

Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/

Turk J Math (2021) 45: 2323 – 2330 © TÜBİTAK doi:10.3906/mat-2012-94

Research Article

Zero-divisor graphs of partial transformation semigroups

Kemal TOKER^{*}

Department of Mathematics, Faculty of Science and Literature, Harran University, Şanlıurfa, Turkey

Received: 28.12.2020	•	Accepted/Published Online: 01.09.2021	•	Final Version: 16.09.2021

Abstract: Let \mathcal{P}_n be the partial transformation semigroup on $X_n = \{1, 2, ..., n\}$. In this paper, we find the left zerodivisors, right zero-divisors and two sided zero-divisors of \mathcal{P}_n , and their numbers. For $n \geq 3$, we define an undirected graph $\Gamma(\mathcal{P}_n)$ associated with \mathcal{P}_n whose vertices are the two sided zero-divisors of \mathcal{P}_n excluding the zero element θ of \mathcal{P}_n with distinct two vertices α and β joined by an edge in case $\alpha\beta = \theta = \beta\alpha$. First, we prove that $\Gamma(\mathcal{P}_n)$ is a connected graph, and find the diameter, girth, domination number and the degrees of the all vertices of $\Gamma(\mathcal{P}_n)$. Furthermore, we give lower bounds for clique number and chromatic number of $\Gamma(\mathcal{P}_n)$.

Key words: Partial transformation semigroup, zero-divisor graph, clique number, chromatic number

1. Introduction

In 1988, the zero-divisor graphs on commutative rings were defined by Beck [2]. However, the zero element is a vertex in the zero-divisor graph within Beck's definition, later the standard definition of zero-divisor graphs on commutative rings was given by Anderson and Livingston [1]. Let R be a commutative ring and let Z(R)be the set of the zero-divisors of R. The zero-divisor graph of R is defined by an undirected graph $\Gamma(R)$ with vertices $Z(R) \setminus \{0\}$, where distinct vertices x and y of $\Gamma(R)$ are adjacent if and only if xy = 0. Demeyer et al. have considered this definition for commutative semigroups and they defined and found some basic properties of the zero-divisor graph of a commutative semigroup with zero [5, 6]. There are some papers about zero-divisor graphs on some classes of commutative semigroups [4, 11]. For noncommutative rings, a directed zero-divisor graph and some undirected zero-divisor graphs were defined by Redmond [9]. Suppose that R is a ring, let $Z_R(T)$ be the set of all two sided zero-divisor elements of R. Then Redmond defined an undirected zero-divisor graph $\Gamma(R)$ with vertices $Z_R(T) \setminus \{0\}$, where distinct vertices x and y are adjacent with a single edge if and only if xy = 0 = yx. If R is a noncommutative ring, then $\Gamma(R)$ does not need to be connected and if R is a commutative ring then $\Gamma(R)$ coincide with the standard zero-divisor graph of R. Furthermore, these definitions can be considered for noncommutative semigroups with zero. Recently, some properties of zero-divisor graphs of Catalan monoids have been researched in [12].

Suppose that $X_n = \{1, 2, ..., n\}$ is a finite set. Let $\mathcal{P}_n, \mathcal{T}_n$ and \mathcal{S}_n be the partial transformation semigroup, the full transformation semigroup and the symmetric group on X_n , respectively. Let $\alpha \in \mathcal{P}_n$, the domain of α denoted by dom(α) and image of α denoted by im(α), moreover, codomain of α is the complement of dom(α) and it is denoted by codom(α).

^{*}Correspondence: ktoker@harran.edu.tr

²⁰¹⁰ AMS Mathematics Subject Classification: 20M20, 97K30.

TOKER/Turk J Math

Let $\theta \in \mathcal{P}_n$ such that dom $(\theta) = \emptyset$ and let α be any element of \mathcal{P}_n then it is clear that $\theta \alpha = \theta = \alpha \theta$, so θ is the zero element of \mathcal{P}_n . Furthermore, \mathcal{P}_n is a noncommutative semigroup for $n \ge 2$.

For $n \ge 2$, let $\mathcal{P}_n^* = \mathcal{P}_n \setminus \{\theta\}$. Then we define the following sets

$$L = L(\mathcal{P}_n) = \{ \alpha \in \mathcal{P}_n \mid \alpha\beta = \theta \text{ for some } \beta \in \mathcal{P}_n^* \},\$$

$$R = R(\mathcal{P}_n) = \{ \alpha \in \mathcal{P}_n \mid \gamma\alpha = \theta \text{ for some } \gamma \in \mathcal{P}_n^* \} \text{ and}\$$

$$T = T(\mathcal{P}_n) = \{ \alpha \in \mathcal{P}_n \mid \alpha\beta = \theta = \gamma\alpha \text{ for some } \beta, \gamma \in \mathcal{P}_n^* \} = L \cap R$$

which are called the set of left zero-divisors, right zero-divisors and two sided zero-divisors of \mathcal{P}_n , respectively. It is known that $|\mathcal{P}_n| = (n+1)^n$, $|\mathcal{T}_n| = n^n$ and $|\mathcal{S}_n| = n!$ for $n \in \mathbb{Z}^+$. In this paper we find the left zero-divisors, right zero-divisors and zero-divisors of \mathcal{P}_n , and then their numbers.

For a semigroup S with (zero) 0 if $T(S) \setminus \{0\} \neq \emptyset$ where $T(S) = \{z \in S \mid zx = 0 = yz \text{ for } x, y \in S \setminus \{0\}\}$, then we similarly define the (undirected) zero-divisor graph $\Gamma(S)$ associated with S whose the set of vertices is $T(S) \setminus \{0\}$ with distinct two vertices joined by an edge in case xy = 0 = yx for some $x, y \in T(S) \setminus \{0\}$. Notice that $\theta \in T(\mathcal{P}_n)$ for all $n \geq 1$. In this paper, we prove that $\Gamma(\mathcal{P}_n)$ is a connected graph and find the diameter, girth, the degrees of all vertices, lower bounds for clique number and chromatic number of $\Gamma(\mathcal{P}_n)$ for $n \geq 3$.

For semigroup terminology see [7, 8] and for graph theoretical terminology see [10].

2. Zero-divisors of \mathcal{P}_n

In this section, we find the left zero-divisors, right zero-divisors and two-sided zero-divisors of \mathcal{P}_n and their numbers.

Since, for any $\alpha, \beta \in \mathcal{P}_n$, it is well-known that dom $(\alpha\beta) = [\operatorname{im}(\alpha) \cap \operatorname{dom}(\beta)]\alpha^{-1}$ and $\operatorname{im}(\alpha\beta) = [\operatorname{im}(\alpha) \cap \operatorname{dom}(\beta)]\beta$ (see Proposition 1.4.3 in [8]), we can write the following immediate result.

Lemma 2.1 If $\alpha, \beta \in \mathcal{P}_n$, then $\alpha\beta = \theta \iff im(\alpha) \subseteq \operatorname{codom}(\beta)$. In particular, $\alpha^2 = \theta \iff im(\alpha) \subseteq \operatorname{codom}(\alpha)$.

Lemma 2.2 For $n \ge 1$, let L be the set of left zero-divisors of \mathcal{P}_n . Then we have

$$L = \mathcal{P}_n \setminus \mathcal{S}_n$$
 and $|L| = (n+1)^n - n!.$

Proof For any $\alpha \in \mathcal{P}_n \setminus \mathcal{S}_n$, notice that $X_n \setminus \operatorname{im}(\alpha) \neq \emptyset$. If we take any $\beta \in \mathcal{P}_n$ with dom $(\beta) = X_n \setminus \operatorname{im}(\alpha)$, then it follows from Lemma 2.1 that α is a left zero divisor.

Since, for every $\alpha \in S_n$, $|\operatorname{im}(\alpha\beta)| = |\operatorname{im}(\beta)|$ for all $\beta \in \mathcal{P}_n$, it follows that $\alpha\beta = \theta$ if and only if $\beta = \theta$, the zero element of \mathcal{P}_n . Thus, the permutations on X_n are not left zero divisors. Therefore, $|L| = |\mathcal{P}_n| - |\mathcal{S}_n| = (n+1)^n - n!$, as required.

Since, for any $\alpha, \beta \in \mathcal{P}_n$, $\operatorname{im}(\beta \alpha) = [\operatorname{im}(\beta) \cap \operatorname{dom}(\alpha)] \alpha$, we also have immediate lemma.

Lemma 2.3 For $\alpha, \beta \in \mathcal{P}_n$, $\beta \alpha = \theta$ if and only if $im(\beta) \cap dom(\alpha) = \emptyset$.

Lemma 2.4 For $n \ge 1$, let R be the set of right zero-divisors of \mathcal{P}_n . Then we have

$$R = \mathcal{P}_n \setminus \mathcal{T}_n$$
 and $|R| = (n+1)^n - n^n$.

Proof For any $\alpha \in \mathcal{P}_n \setminus \mathcal{T}_n$, notice that $X_n \setminus \text{dom}(\alpha) \neq \emptyset$. If we take any $\beta \in \mathcal{P}_n$ with $\text{im}(\beta) = X_n \setminus \text{dom}(\alpha)$, then it follows from Lemma 2.3 that α is a right zero divisor.

Since, for every $\alpha \in \mathcal{T}_n$, dom $(\beta \alpha) = \text{dom}(\beta)$ for all $\beta \in \mathcal{P}_n$, it follows that $\beta \alpha = \theta$ if and only if $\beta = \theta$. Thus, the full transformations on X_n are not right zero divisors. Therefore, $|R| = |\mathcal{P}_n| - |\mathcal{T}_n| = (n+1)^n - n^n$, as required.

Since $\mathcal{S}_n \subseteq \mathcal{T}_n \subseteq \mathcal{P}_n$, it follows that $R \subseteq L$. Thus we have the following corollary.

Corollary 2.5 For $n \ge 1$, let T be the set of zero-divisors of \mathcal{P}_n . Then we have

$$T = R = \mathcal{P}_n \setminus \mathcal{T}_n$$
 and $|T| = (n+1)^n - n^n$.

3. Zero-divisor graph of \mathcal{P}_n

Let G = (V(G), E(G)) be an undirected graph, V(G) denotes vertex set of G and E(G) denotes the edge set of G. If G does not have any loops and multiple edges, then G is called a simple graph. We consider simple graphs for the following definitions. Two vertices u and v of G are said to be connected if there is a path from u to v. If u and v connected for every $u, v \in V(G)$, then G is called a connected graph. Let $u, v \in V(G)$, the length of the shortest path between u and v is denoted by $d_G(u, v)$.

The diameter of G is denoted by diam(G) and defined by

$$\operatorname{diam}(G) = \max\{d_G(u, v) \mid u, v \in V(G)\}.$$

Let $v \in V(G)$ then the degree of a vertex is denoted by $\deg_G(v)$ and it is the number of adjacent vertices to v in G. $\Delta(G)$ shows that the maximum degree and $\delta(G)$ shows that the minimum degree among all the degrees in G.

Let $\emptyset \neq D \subseteq V(G)$, for each vertex of G if the vertex in D or the vertex is adjacent to any vertex in D then D is called a dominating set for G. The domination number of G is

$\min\{|D| \mid D \text{ is a dominating set of } G\}$

and this number is denoted by $\gamma(G)$. The length of the shortest cycle in G is called girth of G and it is denoted by gr(G), if G does not contain any cycles then its girth is defined to be infinity.

Let $\emptyset \neq C \subseteq V(G)$, if u and v are adjacent vertices for all $u, v \in C$ in G, then C is called a clique. The number of all the vertices in any maximal clique of G is called clique number of G and it is denoted by $\omega(G)$. The chromatic number of G is defined by the number of the minimum number of colours required to colour of the all vertices G with the rule no two adjacent vertices have the same colour, and it is denoted by $\chi(G)$.

Let G be a graph with n vertices, if every vertex is adjacent to each other vertices, then G is called a complete graph and it is denoted by K_n .

Let $V' \subseteq V(G)$. The (vertex) induced subgraph G' = (V', E') is a subgraph of G and its vertex set is V', furthermore, its edge set consists of all of the edges in E(G) that have both endpoints in V'.

In this section, we prove that $\Gamma(\mathcal{P}_n)$ is a connected graph and find the diameter, girth, domination number, the vertex degrees, and give lower bounds for clique number and chromatic number of $\Gamma(\mathcal{P}_n)$ for $n \geq 3$. In this paper, we use Γ instead of $\Gamma(\mathcal{P}_n)$ for convenience.

Let $T^* = T \setminus \{\theta\}$, then we have $V(\Gamma) = T^*$ from definitions. It follows from Lemmas 2.1 and 2.3 α is adjacent to β if and only if $\operatorname{im}(\alpha) \subseteq \operatorname{codom}(\beta)$ and $\operatorname{im}(\beta) \subseteq \operatorname{codom}(\alpha)$.

Lemma 3.1 Γ is a connected graph for $n \geq 3$.

Proof For $n \ge 3$, let $\gamma_i \in \mathcal{P}_n$ such that dom $(\gamma_i) = \{i\}$ and $i\gamma_i = i$ for $1 \le i \le n$, then it is clear that $\gamma_i \in V(\Gamma)$ for $1 \le i \le n$. Let G be an induced subgraph of Γ induced by the vertex set $\{\gamma_1, \gamma_2, \ldots, \gamma_n\}$. Then it is clear that $G = K_n$. For $\alpha \in V(\Gamma) \setminus \{\gamma_1, \gamma_2, \ldots, \gamma_n\}$, there exists at least one $i \in \text{codom}(\alpha)$.

Case 1: If $i \notin im(\alpha)$, then $\alpha \gamma_i = \gamma_i \alpha = \theta$.

Case 2: If $i \in im(\alpha)$, then $i\alpha^{-1} \neq \emptyset$. So, in this case, we can write

$$\alpha = \left(\begin{array}{cccc} A_1 & A_2 & \dots & A_r & A_{r+1} \\ i & a_2 & \dots & a_r & - \end{array}\right)$$

where $\operatorname{im}(\alpha) = \{i = a_1, a_2, \dots, a_r\}, A_k = a_k \alpha^{-1} \text{ for } 1 \le k \le r \text{ and } A_{r+1} = \operatorname{codom}(\alpha).$ If $r \ge 2$, then we take

$$\beta = \begin{pmatrix} X_n \setminus \{i, a_2, \dots, a_r\} & \{i, a_2, \dots, a_r\} \\ i & - \end{pmatrix},$$

then we have $\beta \in V(\Gamma)$ and $\alpha\beta = \beta\alpha = \theta$. Moreover, $\beta\gamma_{a_2} = \gamma_{a_2}\beta = \theta$. So, in this case, we have a path in Γ such that $\alpha - \beta - \gamma_{a_2}$ where $\gamma_{a_2} \in V(G)$. In other case, we can write

$$\alpha = \left(\begin{array}{cc} A_1 & A_2 \\ i & - \end{array}\right),$$

so, $i \in A_2$ since $i \in \text{codom}(\alpha)$. There exists $j \in X_n$ such that $i \neq j$, moreover, $X_n \setminus \{i, j\} \neq \emptyset$ since $n \geq 3$. Let

$$\beta = \left(\begin{array}{cc} X_n \setminus \{i, j\} & \{i, j\} \\ i & - \end{array}\right).$$

Then we have $\beta \in V(\Gamma)$ and $\alpha\beta = \beta\alpha = \theta$. Moreover, $\beta\gamma_j = \gamma_j\beta = \theta$. So, in this case, we have a path in Γ such that $\alpha - \beta - \gamma_j$ where $\gamma_j \in V(G)$. It follows that Γ is a connected graph. \Box

Lemma 3.2 diam $(\Gamma) = 4$ for $n \ge 3$.

Proof Let $n \geq 3$ and $\alpha, \beta \in V(\Gamma)$. Then we have

$$\alpha = \begin{pmatrix} A_1 & A_2 & \cdots & A_r & A_{r+1} \\ a_1 & a_2 & \cdots & a_r & - \end{pmatrix}, \ \beta = \begin{pmatrix} B_1 & B_2 & \cdots & B_k & B_{k+1} \\ b_1 & b_2 & \cdots & b_k & - \end{pmatrix}$$

where $a_i, b_j \in X_n$ for $1 \le i \le r$ and $1 \le j \le k$, $1 \le r \le n-1$ and $1 \le k \le n-1$, $\{A_1, A_2, \ldots, A_{r+1}\}$ is a partition of X_n and $\{B_1, B_2, \ldots, B_{k+1}\}$ is a partition of X_n . Firstly we will show that $d_{\Gamma}(\alpha, \beta) \le 4$. Let $Y = \{a_1, a_2, \ldots, a_r\} \cup \{b_1, b_2, \ldots, b_k\}.$

Case 1: If $Y \neq X_n$ and $A_{r+1} \cap B_{k+1} \neq \emptyset$. Then there exists $z, t \in X_n$ such that $z \in X_n \setminus Y$ and $t \in A_{r+1} \cap B_{k+1}$. Let

$$\gamma = \left(\begin{array}{cc} z & X_n \setminus \{z\} \\ t & - \end{array}\right).$$

It is clear that $\gamma \in V(\Gamma)$ and $\alpha - \gamma - \beta$ in Γ .

TOKER/Turk J Math

Case 2: If $Y = X_n$ and $A_{r+1} \cap B_{k+1} \neq \emptyset$. There exists $x, y \in X_n$ such that $x \in \{b_1, b_2, \ldots, b_k\} \setminus \{a_1, a_2, \ldots, a_r\}$ and $y \in \{a_1, a_2, \ldots, a_r\} \setminus \{b_1, b_2, \ldots, b_k\}$ since $1 \leq r \leq n-1$, $1 \leq k \leq n-1$ and $Y = X_n$. So we have $x \neq y$ and there exists $z \in X_n$ such that $z \in X_n \setminus \{x, y\}$ since $n \geq 3$. Let $t \in A_{r+1} \cap B_{k+1}$. Let

$$\lambda_1 = \begin{pmatrix} x & X_n \setminus \{x\} \\ t & - \end{pmatrix}, \ \lambda_2 = \begin{pmatrix} y & X_n \setminus \{y\} \\ t & - \end{pmatrix}, \ \lambda_3 = \begin{pmatrix} X_n \setminus \{t\} & t \\ z & - \end{pmatrix}.$$

Then it is clear that $\lambda_1, \lambda_2, \lambda_3 \in V(\Gamma)$. If $t \notin \{x, y\}$, then $\alpha - \lambda_1 - \lambda_2 - \beta$ in Γ . If $t \in \{x, y\}$, then $\alpha - \lambda_1 - \lambda_3 - \lambda_2 - \beta$ in Γ .

Case 3: If $Y \neq X_n$ and $A_{r+1} \cap B_{k+1} = \emptyset$. There exists $z \in X_n$ such that $z \in X_n \setminus Y$. Let $x \in A_{r+1}$, $y \in B_{k+1}$ and $t \in X_n \setminus \{z\}$. Let

$$\lambda_1 = \begin{pmatrix} z & X_n \setminus \{z\} \\ x & - \end{pmatrix}, \ \lambda_2 = \begin{pmatrix} z & X_n \setminus \{z\} \\ y & - \end{pmatrix}, \ \lambda_3 = \begin{pmatrix} X_n \setminus \{x, y\} & \{x, y\} \\ t & - \end{pmatrix}.$$

Then it is clear that $\lambda_1, \lambda_2, \lambda_3 \in V(\Gamma)$. If $z \notin \{x, y\}$, then $\alpha - \lambda_1 - \lambda_2 - \beta$ in Γ . If $z \in \{x, y\}$, then $\alpha - \lambda_1 - \lambda_3 - \lambda_2 - \beta$ in Γ .

Case 4: If $Y = X_n$ and $A_{r+1} \cap B_{k+1} = \emptyset$. There exists $x, y \in X_n$ such that $x \in \{b_1, b_2, \ldots, b_k\} \setminus \{a_1, a_2, \ldots, a_r\}$ and $y \in \{a_1, a_2, \ldots, a_r\} \setminus \{b_1, b_2, \ldots, b_k\}$ since $1 \le r \le n-1$, $1 \le k \le n-1$ and $Y = X_n$. So we have $x \ne y$ and there exists $z \in X_n$ such that $z \in X_n \setminus \{x, y\}$ since $n \ge 3$. Let $a \in A_{r+1}$ and $b \in B_{k+1}$. Then $a \ne b$ since $A_{r+1} \cap B_{k+1} = \emptyset$. Let

$$\lambda_1 = \begin{pmatrix} x & X_n \setminus \{x\} \\ a & - \end{pmatrix}, \ \lambda_2 = \begin{pmatrix} y & X_n \setminus \{y\} \\ b & - \end{pmatrix}$$

Then it is clear that $\lambda_1, \lambda_2 \in V(\Gamma)$. If $x \neq b$ and $y \neq a$, then $\alpha - \lambda_1 - \lambda_2 - \beta$ in Γ . If x = b, then we take

$$\lambda_3 = \left(\begin{array}{cc} X_n \setminus \{x,a\} & \{x,a\} \\ z & - \end{array}\right).$$

Then it is clear that $\lambda_3 \in V(\Gamma)$ and $\alpha - \lambda_1 - \lambda_3 - \lambda_2 - \beta$ in Γ . If y = a, then we take

$$\lambda_4 = \left(\begin{array}{cc} X_n \setminus \{y, b\} & \{y, b\} \\ z & - \end{array}\right).$$

Then it is clear that $\lambda_4 \in V(\Gamma)$ and $\alpha - \lambda_1 - \lambda_4 - \lambda_2 - \beta$ in Γ .

So we have concluded that $d_{\Gamma}(\alpha, \beta) \leq 4$ for all cases. Let

$$\alpha_1 = \begin{pmatrix} 1 & 2 & \cdots & n-1 & n \\ 1 & 2 & \cdots & n-1 & - \end{pmatrix}, \ \beta_1 = \begin{pmatrix} 1 & 2 & \cdots & n-1 & n \\ 2 & 3 & \cdots & n & - \end{pmatrix}.$$

 α_1 and β_1 are not adjacent vertices in Γ . Moreover, α_1 has only one adjacent vertex in Γ which is $\mu_1 = \begin{pmatrix} n & X_n \setminus \{n\} \\ n & - \end{pmatrix}$, similarly β_1 has only one adjacent vertex in Γ which is $\mu_2 = \begin{pmatrix} 1 & X_n \setminus \{1\} \\ n & - \end{pmatrix}$. So we have $\mu_1 \neq \mu_2$, moreover, μ_1 and μ_2 are not adjacent vertices in Γ , thus $d_{\Gamma}(\alpha_1, \beta_1) = 4$. It follows that diam(Γ) = 4 for $n \geq 3$.

Theorem 3.3 $gr(\Gamma) = 3$ for $n \ge 3$.

Proof First of all, since Γ is a simple graph $gr(\Gamma) \geq 3$. For $n \geq 3$, let $\gamma_i \in \mathcal{P}_n$ such that dom $(\gamma_i) = \{i\}$ and $i\gamma_i = i$ for $1 \leq i \leq n$, then it is clear that $\gamma_i \in V(\Gamma)$ for $1 \leq i \leq n$. Then we have a cycle such that $\gamma_1 - \gamma_2 - \gamma_3 - \gamma_1$, it follows that $gr(\Gamma) = 3$ for $n \geq 3$.

Theorem 3.4 For $n \ge 3$, let $\alpha \in V(\Gamma)$. If $r = |im(\alpha)|$ and $k = |codom(\alpha)|$, then

$$deg_{\Gamma}(\alpha) = \begin{cases} (k+1)^{(n-r)} - 1 & \text{if } im(\alpha) \not\subseteq \operatorname{codom}(\alpha) \\ (k+1)^{(n-r)} - 2 & \text{if } im(\alpha) \subseteq \operatorname{codom}(\alpha). \end{cases}$$

Proof For $n \ge 3$, let $\alpha \in V(\Gamma)$, $r = |\operatorname{im}(\alpha)|$ and $k = |\operatorname{codom}(\alpha)|$. For any $\beta \in \mathcal{P}_n$ suppose that $\alpha\beta = \theta = \beta\alpha$. It follows from Lemma 2.1 that $\operatorname{im}(\beta) \subseteq \operatorname{codom}(\alpha)$ and $\operatorname{im}(\alpha) \subseteq \operatorname{codom}(\beta)$. If $\operatorname{im}(\alpha) \not\subseteq \operatorname{codom}(\alpha)$, then we have $\alpha^2 \neq \theta$, so $\beta \neq \alpha$. Moreover, we have if $x \in im(\alpha)$, then $x \in \operatorname{codom}(\beta)$ and if $x \in X_n \setminus \operatorname{im}(\alpha)$, then $x\beta \in \operatorname{codom}(\alpha)$ or $x \in \operatorname{codom}(\beta)$. So we have k+1 different choice for $\forall x \in X_n \setminus \operatorname{im}(\alpha)$ since $k = |\operatorname{codom}(\alpha)|$. However, if $x \in \operatorname{codom}(\beta)$ for $\forall x \in X_n \setminus \operatorname{im}(\alpha)$, then $\beta = \theta \notin V(\Gamma)$. It follows that, $\operatorname{deg}_{\Gamma}(\alpha) = (k+1)^{(n-r)} - 1$ since $|X_n \setminus \operatorname{im}(\alpha)| = n - r$. If $\operatorname{im}(\alpha) \subseteq \operatorname{codom}(\alpha)$, then we have $\alpha^2 = \theta$, so if we take $\beta = \alpha$, then $\alpha\beta = \theta = \beta\alpha$. So from the definition of vertex degree we have $\operatorname{deg}_{\Gamma}(\alpha) = ((k+1)^{(n-r)} - 1) - 1 = (k+1)^{(n-r)} - 2$.

For $n \geq 3$, if we consider $\alpha \in V(\Gamma)$ such that $|\operatorname{im}(\alpha)| = n - 1$ and $|\operatorname{codom}(\alpha)| = 1$, then we have $\operatorname{im}(\alpha) \notin \operatorname{codom}(\alpha)$ and so $\operatorname{deg}_{\Gamma}(\alpha) = 1$ from Theorem 3.4. If we consider $\beta \in V(\Gamma)$ such that $|\operatorname{im}(\beta)| = r$ and $|\operatorname{codom}(\beta)| = k$, then it is clear that $1 \leq r \leq n - 1$ and $1 \leq k \leq n - 1$. For the maximum degree, we take k = n - 1 and r = 1. Moreover, let $x\beta = x$ for $x \in \operatorname{dom}(\beta)$ then $\operatorname{im}(\beta) \notin \operatorname{codom}(\beta)$, so $\operatorname{deg}_{\Gamma}(\beta) = n^{(n-1)} - 1$. Thus we have the following immediate corollary.

Corollary 3.5 $\Delta(\Gamma) = n^{(n-1)} - 1$ and $\delta(\Gamma) = 1$ for $n \ge 3$.

Theorem 3.6 $\gamma(\Gamma) = n^2$ for $n \ge 3$.

Proof For $n \ge 3$, let $\alpha_{ij} \in \mathcal{P}_n$ such that dom $(\alpha_{ij}) = \{i\}$ and $i\alpha_{ij} = j$ for $1 \le i \le n, 1 \le j \le n$. We have $\alpha_{ij} \in V(\Gamma)$. Let

$$\mathcal{A} = \{ \alpha_{ij} \mid 1 \le i \le n \text{ and } 1 \le j \le n \}$$

then it is clear that $|\mathcal{A}| = n^2$. If i = j then $\deg_{\Gamma}(\alpha_{ij}) = n^{n-1} - 1$ and if $i \neq j$ then $\deg_{\Gamma}(\alpha_{ij}) = n^{n-1} - 2$. Let $X_n \setminus \{i\} = \{i_1, i_2, \ldots, i_{n-1}\}$ with $i_1 < i_2 < \ldots < i_{n-1}$ and $X_n \setminus \{j\} = \{j_1, j_2, \ldots, j_{n-1}\}$ with $j_1 < j_2 < \ldots < j_{n-1}$. For $1 \leq i \leq n, 1 \leq j \leq n$, let $\beta_{ij} \in \mathcal{P}_n$ such that $\operatorname{codom}(\beta_{ij}) = \{j\}$ and $j_k \beta_{ij} = i_k$ for $1 \leq k \leq n-1$. Then we have $\beta_{ij} \in V(\Gamma)$ and $\deg_{\Gamma}(\beta_{ij}) = 1$. Let

$$\mathcal{B} = \{\beta_{ij} \mid 1 \le i \le n \text{ and } 1 \le j \le n\}.$$

Then we have $|\mathcal{B}| = n^2$, moreover, \mathcal{A} and \mathcal{B} are disjoint sets. In Γ , β_{ij} has only one adjacent vertex which is α_{ij} for $1 \leq i \leq n$, $1 \leq j \leq n$. It follows that $\gamma(\Gamma) \geq n^2$ from the pigeonhole principle. Let $\alpha \in V(\Gamma) \setminus \mathcal{A}$. Then there exist $i, j \in X_n$ such that $i \in X_n \setminus \operatorname{im}(\alpha)$ and $j \in \operatorname{codom}(\alpha)$. We have α and α_{ij} are adjacent vertices

in Γ . Thus \mathcal{A} is a dominating set for Γ . We have $\gamma(\Gamma) \ge n^2$, \mathcal{A} is a dominating set for Γ and $|\mathcal{A}| = n^2$. So $\gamma(\Gamma) = n^2$ for $n \ge 3$.

We have $\omega(\Gamma) \ge n$ from the proof of Lemma 3.1. In the following theorem, we give better lower bound for clique number of Γ for $n \ge 3$.

Theorem 3.7 If $n \ge 3$, then $\omega(\Gamma) \ge (r+1)^{n-r} - 1$ for $1 \le r \le n-1$.

Proof Let $n \ge 3$ and $A = \{x_1, x_2, \dots, x_r\} \subseteq X_n$ for $1 \le r \le n-1$. Let

 $B = \{ \alpha \in \mathcal{P}_n \mid A \subseteq \operatorname{codom}(\alpha) \text{ and } \emptyset \neq \operatorname{im}(\alpha) \subseteq A \}.$

It is clear that $B \neq \emptyset$ and if $\alpha \in B$, then $\alpha \in V(\Gamma)$. Let $\alpha_1, \alpha_2 \in B$ and $\alpha_1 \neq \alpha_2$, then we have $\operatorname{im}(\alpha_1) \subseteq A \subseteq \operatorname{codom}(\alpha_2)$ and $\operatorname{im}(\alpha_2) \subseteq A \subseteq \operatorname{codom}(\alpha_1)$, so α_1 and α_2 adjacent vertices in Γ from Lemma 2.1. Let G be an induced subgraph of Γ induced by the vertex set B, then we have G is a complete graph. Moreover $|B| = (r+1)^{n-r} - 1$. Thus for $n \geq 3$, $\omega(\Gamma) \geq (r+1)^{n-r} - 1$ for $1 \leq r \leq n-1$.

For any graph G, it is known that $\chi(G) \ge \omega(G)$ (see Corollary 6.2 in [3]), so we have the following corollary.

Corollary 3.8 If $n \ge 3$, then $\chi(\Gamma) \ge (r+1)^{n-r} - 1$ for $1 \le r \le n-1$.

Example 3.9 Let $\Gamma = \Gamma(\mathcal{P}_5)$, then Γ is a connected graph, $|V(\Gamma)| = 4650$, $diam(\Gamma) = 4$, $gr(\Gamma) = 3$, $\Delta(\Gamma) = 624$, $\delta(\Gamma) = 1$, $\gamma(\Gamma) = 25$, $\omega(\Gamma) \ge 26$ and $\chi(\Gamma) \ge 26$. Moreover, if $\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ - & - & 5 & - & 2 \end{pmatrix}$, then $\alpha \in V(\Gamma)$ and $\deg_{\Gamma}(\alpha) = 63$.

Acknowledgment

We would like to thank anonymous referees for the comments and suggestions, which significantly contributed to improving the quality of the publication.

References

- Anderson DF, Livingston PS. The zero-divisor graph of a commutative ring. Journal of Algebra 1999; 217 (2): 434-447.
- [2] Beck I. Coloring of commutative rings. Journal of Algebra 1988; 116 (1): 208-226.
- [3] Chartrand G, Zhang P. Chromatic Graph Theory. Boca Raton, FL, USA: CRC Press, 2009.
- [4] Das KC, Akgüneş N, Çevik AS. On a graph of monogenic semigroup. Journal of Inequalities and Applications 2013; 44: 1-13.
- [5] DeMeyer F, DeMeyer L. Zero divisor graphs of semigroups. Journal of Algebra 2005; 283 (1): 190-198.
- [6] DeMeyer F, McKenzie T, Schneider K. The zero-divisor graph of a commutative semigroup. Semigroup Forum 2002; 65 (2): 206-214.
- [7] Ganyushkin O, Mazorchuk V. Classical Finite Transformation Semigroups. London, UK: Springer-Verlag, 2009.
- [8] Howie JM. Fundamentals of Semigroup Theory. New York, NY, USA: Oxford University Press, 1995.

TOKER/Turk J Math

- [9] Redmond SP. The zero-divisor graph of a non-commutative ring. International Journal of Commutative Rings 2002; 1 (4): 203-211.
- [10] Thulasiraman K, Arumugam S, Brandstädt A, Nishizeki T. Handbook of Graph Theory, Combinatorial Optimization, and Algorithms. Boca Raton, CRC Press, 2015.
- [11] Toker K. On the zero-divisor graphs of finite free semilattices. Turkish Journal of Mathematics 2016; 40 (4): 824-831.
- [12] Toker K. Zero-divisor graphs of Catalan monoid. Hacettepe Journal of Mathematics and Statistics 2021; 50 (2): 387-396.