iübitak

Turkish Journal of Mathematics
http://journals.tubitak.gov.tr/math/
Research Article

Turk J Math
(2021) 45: $2323-2330$
© TÜBİTAK
doi:10.3906/mat-2012-94

Zero-divisor graphs of partial transformation semigroups

Kemal TOKER* ${ }^{\text {© }}$
Department of Mathematics, Faculty of Science and Literature, Harran University, Şanlıurfa, Turkey

| Received: 28.12 .2020 | Accepted/Published Online: 01.09.2021 | Final Version: 16.09 .2021 |
| :--- | :--- | :--- | :--- | :--- |

Abstract

Let \mathcal{P}_{n} be the partial transformation semigroup on $X_{n}=\{1,2, \ldots, n\}$. In this paper, we find the left zerodivisors, right zero-divisors and two sided zero-divisors of \mathcal{P}_{n}, and their numbers. For $n \geq 3$, we define an undirected graph $\Gamma\left(\mathcal{P}_{n}\right)$ associated with \mathcal{P}_{n} whose vertices are the two sided zero-divisors of \mathcal{P}_{n} excluding the zero element θ of \mathcal{P}_{n} with distinct two vertices α and β joined by an edge in case $\alpha \beta=\theta=\beta \alpha$. First, we prove that $\Gamma\left(\mathcal{P}_{n}\right)$ is a connected graph, and find the diameter, girth, domination number and the degrees of the all vertices of $\Gamma\left(\mathcal{P}_{n}\right)$. Furthermore, we give lower bounds for clique number and chromatic number of $\Gamma\left(\mathcal{P}_{n}\right)$.

Key words: Partial transformation semigroup, zero-divisor graph, clique number, chromatic number

1. Introduction

In 1988, the zero-divisor graphs on commutative rings were defined by Beck [2]. However, the zero element is a vertex in the zero-divisor graph within Beck's definition, later the standard definition of zero-divisor graphs on commutative rings was given by Anderson and Livingston [1]. Let R be a commutative ring and let $Z(R)$ be the set of the zero-divisors of R. The zero-divisor graph of R is defined by an undirected graph $\Gamma(R)$ with vertices $Z(R) \backslash\{0\}$, where distinct vertices x and y of $\Gamma(R)$ are adjacent if and only if $x y=0$. Demeyer et al. have considered this definition for commutative semigroups and they defined and found some basic properties of the zero-divisor graph of a commutative semigroup with zero [5, 6]. There are some papers about zero-divisor graphs on some classes of commutative semigroups [4, 11]. For noncommutative rings, a directed zero-divisor graph and some undirected zero-divisor graphs were defined by Redmond [9]. Suppose that R is a ring, let $Z_{R}(T)$ be the set of all two sided zero-divisor elements of R. Then Redmond defined an undirected zero-divisor graph $\Gamma(R)$ with vertices $Z_{R}(T) \backslash\{0\}$, where distinct vertices x and y are adjacent with a single edge if and only if $x y=0=y x$. If R is a noncommutative ring, then $\Gamma(R)$ does not need to be connected and if R is a commutative ring then $\Gamma(R)$ coincide with the standard zero-divisor graph of R. Furthermore, these definitions can be considered for noncommutative semigroups with zero. Recently, some properties of zero-divisor graphs of Catalan monoids have been researched in [12].

Suppose that $X_{n}=\{1,2, \ldots, n\}$ is a finite set. Let $\mathcal{P}_{n}, \mathcal{T}_{n}$ and \mathcal{S}_{n} be the partial transformation semigroup, the full transformation semigroup and the symmetric group on X_{n}, respectively. Let $\alpha \in \mathcal{P}_{n}$, the domain of α denoted by $\operatorname{dom}(\alpha)$ and image of α denoted by $\operatorname{im}(\alpha)$, moreover, codomain of α is the complement of dom (α) and it is denoted by codom (α).

[^0]Let $\theta \in \mathcal{P}_{n}$ such that $\operatorname{dom}(\theta)=\emptyset$ and let α be any element of \mathcal{P}_{n} then it is clear that $\theta \alpha=\theta=\alpha \theta$, so θ is the zero element of \mathcal{P}_{n}. Furthermore, \mathcal{P}_{n} is a noncommutative semigroup for $n \geq 2$.

For $n \geq 2$, let $\mathcal{P}_{n}^{*}=\mathcal{P}_{n} \backslash\{\theta\}$. Then we define the following sets

$$
\begin{aligned}
& L=L\left(\mathcal{P}_{n}\right)=\left\{\alpha \in \mathcal{P}_{n} \mid \alpha \beta=\theta \text { for some } \beta \in \mathcal{P}_{n}^{*}\right\} \\
& R=R\left(\mathcal{P}_{n}\right)=\left\{\alpha \in \mathcal{P}_{n} \mid \gamma \alpha=\theta \text { for some } \gamma \in \mathcal{P}_{n}^{*}\right\} \text { and } \\
& T=T\left(\mathcal{P}_{n}\right)=\left\{\alpha \in \mathcal{P}_{n} \mid \alpha \beta=\theta=\gamma \alpha \text { for some } \beta, \gamma \in \mathcal{P}_{n}^{*}\right\}=L \cap R
\end{aligned}
$$

which are called the set of left zero-divisors, right zero-divisors and two sided zero-divisors of \mathcal{P}_{n}, respectively. It is known that $\left|\mathcal{P}_{n}\right|=(n+1)^{n},\left|\mathcal{T}_{n}\right|=n^{n}$ and $\left|\mathcal{S}_{n}\right|=n$! for $n \in \mathbb{Z}^{+}$. In this paper we find the left zero-divisors, right zero-divisors and zero-divisors of \mathcal{P}_{n}, and then their numbers.

For a semigroup S with (zero) 0 if $T(S) \backslash\{0\} \neq \emptyset$ where $T(S)=\{z \in S \mid z x=0=y z$ for $x, y \in S \backslash\{0\}\}$, then we similarly define the (undirected) zero-divisor graph $\Gamma(S)$ associated with S whose the set of vertices is $T(S) \backslash\{0\}$ with distinct two vertices joined by an edge in case $x y=0=y x$ for some $x, y \in T(S) \backslash\{0\}$. Notice that $\theta \in T\left(\mathcal{P}_{n}\right)$ for all $n \geq 1$. In this paper, we prove that $\Gamma\left(\mathcal{P}_{n}\right)$ is a connected graph and find the diameter, girth, the degrees of all vertices, lower bounds for clique number and chromatic number of $\Gamma\left(\mathcal{P}_{n}\right)$ for $n \geq 3$.

For semigroup terminology see $[7,8]$ and for graph theoretical terminology see [10].

2. Zero-divisors of \mathcal{P}_{n}

In this section, we find the left zero-divisors, right zero-divisors and two-sided zero-divisors of \mathcal{P}_{n} and their numbers.

Since, for any $\alpha, \beta \in \mathcal{P}_{n}$, it is well-known that $\operatorname{dom}(\alpha \beta)=[\operatorname{im}(\alpha) \cap \operatorname{dom}(\beta)] \alpha^{-1}$ and $\operatorname{im}(\alpha \beta)=$ $[\operatorname{im}(\alpha) \cap \operatorname{dom}(\beta)] \beta$ (see Proposition 1.4.3 in [8]), we can write the following immediate result.

Lemma 2.1 If $\alpha, \beta \in \mathcal{P}_{n}$, then $\alpha \beta=\theta \Longleftrightarrow \operatorname{im}(\alpha) \subseteq \operatorname{codom}(\beta)$. In particular, $\alpha^{2}=\theta \Longleftrightarrow$ $\operatorname{im}(\alpha) \subseteq \operatorname{codom}(\alpha)$.

Lemma 2.2 For $n \geq 1$, let L be the set of left zero-divisors of \mathcal{P}_{n}. Then we have

$$
L=\mathcal{P}_{n} \backslash \mathcal{S}_{n} \quad \text { and } \quad|L|=(n+1)^{n}-n!
$$

Proof For any $\alpha \in \mathcal{P}_{n} \backslash \mathcal{S}_{n}$, notice that $X_{n} \backslash \operatorname{im}(\alpha) \neq \emptyset$. If we take any $\beta \in \mathcal{P}_{n}$ with dom $(\beta)=X_{n} \backslash \operatorname{im}(\alpha)$, then it follows from Lemma 2.1 that α is a left zero divisor.

Since, for every $\alpha \in \mathcal{S}_{n},|\operatorname{im}(\alpha \beta)|=|\operatorname{im}(\beta)|$ for all $\beta \in \mathcal{P}_{n}$, it follows that $\alpha \beta=\theta$ if and only if $\beta=\theta$, the zero element of \mathcal{P}_{n}. Thus, the permutations on X_{n} are not left zero divisors. Therefore, $|L|=\left|\mathcal{P}_{n}\right|-\left|\mathcal{S}_{n}\right|=(n+1)^{n}-n!$, as required.

Since, for any $\alpha, \beta \in \mathcal{P}_{n}, \operatorname{im}(\beta \alpha)=[\operatorname{im}(\beta) \cap \operatorname{dom}(\alpha)] \alpha$, we also have immediate lemma.

Lemma 2.3 For $\alpha, \beta \in \mathcal{P}_{n}, \beta \alpha=\theta$ if and only if $\operatorname{im}(\beta) \cap \operatorname{dom}(\alpha)=\emptyset$.

Lemma 2.4 For $n \geq 1$, let R be the set of right zero-divisors of \mathcal{P}_{n}. Then we have

$$
R=\mathcal{P}_{n} \backslash \mathcal{T}_{n} \quad \text { and } \quad|R|=(n+1)^{n}-n^{n}
$$

Proof For any $\alpha \in \mathcal{P}_{n} \backslash \mathcal{T}_{n}$, notice that $X_{n} \backslash \operatorname{dom}(\alpha) \neq \emptyset$. If we take any $\beta \in \mathcal{P}_{n}$ with $\operatorname{im}(\beta)=X_{n} \backslash \operatorname{dom}(\alpha)$, then it follows from Lemma 2.3 that α is a right zero divisor.

Since, for every $\alpha \in \mathcal{T}_{n}, \operatorname{dom}(\beta \alpha)=\operatorname{dom}(\beta)$ for all $\beta \in \mathcal{P}_{n}$, it follows that $\beta \alpha=\theta$ if and only if $\beta=\theta$. Thus, the full transformations on X_{n} are not right zero divisors. Therefore, $|R|=\left|\mathcal{P}_{n}\right|-\left|\mathcal{T}_{n}\right|=(n+1)^{n}-n^{n}$, as required.

Since $\mathcal{S}_{n} \subseteq \mathcal{T}_{n} \subseteq \mathcal{P}_{n}$, it follows that $R \subseteq L$. Thus we have the following corollary.
Corollary 2.5 For $n \geq 1$, let T be the set of zero-divisors of \mathcal{P}_{n}. Then we have

$$
T=R=\mathcal{P}_{n} \backslash \mathcal{T}_{n} \quad \text { and } \quad|T|=(n+1)^{n}-n^{n}
$$

3. Zero-divisor graph of \mathcal{P}_{n}

Let $G=(V(G), E(G))$ be an undirected graph, $V(G)$ denotes vertex set of G and $E(G)$ denotes the edge set of G. If G does not have any loops and multiple edges, then G is called a simple graph. We consider simple graphs for the following definitions. Two vertices u and v of G are said to be connected if there is a path from u to v. If u and v connected for every $u, v \in V(G)$, then G is called a connected graph. Let $u, v \in V(G)$, the length of the shortest path between u and v is denoted by $d_{G}(u, v)$.

The diameter of G is denoted by $\operatorname{diam}(G)$ and defined by

$$
\operatorname{diam}(G)=\max \left\{d_{G}(u, v) \mid u, v \in V(G)\right\}
$$

Let $v \in V(G)$ then the degree of a vertex is denoted by $\operatorname{deg}_{G}(v)$ and it is the number of adjacent vertices to v in $G . \Delta(G)$ shows that the maximum degree and $\delta(G)$ shows that the minimum degree among all the degrees in G.

Let $\emptyset \neq D \subseteq V(G)$, for each vertex of G if the vertex in D or the vertex is adjacent to any vertex in D then D is called a dominating set for G. The domination number of G is

$$
\min \{|D| \mid D \text { is a dominating set of } G\}
$$

and this number is denoted by $\gamma(G)$. The length of the shortest cycle in G is called girth of G and it is denoted by $\operatorname{gr}(G)$, if G does not contain any cycles then its girth is defined to be infinity.

Let $\emptyset \neq C \subseteq V(G)$, if u and v are adjacent vertices for all $u, v \in C$ in G, then C is called a clique. The number of all the vertices in any maximal clique of G is called clique number of G and it is denoted by $\omega(G)$. The chromatic number of G is defined by the number of the minimum number of colours required to colour of the all vertices G with the rule no two adjacent vertices have the same colour, and it is denoted by $\chi(G)$.

Let G be a graph with n vertices, if every vertex is adjacent to each other vertices, then G is called a complete graph and it is denoted by K_{n}.

Let $V^{\prime} \subseteq V(G)$. The (vertex) induced subgraph $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ is a subgraph of G and its vertex set is V^{\prime}, furthermore, its edge set consists of all of the edges in $E(G)$ that have both endpoints in V^{\prime}.

In this section, we prove that $\Gamma\left(\mathcal{P}_{n}\right)$ is a connected graph and find the diameter, girth, domination number, the vertex degrees, and give lower bounds for clique number and chromatic number of $\Gamma\left(\mathcal{P}_{n}\right)$ for $n \geq 3$. In this paper, we use Γ instead of $\Gamma\left(\mathcal{P}_{n}\right)$ for convenience.

Let $T^{*}=T \backslash\{\theta\}$, then we have $V(\Gamma)=T^{*}$ from definitions. It follows from Lemmas 2.1 and 2.3α is adjacent to β if and only if $\operatorname{im}(\alpha) \subseteq \operatorname{codom}(\beta)$ and $\operatorname{im}(\beta) \subseteq \operatorname{codom}(\alpha)$.

TOKER/Turk J Math

Lemma 3.1Γ is a connected graph for $n \geq 3$.
Proof For $n \geq 3$, let $\gamma_{i} \in \mathcal{P}_{n}$ such that $\operatorname{dom}\left(\gamma_{i}\right)=\{i\}$ and $i \gamma_{i}=i$ for $1 \leq i \leq n$, then it is clear that $\gamma_{i} \in V(\Gamma)$ for $1 \leq i \leq n$. Let G be an induced subgraph of Γ induced by the vertex set $\left\{\gamma_{1}, \gamma_{2}, \ldots, \gamma_{n}\right\}$. Then it is clear that $G=K_{n}$. For $\alpha \in V(\Gamma) \backslash\left\{\gamma_{1}, \gamma_{2}, \ldots, \gamma_{n}\right\}$, there exists at least one $i \in \operatorname{codom}(\alpha)$.

Case 1: If $i \notin \operatorname{im}(\alpha)$, then $\alpha \gamma_{i}=\gamma_{i} \alpha=\theta$.
Case 2: If $i \in \operatorname{im}(\alpha)$, then $i \alpha^{-1} \neq \emptyset$. So, in this case, we can write

$$
\alpha=\left(\begin{array}{ccccc}
A_{1} & A_{2} & \ldots & A_{r} & A_{r+1} \\
i & a_{2} & \ldots & a_{r} & -
\end{array}\right)
$$

where $\operatorname{im}(\alpha)=\left\{i=a_{1}, a_{2}, \ldots, a_{r}\right\}, A_{k}=a_{k} \alpha^{-1}$ for $1 \leq k \leq r$ and $A_{r+1}=\operatorname{codom}(\alpha)$. If $r \geq 2$, then we take

$$
\beta=\left(\begin{array}{cc}
X_{n} \backslash\left\{i, a_{2}, \ldots, a_{r}\right\} & \left\{i, a_{2}, \ldots, a_{r}\right\} \\
i & -
\end{array}\right)
$$

then we have $\beta \in V(\Gamma)$ and $\alpha \beta=\beta \alpha=\theta$. Moreover, $\beta \gamma_{a_{2}}=\gamma_{a_{2}} \beta=\theta$. So, in this case, we have a path in Γ such that $\alpha-\beta-\gamma_{a_{2}}$ where $\gamma_{a_{2}} \in V(G)$. In other case, we can write

$$
\alpha=\left(\begin{array}{cc}
A_{1} & A_{2} \\
i & -
\end{array}\right)
$$

so, $i \in A_{2}$ since $i \in \operatorname{codom}(\alpha)$. There exists $j \in X_{n}$ such that $i \neq j$, moreover, $X_{n} \backslash\{i, j\} \neq \emptyset$ since $n \geq 3$. Let

$$
\beta=\left(\begin{array}{cc}
X_{n} \backslash\{i, j\} & \{i, j\} \\
i & -
\end{array}\right)
$$

Then we have $\beta \in V(\Gamma)$ and $\alpha \beta=\beta \alpha=\theta$. Moreover, $\beta \gamma_{j}=\gamma_{j} \beta=\theta$. So, in this case, we have a path in Γ such that $\alpha-\beta-\gamma_{j}$ where $\gamma_{j} \in V(G)$. It follows that Γ is a connected graph.

Lemma 3.2 $\operatorname{diam}(\Gamma)=4$ for $n \geq 3$.
Proof Let $n \geq 3$ and $\alpha, \beta \in V(\Gamma)$. Then we have

$$
\alpha=\left(\begin{array}{ccccc}
A_{1} & A_{2} & \cdots & A_{r} & A_{r+1} \\
a_{1} & a_{2} & \cdots & a_{r} & -
\end{array}\right), \beta=\left(\begin{array}{ccccc}
B_{1} & B_{2} & \cdots & B_{k} & B_{k+1} \\
b_{1} & b_{2} & \cdots & b_{k} & -
\end{array}\right)
$$

where $a_{i}, b_{j} \in X_{n}$ for $1 \leq i \leq r$ and $1 \leq j \leq k, 1 \leq r \leq n-1$ and $1 \leq k \leq n-1,\left\{A_{1}, A_{2}, \ldots, A_{r+1}\right\}$ is a partition of X_{n} and $\left\{B_{1}, B_{2}, \ldots, B_{k+1}\right\}$ is a partition of X_{n}. Firstly we will show that $d_{\Gamma}(\alpha, \beta) \leq 4$. Let $Y=\left\{a_{1}, a_{2}, \ldots, a_{r}\right\} \cup\left\{b_{1}, b_{2}, \ldots, b_{k}\right\}$.

Case 1: If $Y \neq X_{n}$ and $A_{r+1} \cap B_{k+1} \neq \emptyset$. Then there exists $z, t \in X_{n}$ such that $z \in X_{n} \backslash Y$ and $t \in A_{r+1} \cap B_{k+1}$. Let

$$
\gamma=\left(\begin{array}{cc}
z & X_{n} \backslash\{z\} \\
t & -
\end{array}\right)
$$

It is clear that $\gamma \in V(\Gamma)$ and $\alpha-\gamma-\beta$ in Γ.

Case 2: If $Y=X_{n}$ and $A_{r+1} \cap B_{k+1} \neq \emptyset$. There exists $x, y \in X_{n}$ such that $x \in\left\{b_{1}, b_{2}, \ldots, b_{k}\right\} \backslash$ $\left\{a_{1}, a_{2}, \ldots, a_{r}\right\}$ and $y \in\left\{a_{1}, a_{2}, \ldots, a_{r}\right\} \backslash\left\{b_{1}, b_{2}, \ldots, b_{k}\right\}$ since $1 \leq r \leq n-1,1 \leq k \leq n-1$ and $Y=X_{n}$. So we have $x \neq y$ and there exists $z \in X_{n}$ such that $z \in X_{n} \backslash\{x, y\}$ since $n \geq 3$. Let $t \in A_{r+1} \cap B_{k+1}$. Let

$$
\lambda_{1}=\left(\begin{array}{cc}
x & X_{n} \backslash\{x\} \\
t & -
\end{array}\right), \lambda_{2}=\left(\begin{array}{cc}
y & X_{n} \backslash\{y\} \\
t & -
\end{array}\right), \lambda_{3}=\left(\begin{array}{cc}
X_{n} \backslash\{t\} & t \\
z & -
\end{array}\right) .
$$

Then it is clear that $\lambda_{1}, \lambda_{2}, \lambda_{3} \in V(\Gamma)$. If $t \notin\{x, y\}$, then $\alpha-\lambda_{1}-\lambda_{2}-\beta$ in Γ. If $t \in\{x, y\}$, then $\alpha-\lambda_{1}-\lambda_{3}-\lambda_{2}-\beta$ in Γ.

Case 3: If $Y \neq X_{n}$ and $A_{r+1} \cap B_{k+1}=\emptyset$. There exists $z \in X_{n}$ such that $z \in X_{n} \backslash Y$. Let $x \in A_{r+1}$, $y \in B_{k+1}$ and $t \in X_{n} \backslash\{z\}$. Let

$$
\lambda_{1}=\left(\begin{array}{cc}
z & X_{n} \backslash\{z\} \\
x & -
\end{array}\right), \lambda_{2}=\left(\begin{array}{cc}
z & X_{n} \backslash\{z\} \\
y & -
\end{array}\right), \lambda_{3}=\left(\begin{array}{cc}
X_{n} \backslash\{x, y\} & \{x, y\} \\
t & -
\end{array}\right) .
$$

Then it is clear that $\lambda_{1}, \lambda_{2}, \lambda_{3} \in V(\Gamma)$. If $z \notin\{x, y\}$, then $\alpha-\lambda_{1}-\lambda_{2}-\beta$ in Γ. If $z \in\{x, y\}$, then $\alpha-\lambda_{1}-\lambda_{3}-\lambda_{2}-\beta$ in Γ.

Case 4: If $Y=X_{n}$ and $A_{r+1} \cap B_{k+1}=\emptyset$. There exists $x, y \in X_{n}$ such that $x \in\left\{b_{1}, b_{2}, \ldots, b_{k}\right\} \backslash$ $\left\{a_{1}, a_{2}, \ldots, a_{r}\right\}$ and $y \in\left\{a_{1}, a_{2}, \ldots, a_{r}\right\} \backslash\left\{b_{1}, b_{2}, \ldots, b_{k}\right\}$ since $1 \leq r \leq n-1,1 \leq k \leq n-1$ and $Y=X_{n}$. So we have $x \neq y$ and there exists $z \in X_{n}$ such that $z \in X_{n} \backslash\{x, y\}$ since $n \geq 3$. Let $a \in A_{r+1}$ and $b \in B_{k+1}$. Then $a \neq b$ since $A_{r+1} \cap B_{k+1}=\emptyset$. Let

$$
\lambda_{1}=\left(\begin{array}{cc}
x & X_{n} \backslash\{x\} \\
a & -
\end{array}\right), \lambda_{2}=\left(\begin{array}{cc}
y & X_{n} \backslash\{y\} \\
b & -
\end{array}\right) .
$$

Then it is clear that $\lambda_{1}, \lambda_{2} \in V(\Gamma)$. If $x \neq b$ and $y \neq a$, then $\alpha-\lambda_{1}-\lambda_{2}-\beta$ in Γ. If $x=b$, then we take

$$
\lambda_{3}=\left(\begin{array}{cc}
X_{n} \backslash\{x, a\} & \{x, a\} \\
z & -
\end{array}\right) .
$$

Then it is clear that $\lambda_{3} \in V(\Gamma)$ and $\alpha-\lambda_{1}-\lambda_{3}-\lambda_{2}-\beta$ in Γ. If $y=a$, then we take

$$
\lambda_{4}=\left(\begin{array}{cc}
X_{n} \backslash\{y, b\} & \{y, b\} \\
z & -
\end{array}\right) .
$$

Then it is clear that $\lambda_{4} \in V(\Gamma)$ and $\alpha-\lambda_{1}-\lambda_{4}-\lambda_{2}-\beta$ in Γ.
So we have concluded that $d_{\Gamma}(\alpha, \beta) \leq 4$ for all cases. Let

$$
\alpha_{1}=\left(\begin{array}{ccccc}
1 & 2 & \cdots & n-1 & n \\
1 & 2 & \cdots & n-1 & -
\end{array}\right), \beta_{1}=\left(\begin{array}{ccccc}
1 & 2 & \cdots & n-1 & n \\
2 & 3 & \cdots & n & -
\end{array}\right) .
$$

α_{1} and β_{1} are not adjacent vertices in Γ. Moreover, α_{1} has only one adjacent vertex in Γ which is $\mu_{1}=$ $\left(\begin{array}{cc}n & X_{n} \backslash\{n\} \\ n & -\end{array}\right)$, similarly β_{1} has only one adjacent vertex in Γ which is $\mu_{2}=\left(\begin{array}{cc}1 & X_{n} \backslash\{1\} \\ n & -\end{array}\right)$. So we have $\mu_{1} \neq \mu_{2}$, moreover, μ_{1} and μ_{2} are not adjacent vertices in Γ, thus $d_{\Gamma}\left(\alpha_{1}, \beta_{1}\right)=4$. It follows that diam $(\Gamma)=4$ for $n \geq 3$.

TOKER/Turk J Math

Theorem 3.3 $\operatorname{gr}(\Gamma)=3$ for $n \geq 3$.
Proof First of all, since Γ is a simple graph $\operatorname{gr}(\Gamma) \geq 3$. For $n \geq 3$, let $\gamma_{i} \in \mathcal{P}_{n}$ such that dom $\left(\gamma_{i}\right)=\{i\}$ and $i \gamma_{i}=i$ for $1 \leq i \leq n$, then it is clear that $\gamma_{i} \in V(\Gamma)$ for $1 \leq i \leq n$. Then we have a cycle such that $\gamma_{1}-\gamma_{2}-\gamma_{3}-\gamma_{1}$, it follows that $\operatorname{gr}(\Gamma)=3$ for $n \geq 3$.

Theorem 3.4 For $n \geq 3$, let $\alpha \in V(\Gamma)$. If $r=|i m(\alpha)|$ and $k=|\operatorname{codom}(\alpha)|$, then

$$
\operatorname{deg}_{\Gamma}(\alpha)= \begin{cases}(k+1)^{(n-r)}-1 & \text { if } \operatorname{im}(\alpha) \nsubseteq \operatorname{codom}(\alpha) \\ (k+1)^{(n-r)}-2 & \text { if } \operatorname{im}(\alpha) \subseteq \operatorname{codom}(\alpha)\end{cases}
$$

Proof For $n \geq 3$, let $\alpha \in V(\Gamma), r=|\operatorname{im}(\alpha)|$ and $k=|\operatorname{codom}(\alpha)|$. For any $\beta \in \mathcal{P}_{n}$ suppose that $\alpha \beta=\theta=\beta \alpha$. It follows from Lemma 2.1 that $\operatorname{im}(\beta) \subseteq \operatorname{codom}(\alpha)$ and $\operatorname{im}(\alpha) \subseteq \operatorname{codom}(\beta)$. If $\operatorname{im}(\alpha) \nsubseteq \operatorname{codom}(\alpha)$, then we have $\alpha^{2} \neq \theta$, so $\beta \neq \alpha$. Moreover, we have if $x \in \operatorname{im}(\alpha)$, then $x \in \operatorname{codom}(\beta)$ and if $x \in X_{n} \backslash \operatorname{im}(\alpha)$, then $x \beta \in \operatorname{codom}(\alpha)$ or $x \in \operatorname{codom}(\beta)$. So we have $k+1$ different choice for $\forall x \in X_{n} \backslash \operatorname{im}(\alpha)$ since $k=|\operatorname{codom}(\alpha)|$. However, if $x \in \operatorname{codom}(\beta)$ for $\forall x \in X_{n} \backslash \operatorname{im}(\alpha)$, then $\beta=\theta \notin V(\Gamma)$. It follows that, $\operatorname{deg}_{\Gamma}(\alpha)=(k+1)^{(n-r)}-1$ since $\left|X_{n} \backslash \operatorname{im}(\alpha)\right|=n-r$. If $\operatorname{im}(\alpha) \subseteq \operatorname{codom}(\alpha)$, then we have $\alpha^{2}=\theta$, so if we take $\beta=\alpha$, then $\alpha \beta=\theta=\beta \alpha$. So from the definition of vertex degree we have $\operatorname{deg}_{\Gamma}(\alpha)=\left((k+1)^{(n-r)}-1\right)-1=(k+1)^{(n-r)}-2$.

For $n \geq 3$, if we consider $\alpha \in V(\Gamma)$ such that $|\operatorname{im}(\alpha)|=n-1$ and $|\operatorname{codom}(\alpha)|=1$, then we have $\operatorname{im}(\alpha) \nsubseteq \operatorname{codom}(\alpha)$ and so $\operatorname{deg}_{\Gamma}(\alpha)=1$ from Theorem 3.4. If we consider $\beta \in V(\Gamma)$ such that $|\operatorname{im}(\beta)|=r$ and $|\operatorname{codom}(\beta)|=k$, then it is clear that $1 \leq r \leq n-1$ and $1 \leq k \leq n-1$. For the maximum degree, we take
 Thus we have the following immediate corollary.

Corollary $3.5 \Delta(\Gamma)=n^{(n-1)}-1$ and $\delta(\Gamma)=1$ for $n \geq 3$.

Theorem 3.6 $\gamma(\Gamma)=n^{2}$ for $n \geq 3$.
Proof For $n \geq 3$, let $\alpha_{i j} \in \mathcal{P}_{n}$ such that $\operatorname{dom}\left(\alpha_{i j}\right)=\{i\}$ and $i \alpha_{i j}=j$ for $1 \leq i \leq n, 1 \leq j \leq n$. We have $\alpha_{i j} \in V(\Gamma)$. Let

$$
\mathcal{A}=\left\{\alpha_{i j} \mid 1 \leq i \leq n \text { and } 1 \leq j \leq n\right\}
$$

then it is clear that $|\mathcal{A}|=n^{2}$. If $i=j$ then $\operatorname{deg}_{\Gamma}\left(\alpha_{i j}\right)=n^{n-1}-1$ and if $i \neq j$ then $\operatorname{deg}_{\Gamma}\left(\alpha_{i j}\right)=n^{n-1}-2$. Let $X_{n} \backslash\{i\}=\left\{i_{1}, i_{2}, \ldots, i_{n-1}\right\}$ with $i_{1}<i_{2}<\ldots<i_{n-1}$ and $X_{n} \backslash\{j\}=\left\{j_{1}, j_{2}, \ldots, j_{n-1}\right\}$ with $j_{1}<j_{2}<\ldots<$ j_{n-1}. For $1 \leq i \leq n, 1 \leq j \leq n$, let $\beta_{i j} \in \mathcal{P}_{n}$ such that $\operatorname{codom}\left(\beta_{i j}\right)=\{j\}$ and $j_{k} \beta_{i j}=i_{k}$ for $1 \leq k \leq n-1$. Then we have $\beta_{i j} \in V(\Gamma)$ and $\operatorname{deg}_{\Gamma}\left(\beta_{i j}\right)=1$. Let

$$
\mathcal{B}=\left\{\beta_{i j} \mid 1 \leq i \leq n \text { and } 1 \leq j \leq n\right\}
$$

Then we have $|\mathcal{B}|=n^{2}$, moreover, \mathcal{A} and \mathcal{B} are disjoint sets. In $\Gamma, \beta_{i j}$ has only one adjacent vertex which is $\alpha_{i j}$ for $1 \leq i \leq n, 1 \leq j \leq n$. It follows that $\gamma(\Gamma) \geq n^{2}$ from the pigeonhole principle. Let $\alpha \in V(\Gamma) \backslash \mathcal{A}$. Then there exist $i, j \in X_{n}$ such that $i \in X_{n} \backslash \operatorname{im}(\alpha)$ and $j \in \operatorname{codom}(\alpha)$. We have α and $\alpha_{i j}$ are adjacent vertices

TOKER/Turk J Math

in Γ. Thus \mathcal{A} is a dominating set for Γ. We have $\gamma(\Gamma) \geq n^{2}, \mathcal{A}$ is a dominating set for Γ and $|\mathcal{A}|=n^{2}$. So $\gamma(\Gamma)=n^{2}$ for $n \geq 3$.

We have $\omega(\Gamma) \geq n$ from the proof of Lemma 3.1. In the following theorem, we give better lower bound for clique number of Γ for $n \geq 3$.

Theorem 3.7 If $n \geq 3$, then $\omega(\Gamma) \geq(r+1)^{n-r}-1$ for $1 \leq r \leq n-1$.
Proof Let $n \geq 3$ and $A=\left\{x_{1}, x_{2}, \ldots, x_{r}\right\} \subseteq X_{n}$ for $1 \leq r \leq n-1$. Let

$$
B=\left\{\alpha \in \mathcal{P}_{n} \mid A \subseteq \operatorname{codom}(\alpha) \text { and } \emptyset \neq \operatorname{im}(\alpha) \subseteq A\right\}
$$

It is clear that $B \neq \emptyset$ and if $\alpha \in B$, then $\alpha \in V(\Gamma)$. Let $\alpha_{1}, \alpha_{2} \in B$ and $\alpha_{1} \neq \alpha_{2}$, then we have $\operatorname{im}\left(\alpha_{1}\right) \subseteq A \subseteq \operatorname{codom}\left(\alpha_{2}\right)$ and $\operatorname{im}\left(\alpha_{2}\right) \subseteq A \subseteq \operatorname{codom}\left(\alpha_{1}\right)$, so α_{1} and α_{2} adjacent vertices in Γ from Lemma 2.1. Let G be an induced subgraph of Γ induced by the vertex set B, then we have G is a complete graph. Moreover $|B|=(r+1)^{n-r}-1$. Thus for $n \geq 3, \omega(\Gamma) \geq(r+1)^{n-r}-1$ for $1 \leq r \leq n-1$.

For any graph G, it is known that $\chi(G) \geq \omega(G)$ (see Corollary 6.2 in [3]), so we have the following corollary.

Corollary 3.8 If $n \geq 3$, then $\chi(\Gamma) \geq(r+1)^{n-r}-1$ for $1 \leq r \leq n-1$.

Example 3.9 Let $\Gamma=\Gamma\left(\mathcal{P}_{5}\right)$, then Γ is a connected graph, $|V(\Gamma)|=4650$, $\operatorname{diam}(\Gamma)=4, \operatorname{gr}(\Gamma)=3$, $\Delta(\Gamma)=624, \delta(\Gamma)=1, \gamma(\Gamma)=25, \omega(\Gamma) \geq 26$ and $\chi(\Gamma) \geq 26$. Moreover, if $\alpha=\left(\begin{array}{ccccc}1 & 2 & 3 & 4 & 5 \\ - & - & 5 & - & 2\end{array}\right)$, then $\alpha \in V(\Gamma)$ and $\operatorname{deg}_{\Gamma}(\alpha)=63$.

Acknowledgment

We would like to thank anonymous referees for the comments and suggestions, which significantly contributed to improving the quality of the publication.

References

[1] Anderson DF, Livingston PS. The zero-divisor graph of a commutative ring. Journal of Algebra 1999; 217 (2): 434-447.
[2] Beck I. Coloring of commutative rings. Journal of Algebra 1988; 116 (1): 208-226.
[3] Chartrand G, Zhang P. Chromatic Graph Theory. Boca Raton, FL, USA: CRC Press, 2009.
[4] Das KC, Akgüneş N, Çevik AS. On a graph of monogenic semigroup. Journal of Inequalities and Applications 2013; 44: 1-13.
[5] DeMeyer F, DeMeyer L. Zero divisor graphs of semigroups. Journal of Algebra 2005; 283 (1): 190-198.
[6] DeMeyer F, McKenzie T, Schneider K. The zero-divisor graph of a commutative semigroup. Semigroup Forum 2002; 65 (2): 206-214.
[7] Ganyushkin O, Mazorchuk V. Classical Finite Transformation Semigroups. London, UK: Springer-Verlag, 2009.
[8] Howie JM. Fundamentals of Semigroup Theory. New York, NY, USA: Oxford University Press, 1995.
[9] Redmond SP. The zero-divisor graph of a non-commutative ring. International Journal of Commutative Rings 2002; 1 (4): 203-211.
[10] Thulasiraman K, Arumugam S, Brandstädt A, Nishizeki T. Handbook of Graph Theory, Combinatorial Optimization, and Algorithms. Boca Raton, CRC Press, 2015.
[11] Toker K. On the zero-divisor graphs of finite free semilattices. Turkish Journal of Mathematics 2016; 40 (4): 824-831.
[12] Toker K. Zero-divisor graphs of Catalan monoid. Hacettepe Journal of Mathematics and Statistics 2021; 50 (2): 387-396.

[^0]: *Correspondence: ktoker@harran.edu.tr
 2010 AMS Mathematics Subject Classification: 20M20, 97K30.

