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Abstract: Let P, be the partial transformation semigroup on X,, = {1,2,...,n}. In this paper, we find the left zero-
divisors, right zero-divisors and two sided zero-divisors of P, , and their numbers. For n > 3, we define an undirected
graph I'(P,,) associated with P,, whose vertices are the two sided zero-divisors of P,, excluding the zero element 6 of P,
with distinct two vertices a and S joined by an edge in case a8 = 0 = Sa. First, we prove that I'(P,) is a connected
graph, and find the diameter, girth, domination number and the degrees of the all vertices of I'(P,). Furthermore, we

give lower bounds for clique number and chromatic number of I'(P,).
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1. Introduction
In 1988, the zero-divisor graphs on commutative rings were defined by Beck [2]. However, the zero element is
a vertex in the zero-divisor graph within Beck’s definition, later the standard definition of zero-divisor graphs
on commutative rings was given by Anderson and Livingston [1]. Let R be a commutative ring and let Z(R)
be the set of the zero-divisors of R. The zero-divisor graph of R is defined by an undirected graph I'(R) with
vertices Z(R)\ {0}, where distinct vertices z and y of I'(R) are adjacent if and only if 2y = 0. Demeyer et al.
have considered this definition for commutative semigroups and they defined and found some basic properties
of the zero-divisor graph of a commutative semigroup with zero [5, 6]. There are some papers about zero-divisor
graphs on some classes of commutative semigroups [4, 11]. For noncommutative rings, a directed zero-divisor
graph and some undirected zero-divisor graphs were defined by Redmond [9]. Suppose that R is a ring, let
Zr(T) be the set of all two sided zero-divisor elements of R. Then Redmond defined an undirected zero-divisor
graph I'(R) with vertices Zr(T') \ {0}, where distinct vertices  and y are adjacent with a single edge if and
only if zy =0 = yx. If R is a noncommutative ring, then I'(R) does not need to be connected and if R is a
commutative ring then I'(R) coincide with the standard zero-divisor graph of R. Furthermore, these definitions
can be considered for noncommutative semigroups with zero. Recently, some properties of zero-divisor graphs
of Catalan monoids have been researched in [12].

Suppose that X, = {1,2,...,n} is a finite set. Let P,,7, and S, be the partial transformation
semigroup, the full transformation semigroup and the symmetric group on X, , respectively. Let a € P,,
the domain of a denoted by dom («) and image of « denoted by im(«), moreover, codomain of « is the

complement of dom («) and it is denoted by codom («).
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Let 6 € P,, such that dom (f) = §) and let a be any element of P, then it is clear that o = 6 = af, so
0 is the zero element of P, . Furthermore, P, is a noncommutative semigroup for n > 2.
For n > 2, let PX =P, \ {#}. Then we define the following sets

L=LP,) = {a€eP,|af=0forsome e P},
R=R(P,) = {a€P,|ya=0 for some~y € P;} and
T:T(Pn) {0467%|045:0:7af0rsomeﬁ,ye73;}:LmR

which are called the set of left zero-divisors, right zero-divisors and two sided zero-divisors of P,, , respectively. It
is known that |P,| = (n +1)", |T,| = n™ and |S,| = n! for n € Z*. In this paper we find the left zero-divisors,
right zero-divisors and zero-divisors of P,,, and then their numbers.

For a semigroup S with (zero) 0 if T(S)\{0} # 0 where T(S) ={z € S | zz = 0 = yz for z,y € S\{0}},
then we similarly define the (undirected) zero-divisor graph I'(S) associated with S whose the set of vertices is
T(S)\ {0} with distinct two vertices joined by an edge in case xy = 0 = yx for some z,y € T(S) \ {0}. Notice
that 8 € T(P,,) for all n > 1. In this paper, we prove that I'(P,,) is a connected graph and find the diameter,
girth, the degrees of all vertices, lower bounds for clique number and chromatic number of I'(P,,) for n > 3.

For semigroup terminology see [7, 8] and for graph theoretical terminology see [10].

2. Zero-divisors of P,

In this section, we find the left zero-divisors, right zero-divisors and two-sided zero-divisors of P,, and their
numbers.
Since, for any «,3 € P,, it is well-known that dom (af) = [im(a) N dom (B8)]a~! and im(aB) =

[im(a) Ndom (3)]8 (see Proposition 1.4.3 in [8]), we can write the following immediate result.

Lemma 2.1 If a,8 € P,, then af = 0 <= im(a) C codom(B). In particular, o* = § <=

im(a)) C codom («) .
Lemma 2.2 For n>1, let L be the set of left zero-divisors of P,,. Then we have
L=P,\S, and |L|=(n+1)"—nl

Proof For any o € P, \ S,, notice that X, \ im(a) # 0. If we take any 8 € P,, with dom (8) = X,, \ im(a),
then it follows from Lemma 2.1 that « is a left zero divisor.

Since, for every a € S, |[im(af)| = |[im(B)| for all 5 € P,, it follows that af = 6 if and only
if 5 = 6, the zero element of P,. Thus, the permutations on X, are not left zero divisors. Therefore,
|L| = |Pn| — |Sn] = (n+ 1)™ — n!, as required. O

Since, for any «, 5 € P,,, im(fa) = [im(5) N dom (a)]a, we also have immediate lemma.
Lemma 2.3 For a,8 € P,, Ba =0 if and only if im(8) Ndom (a) = 0.
Lemma 2.4 For n>1, let R be the set of right zero-divisors of P, . Then we have
R=P,\T, and |R|=(n+1)"—-n"
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Proof Forany o € P, \T,, notice that X,,\ dom (a) # 0. If we take any 5 € P,, with im(5) = X,, \ dom (),
then it follows from Lemma 2.3 that « is a right zero divisor.

Since, for every a € T,, dom (Sa) = dom (B) for all 8 € P,,, it follows that Sa = 6 if and only if S =6.
Thus, the full transformations on X,, are not right zero divisors. Therefore, |R| = |P,| — |Tn| = (n +1)" — n",

as required. O

Since S,, € T, C P,,, it follows that R C L. Thus we have the following corollary.

Corollary 2.5 For n > 1, let T be the set of zero-divisors of P,. Then we have

T=R=P,\T, and |T|=(n+1)"—-n"

3. Zero-divisor graph of P,

Let G = (V(G), E(G)) be an undirected graph, V(G) denotes vertex set of G and E(G) denotes the edge set
of G. If G does not have any loops and multiple edges, then G is called a simple graph. We consider simple
graphs for the following definitions. Two vertices u and v of G are said to be connected if there is a path from
u to v. If w and v connected for every u,v € V(G), then G is called a connected graph. Let u,v € V(G), the
length of the shortest path between u and v is denoted by dg(u,v).

The diameter of G is denoted by diam(G) and defined by

diam(G) = max{dg(u,v) | u,v € V(G)}.

Let v € V(G) then the degree of a vertex is denoted by degq(v) and it is the number of adjacent vertices
to v in G. A(G) shows that the maximum degree and 6(G) shows that the minimum degree among all the
degrees in G.

Let @ # D C V(QG), for each vertex of G if the vertex in D or the vertex is adjacent to any vertex in D
then D is called a dominating set for G. The domination number of G is

min{|D| | D is a dominating set of G}

and this number is denoted by (G). The length of the shortest cycle in G is called girth of G' and it is denoted
by gr(G), if G does not contain any cycles then its girth is defined to be infinity.

Let § £ C C V(G), if u and v are adjacent vertices for all u,v € C in G, then C is called a clique. The
number of all the vertices in any maximal clique of G is called clique number of G and it is denoted by w(G).
The chromatic number of G is defined by the number of the minimum number of colours required to colour of
the all vertices G with the rule no two adjacent vertices have the same colour, and it is denoted by x(G).

Let G be a graph with n vertices, if every vertex is adjacent to each other vertices, then G is called a
complete graph and it is denoted by K, .

Let V! C V(G). The (vertex) induced subgraph G’ = (V', E’) is a subgraph of G and its vertex set is
V', furthermore, its edge set consists of all of the edges in E(G) that have both endpoints in V.

In this section, we prove that T'(P,) is a connected graph and find the diameter, girth, domination
number, the vertex degrees, and give lower bounds for clique number and chromatic number of T'(P,,) for
n > 3. In this paper, we use I" instead of I'(P,,) for convenience.

Let T* = T\ {6}, then we have V(I') = T* from definitions. It follows from Lemmas 2.1 and 2.3 « is
adjacent to S if and only if im(a) C codom () and im(S3) C codom («).
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Lemma 3.1 T’ is a connected graph for n > 3.

Proof For n > 3, let v; € P, such that dom (vy;) = {¢} and iy; = ¢ for 1 < i < n, then it is clear that
v € V(I') for 1 <i¢ < n. Let G be an induced subgraph of T" induced by the vertex set {y1,72,...,7n}. Then
it is clear that G = K,,. For a € V(I') \ {y1,72,--.,7n}, there exists at least one i € codom («).

Case 1: If 7 ¢ im(«), then ay;, = v;a=06.

Case 2: If i € im(a), then ia~! # (). So, in this case, we can write

(A Ay o A Ay
@= i as ... ap —
where im(a) = {i = a1, a2,...,a,}, Ay =ara~! for 1 <k <7 and A, ; = codom (). If r > 2, then we take

5 ( X\ {02, v} {isaz,. . a,} )

1 —

then we have 8 € V(I') and af = fa = 6. Moreover, Bv,, = Va,3 = 6. So, in this case, we have a path in T’

such that o — 8 — 7,4, where 7,, € V(G). In other case, we can write

(7 %)
a= ) ,
i -
80, i € Ay since i € codom (o). There exists j € X,, such that ¢ # j, moreover, X, \ {i,5} # 0 since n > 3.
Let

5 ( X0\ fid} i) > |

Then we have f € V(I') and af = Ba = 6. Moreover, Bv; = ;6 = 0. So, in this case, we have a path in T
such that o — 8 — ; where 7v; € V(G). It follows that I' is a connected graph. O

Lemma 3.2 diam(I') =4 for n > 3.

Proof Let n >3 and a,8 € V(I'). Then we have

ai as cee a, bl b2 “en bk —

a:<A1 Ay - A, Ar+1>752(31 By .-+ B Bk-i—l)

where a;,b; € X, for 1 <i<rand 1<j<k,1<r<n—-landl1l<k<n-—1, {4,40,...,A 41} is
a partition of X,, and {Bji, Bs,...,Bk11} is a partition of X,,. Firstly we will show that dr(a,) < 4. Let
Y ={a1,az2,...,a,} U{b1,ba,... b}.

Case 1: If Y # X,, and A, N Bry1 # 0. Then there exists z,¢t € X, such that z € X,, \ Y and

tEAT+1ﬂB;C+1. Let
z Xn z
7_(15 \{}).

It is clear that v € V(I') and a —v—f in T.
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Case 2: ' Y = X,, and A1 N Bry1 # 0. There exists =,y € X, such that z € {by,bo,...,bx}\
{a1,a2,...,a,} and y € {a1,az2,...,a.} \ {b1,b2,..., b} since 1 <r<mn—-1,1<k<n—-1and Y =X,. So
we have x # y and there exists z € X,, such that z € X, \ {z,y} since n > 3. Let t € A, 11 N Bgy1. Let

Al:(x Xn\{x}),&:(zt/ X@{y}))AF(Xn;{t} t).

t —

Then it is clear that A1, e, A3 € V(I'). If ¢t ¢ {z,y}, then a — A\ —Aa =B in I'. If ¢t € {z,y}, then
a—A1—A3— X —pFin .

Case 3: If Y # X,, and A,11 N Bry1 = 0. There exists z € X,, such that z € X,, \Y. Let € 4,11,
y € Bry1 and t € X, \ {#}. Let

I T G ]

Then it is clear that A;, A2, A3 € V(I'). If z ¢ {x,y}, then a — XAy — Ay — 8 in T'. If z € {z,y}, then
a—A —A3—A—fFinT.

Case 4: I Y = X,, and A,41 N Bry1 = 0. There exists x,y € X, such that x € {by,ba,..., b5} \
{a1,a2,...,a,} and y € {a1,az2,...,a.} \ {b1,ba,..., b} since 1 <r<m—-1,1<k<n—-1and Y =X,. So
we have x # y and there exists z € X, such that z € X, \ {z,y} since n > 3. Let a € A1 and b € Bj41.
Then a # b since A,+1 N Bry1 = 0. Let

>\1<x Xn\_{x}>7>\2(gé Xni{y})'

a

Then it is clear that A\, Ao € V(I'). If z #b and y # a, then o — Ay — Ay —  in I'. If = b, then we take

N <Xn\ (o) {ma) )

Then it is clear that A3 € V(T') and o« — Ay — A3 — Ao — 8 in T'. If y = a, then we take

= < X \z{y,b} {ylb} )

Then it is clear that Ay € V(T') and o« — A\ — Ay — Ao — S in T.
So we have concluded that dr(a, ) <4 for all cases. Let

_ 1 2 - n—1 n B, = 1 2 -+~ n—1 n
“M=\12 . n-1 - )T\ 23 ... n - )

ap and fB; are not adjacent vertices in I'. Moreover, o1 has only one adjacent vertex in I' which is pu; =

< Z Xn \_{n} ) , similarly 5; has only one adjacent vertex in I" which is ps = < 711 Xn 1{1} > . So we have

{1 # pe2, moreover, py and po are not adjacent vertices in T', thus dr(ay, 81) = 4. It follows that diam(T") = 4
for n > 3.

2327



TOKER/Turk J Math

Theorem 3.3 g¢r(I') =3 for n > 3.

Proof First of all, since T is a simple graph ¢gr(T") > 3. For n > 3, let ; € P,, such that dom (v;) = {i}
and iy; = ¢ for 1 <4 < n, then it is clear that v, € V(I') for 1 < ¢ < n. Then we have a cycle such that
Y1 — 2 — 93 — 71, it follows that gr(T') = 3 for n > 3. O

Theorem 3.4 For n >3, let « € V(T'). If r = |im(a)| and k = |codom ()|, then

(k+1)" — 1 if im(e) ¢ codom (a)

=Y G+ )" 2 i ima) € codom (a).

Proof Forn >3,let a € V(I'), r = |im(«)| and k = |codom («)|. For any 8 € P,, suppose that af = 0 = fa.
It follows from Lemma 2.1 that im(8) C codom () and im(a) C codom (3). If im(e) € codom (), then we
have a? # 0, so 3 # a. Moreover, we have if x € im(a), then x € codom (3) and if z € X,, \ im(«), then
zf € codom (&) or x € codom (8). So we have k+1 different choice for Vz € X, \im(«) since k = |codom ().
However, if z € codom (8) for Vz € X, \im(a), then 8 =0 ¢ V(T). It follows that, degp (o) = (k+ 1) —1
since | X, \im(a)| = n—r. If im(a) C codom (), then we have o = 0, so if we take 3 = «, then a3 = 0 = Sa.
So from the definition of vertex degree we have degp(a) = ((k+ 1) —1) =1 = (k+1)"""" — 2, m]

For n > 3, if we consider « € V(I') such that |im(a)] = n — 1 and |codom (a))|= 1, then we have
im(«) ¢ codom («) and so degp(a) = 1 from Theorem 3.4. If we consider 8 € V(T') such that [im(8)| = r
and |codom (8)|= k, then it is clear that 1 <r <n—1 and 1 <k <n— 1. For the maximum degree, we take
k=n—1and r = 1. Moreover, let 2 = x for 2 € dom (8) then im(8) ¢ codom (8), so degp(3) = n"~H —1.

Thus we have the following immediate corollary.
Corollary 3.5 A(T)=n""Y —1 and §(T) =1 for n >3.

Theorem 3.6 ~(I') =n? for n > 3.

Proof For n > 3, let ay; € P, such that dom (o) = {i} and ia;; =j for 1 <i<mn, 1 <j<n. We have
a;; € V(I'). Let
A={ajj|1<i<nand1<j<n}

then it is clear that |A| = n?. If i = j then degp(a;;) =n""!' —1 and if i # j then degp(a;;) =n""' —2. Let
X\ {i} = {i1 iz, in_1} with iy < iz < ... <in_3 and Xn\ {j} = {j1, 42+ jn_1} With j1 < jo < ... <
Jn-1. For 1 <i<n, 1<j<n,let ; € P, such that codom (3;;) = {j} and jiBi; =i for 1 <k <n-—1.
Then we have 3;; € V(I') and degp(8;;) = 1. Let

B={fi;|1<i<nandl<j<n}

Then we have |B| = n?, moreover, A and B are disjoint sets. In T, Bi; has only one adjacent vertex which is
a;j for 1 <i<n, 1<j<n. It follows that v(I') > n? from the pigeonhole principle. Let o € V(I')\\A. Then

there exist ,j € X,, such that ¢ € X, \ im(a) and j € codom (o). We have o and «;; are adjacent vertices
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in . Thus A is a dominating set for I'. We have v(I') > n?, A is a dominating set for I' and |A| = n?. So
y(T) =n? for n > 3. O

We have w(T") > n from the proof of Lemma 3.1. In the following theorem, we give better lower bound

for clique number of T" for n > 3.

Theorem 3.7 If n >3, then w(I') > (r+1)" " —1 for 1 <r<n-—1.

Proof Let n>3 and A= {z1,29,...,2,} C X, for 1 <r<n-—1. Let
B={a€P,|ACcodom(a) and 0 # im(a) C A}.

It is clear that B # () and if a € B, then o« € V(I'). Let aj,as € B and a; # s, then we have
im(a;) € A C codom (a2) and im(az) € A C codom (o), so a; and as adjacent vertices in I' from Lemma
2.1. Let G be an induced subgraph of I' induced by the vertex set B, then we have G is a complete graph.
Moreover |B| = (r+1)""—1. Thusfor n >3, w(I) > (r+1)" " —1for 1 <r<n-—1. O

For any graph G, it is known that x(G) > w(G) (see Corollary 6.2 in [3]), so we have the following

corollary.
Corollary 3.8 If n >3, then x(T) > (r+1)"" =1 for 1 <r<n-1.

Example 3.9 Let T' = T'(Ps), then T' is a connected graph, |V(I')] = 4650, diam(T) = 4

AT)=624, 6T)=1, v(I') =25, w(T') > 26 and x(T') > 26. Moreover, if o = ( i 2

N

3
5
a € V(') and degr(a) = 63.
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