(ℓ) + ϱ2
cDκ2;Φ

u+ m̃2(ℓ) = K2(ℓ, m̃1(ℓ), m̃2(ℓ)) + z2(ℓ),
ℓ ∈ Σ, (4.5)

with the following initial conditions {
m̃1(u) = θ1,

m̃2(u) = θ2.
(4.6)

Thanks to Lemma 3.7, the integral representation of (4.5)–(4.6) is expressed as

m̃i(ℓ) =θi +

∫ ℓ

u

Φ′(η)(Φ(ℓ)− Φ(η))µi−1Eµi−κi,µi

(
−ϱi(Φ(ℓ)− Φ(η))µi−κi

)
×
(
Ki(η, m̃1(η), m̃2(η)) + zi(η)

)
dη, i = 1, 2.

(4.7)

It follows from (4.7), together with Remark 4.8 (i), and Lemma 2.2 that

∣∣m̃i(ℓ)− Fi(m̃1, m̃2)(ℓ)
∣∣ ≤ ∫ ℓ

u

Φ′(η)(Φ(ℓ)− Φ(η))µi−1

Γ(µi)
|zi(η)|dℓ ≤ εiAµi,Φ, i = 1, 2.

2

Theorem 4.10 Let the assumptions of Theorem 4.6 be fulfilled. Then the Φ–Caputo FMTDS (1.2)–(1.3) is
UH stable with respect to the Bielecki’s norm.

Proof Let (m1,m2) be the be a unique solution of the Φ–Caputo FMTDS (1.2)–(1.3) and (m̃1, m̃2) be any
solution satisfying (4.4), then by (H ′

2) and Lemmas 2.11, 4.9 we can get∣∣m̃i(ℓ)−mi(ℓ)
∣∣ ≤ ∣∣m̃i(ℓ)− Fi(m̃1, m̃2)(ℓ)

∣∣+ ∣∣Fi(m̃1, m̃2)(ℓ)− Fi(m1,m2)(ℓ)
∣∣

≤ εiAµi,Φ +
1

βµi

(
ci∥m1 − m̄1∥C,B,1 + di∥m2 − m̄2∥C,B,1

)
, i = 1, 2.
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Thus

∥m̃i −mi∥C,B,1 ≤ εiAµi,Φ +
1

βµi

(
ci∥m1 − m̄1∥C,B,1 + di∥m2 − m̄2∥C,B,1

)
, i = 1, 2.

The matrix representation of the aforementioned inequalities is as follows:

(I−Mβ)

(
∥m̃1 −m1∥C,B,1

∥m̃2 −m2∥C,B,1

)
≤
(

Aµ1,Φε1
Aµ2,Φε2

)
. (4.8)

Where Mβ is the matrix given by (4.3). Of course, the matrix Mβ is converges to zero for sufficiently large
value of β . So, by Theorem 4.3 we conclude that the matrix (I − Mβ) is nonsingular and (I − Mβ)

−1 has
nonnegative elements. Therefore, (4.8) is equivalent to(

∥m̃1 −m1∥C,B,1

∥m̃2 −m2∥C,B,1

)
≤ (I−Mβ)

−1

(
Aµ1,Φε1
Aµ2,Φε2

)
,

which yields that {
∥m̃1 −m1∥C,B,1 ≤ σ1Aµ1,Φε1 + σ2Aµ2,Φε2,

∥m̃2 −m2∥C,B,1 ≤ σ3Aµ1,Φε1 + σ4Aµ2,Φε2,

where σi, i = 1, 4 are the elements of the matrix (I−Mβ)
−1 .

Consequently, the Φ–Caputo FMTDS (1.2)–(1.3) is UH stable with respect to Bielecki’s norm ∥ · ∥C,B,1 .
2

Remark 4.11 Importing the same logic as in Theorem 4.10. One can easily show that the Φ–Caputo FMTDS
(1.2)–(1.3) is generalized UH, UHR and generalized UHR stable with respect to Bielecki’s norm ∥ · ∥C,B,1 .

2

5. Applications
In this section, we present two examples where we apply Theorems 3.8 and 4.6 to some particular cases.

Example 5.1 Let us consider problem (1.1) with specific data:

µ =0.5, κ = 0.4, ϱ = 0.5, θ = 1. (5.1)

In order to illustrate Theorem 3.8, we take

H(ℓ,m(ℓ)) =eℓ
2

(
1 +

|m(ℓ)|
1 + |m(ℓ)|

)
, (5.2)

in (1.1). Clearly, the function H is continuous. Moreover, For any m, n ∈ R and ℓ ∈ [u, v] we have

|H(ℓ,m)−H(ℓ, n)| ≤ev
2

|m− n|.

Hence the condition (H2) holds with LH = e2 . Moreover, by letting ζ(ℓ) = Φ(ℓ)− Φ(u) , we have

Iµ;Φu+ ζ(ℓ) =
(Φ(ℓ)− Φ(u))1.5

Γ(2.5)
≤ 2

√
Φ(v)− Φ(u)

π
:= γζζ(ℓ).
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So, condition (H3) is satisfied with ζ(ℓ) = Φ(ℓ)−Φ(u) and γζ = 2
√

Φ(v)−Φ(u)
π . It follows from Theorem

3.8 that the problem (1.1) with the data (5.1) and (5.2) has a unique solution on [u, v] and is Eµ -UHR stable.

Remark 5.2 It is worth noting that in the previous example β can be determined according to the assumptions
of Theorem 3.8. for example, we can choose β > ev.

Example 5.3 To illustrate Theorem 4.6, consider the Φ–Caputo FMTDS (1.2)–(1.3) with specific values
µ1 = 0.6, µ2 = 0.9, κ1 = 0.5, κ2 = 0.7, ϱ1 = 1.8, ϱ2 = 2, θ1 = 0.5, θ2 = 1.5,

K1(ℓ,m1(ℓ),m2(ℓ)) = ℓ2 arctan(|m1(ℓ)|) + eℓ sin(m2(ℓ)) + 1,

K1(ℓ,m1(ℓ),m2(ℓ)) =
sin ℓ
2

(
m1(ℓ) +

√
1 +m2

1(ℓ)
)
+ ℓ

1+|m1(ℓ)|+|m2(ℓ)| .

(5.3)

It is clear that the functions K1 and K2 are continuous. Ferthmore, for all ℓ ∈ Σ and m1, n1,m2, n2 ∈ R we
have

|Ki(ℓ,m1,m2)−Ki(ℓ, n1, n1)| ≤ ci|m1 − n1|+ di|m2 − n1|, i = 1, 2,

where
c1 = v2, c2 = 1, d1 = ev, d2 = v.

Hence, all conditions of Theorem 4.6 are satisfied and consequently the Φ–Caputo FMTDS (1.2)–(1.3) with
the given values (5.3) has a unique solutions on [u, v] . Moreover, Theorem 4.10 garuntates that the Φ–Caputo
FMTDS (1.2)–(1.3) is UH with respect to Bielecki’s norm ∥ · ∥C,B,1 . Furthermore, the matrix Mβ given by
(4.3) has the following form

Mβ =

(
v2

β0.6
ev

β0.6

1
β0.9

v
β0.9

)
,

which is convergent for β sufficiently large as we wish.
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