
Turk J Math
(2021) 45: 2323 – 2330
© TÜBİTAK
doi:10.3906/mat-2012-94

Turkish Journal of Mathematics

http :// journa l s . tub i tak .gov . t r/math/

Research Article

Zero-divisor graphs of partial transformation semigroups

Kemal TOKER∗

Department of Mathematics, Faculty of Science and Literature, Harran University, Şanlıurfa, Turkey

Received: 28.12.2020 • Accepted/Published Online: 01.09.2021 • Final Version: 16.09.2021

Abstract: Let Pn be the partial transformation semigroup on Xn = {1, 2, . . . , n} . In this paper, we find the left zero-
divisors, right zero-divisors and two sided zero-divisors of Pn , and their numbers. For n ≥ 3 , we define an undirected
graph Γ(Pn) associated with Pn whose vertices are the two sided zero-divisors of Pn excluding the zero element θ of Pn

with distinct two vertices α and β joined by an edge in case αβ = θ = βα . First, we prove that Γ(Pn) is a connected
graph, and find the diameter, girth, domination number and the degrees of the all vertices of Γ(Pn) . Furthermore, we
give lower bounds for clique number and chromatic number of Γ(Pn) .
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1. Introduction
In 1988, the zero-divisor graphs on commutative rings were defined by Beck [2]. However, the zero element is
a vertex in the zero-divisor graph within Beck’s definition, later the standard definition of zero-divisor graphs
on commutative rings was given by Anderson and Livingston [1]. Let R be a commutative ring and let Z(R)

be the set of the zero-divisors of R . The zero-divisor graph of R is defined by an undirected graph Γ(R) with
vertices Z(R) \ {0} , where distinct vertices x and y of Γ(R) are adjacent if and only if xy = 0 . Demeyer et al.
have considered this definition for commutative semigroups and they defined and found some basic properties
of the zero-divisor graph of a commutative semigroup with zero [5, 6]. There are some papers about zero-divisor
graphs on some classes of commutative semigroups [4, 11]. For noncommutative rings, a directed zero-divisor
graph and some undirected zero-divisor graphs were defined by Redmond [9]. Suppose that R is a ring, let
ZR(T ) be the set of all two sided zero-divisor elements of R . Then Redmond defined an undirected zero-divisor
graph Γ(R) with vertices ZR(T ) \ {0} , where distinct vertices x and y are adjacent with a single edge if and
only if xy = 0 = yx . If R is a noncommutative ring, then Γ(R) does not need to be connected and if R is a
commutative ring then Γ(R) coincide with the standard zero-divisor graph of R . Furthermore, these definitions
can be considered for noncommutative semigroups with zero. Recently, some properties of zero-divisor graphs
of Catalan monoids have been researched in [12].

Suppose that Xn = {1, 2, . . . , n} is a finite set. Let Pn ,Tn and Sn be the partial transformation
semigroup, the full transformation semigroup and the symmetric group on Xn , respectively. Let α ∈ Pn ,
the domain of α denoted by dom (α) and image of α denoted by im(α) , moreover, codomain of α is the
complement of dom (α) and it is denoted by codom (α) .
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Let θ ∈ Pn such that dom (θ) = ∅ and let α be any element of Pn then it is clear that θα = θ = αθ , so
θ is the zero element of Pn . Furthermore, Pn is a noncommutative semigroup for n ≥ 2 .

For n ≥ 2 , let P∗
n = Pn \ {θ} . Then we define the following sets

L = L(Pn) = {α ∈ Pn | αβ = θ for some β ∈ P∗
n},

R = R(Pn) = {α ∈ Pn | γα = θ for some γ ∈ P∗
n} and

T = T (Pn) = {α ∈ Pn | αβ = θ = γα for some β, γ ∈ P∗
n} = L ∩R

which are called the set of left zero-divisors, right zero-divisors and two sided zero-divisors of Pn , respectively. It
is known that |Pn| = (n+ 1)

n , |Tn| = nn and |Sn| = n! for n ∈ Z+ . In this paper we find the left zero-divisors,
right zero-divisors and zero-divisors of Pn , and then their numbers.

For a semigroup S with (zero) 0 if T (S)\{0} ̸= ∅ where T (S) = {z ∈ S | zx = 0 = yz for x, y ∈ S\{0}} ,
then we similarly define the (undirected) zero-divisor graph Γ(S) associated with S whose the set of vertices is
T (S) \ {0} with distinct two vertices joined by an edge in case xy = 0 = yx for some x, y ∈ T (S) \ {0} . Notice
that θ ∈ T (Pn) for all n ≥ 1 . In this paper, we prove that Γ(Pn) is a connected graph and find the diameter,
girth, the degrees of all vertices, lower bounds for clique number and chromatic number of Γ(Pn) for n ≥ 3 .

For semigroup terminology see [7, 8] and for graph theoretical terminology see [10].

2. Zero-divisors of Pn

In this section, we find the left zero-divisors, right zero-divisors and two-sided zero-divisors of Pn and their
numbers.

Since, for any α, β ∈ Pn , it is well-known that dom (αβ) = [im(α) ∩ dom (β)]α−1 and im(αβ) =

[im(α) ∩ dom (β)]β (see Proposition 1.4.3 in [8]), we can write the following immediate result.

Lemma 2.1 If α, β ∈ Pn , then αβ = θ ⇐⇒ im(α) ⊆ codom (β) . In particular, α2 = θ ⇐⇒
im(α) ⊆ codom (α) .

Lemma 2.2 For n ≥ 1 , let L be the set of left zero-divisors of Pn . Then we have

L = Pn \ Sn and |L| = (n+ 1)n − n!.

Proof For any α ∈ Pn \ Sn , notice that Xn \ im(α) ̸= ∅ . If we take any β ∈ Pn with dom (β) = Xn \ im(α) ,
then it follows from Lemma 2.1 that α is a left zero divisor.

Since, for every α ∈ Sn , |im(αβ)| = |im(β)| for all β ∈ Pn , it follows that αβ = θ if and only
if β = θ , the zero element of Pn . Thus, the permutations on Xn are not left zero divisors. Therefore,
|L| = |Pn| − |Sn| = (n+ 1)n − n! , as required. 2

Since, for any α, β ∈ Pn , im(βα) = [im(β) ∩ dom (α)]α , we also have immediate lemma.

Lemma 2.3 For α, β ∈ Pn , βα = θ if and only if im(β) ∩ dom (α) = ∅ .

Lemma 2.4 For n ≥ 1 , let R be the set of right zero-divisors of Pn . Then we have

R = Pn \ Tn and |R| = (n+ 1)n − nn.
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Proof For any α ∈ Pn \Tn , notice that Xn \dom (α) ̸= ∅ . If we take any β ∈ Pn with im(β) = Xn \dom (α) ,
then it follows from Lemma 2.3 that α is a right zero divisor.

Since, for every α ∈ Tn , dom (βα) = dom (β) for all β ∈ Pn , it follows that βα = θ if and only if β = θ .
Thus, the full transformations on Xn are not right zero divisors. Therefore, |R| = |Pn| − |Tn| = (n+1)n − nn ,
as required. 2

Since Sn ⊆ Tn ⊆ Pn , it follows that R ⊆ L . Thus we have the following corollary.

Corollary 2.5 For n ≥ 1 , let T be the set of zero-divisors of Pn . Then we have

T = R = Pn \ Tn and |T | = (n+ 1)n − nn.

3. Zero-divisor graph of Pn

Let G = (V (G), E(G)) be an undirected graph, V (G) denotes vertex set of G and E(G) denotes the edge set
of G . If G does not have any loops and multiple edges, then G is called a simple graph. We consider simple
graphs for the following definitions. Two vertices u and v of G are said to be connected if there is a path from
u to v . If u and v connected for every u, v ∈ V (G) , then G is called a connected graph. Let u, v ∈ V (G) , the
length of the shortest path between u and v is denoted by dG(u, v) .

The diameter of G is denoted by diam(G) and defined by

diam(G) = max{dG(u, v) | u, v ∈ V (G)}.

Let v ∈ V (G) then the degree of a vertex is denoted by degG(v) and it is the number of adjacent vertices
to v in G . ∆(G) shows that the maximum degree and δ(G) shows that the minimum degree among all the
degrees in G .

Let ∅ ̸= D ⊆ V (G) , for each vertex of G if the vertex in D or the vertex is adjacent to any vertex in D

then D is called a dominating set for G . The domination number of G is

min{|D| | D is a dominating set of G}

and this number is denoted by γ(G) . The length of the shortest cycle in G is called girth of G and it is denoted
by gr(G) , if G does not contain any cycles then its girth is defined to be infinity.

Let ∅ ̸= C ⊆ V (G) , if u and v are adjacent vertices for all u, v ∈ C in G , then C is called a clique. The
number of all the vertices in any maximal clique of G is called clique number of G and it is denoted by ω(G) .
The chromatic number of G is defined by the number of the minimum number of colours required to colour of
the all vertices G with the rule no two adjacent vertices have the same colour, and it is denoted by χ(G) .

Let G be a graph with n vertices, if every vertex is adjacent to each other vertices, then G is called a
complete graph and it is denoted by Kn .

Let V ′ ⊆ V (G) . The (vertex) induced subgraph G′ = (V ′, E′) is a subgraph of G and its vertex set is
V ′ , furthermore, its edge set consists of all of the edges in E(G) that have both endpoints in V ′ .

In this section, we prove that Γ(Pn) is a connected graph and find the diameter, girth, domination
number, the vertex degrees, and give lower bounds for clique number and chromatic number of Γ(Pn) for
n ≥ 3 . In this paper, we use Γ instead of Γ(Pn) for convenience.

Let T ∗ = T \ {θ} , then we have V (Γ) = T ∗ from definitions. It follows from Lemmas 2.1 and 2.3 α is
adjacent to β if and only if im(α) ⊆ codom (β) and im(β) ⊆ codom (α) .
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Lemma 3.1 Γ is a connected graph for n ≥ 3 .

Proof For n ≥ 3 , let γi ∈ Pn such that dom (γi) = {i} and iγi = i for 1 ≤ i ≤ n , then it is clear that
γi ∈ V (Γ) for 1 ≤ i ≤ n . Let G be an induced subgraph of Γ induced by the vertex set {γ1, γ2, . . . , γn} . Then
it is clear that G = Kn . For α ∈ V (Γ) \ {γ1, γ2, . . . , γn} , there exists at least one i ∈ codom (α) .

Case 1: If i /∈ im(α) , then αγi = γiα = θ .
Case 2: If i ∈ im(α) , then iα−1 ̸= ∅ . So, in this case, we can write

α =

(
A1 A2 . . . Ar Ar+1

i a2 . . . ar −

)

where im(α) = {i = a1, a2, . . . , ar} , Ak = akα
−1 for 1 ≤ k ≤ r and Ar+1 = codom (α) . If r ≥ 2 , then we take

β =

(
Xn \ {i, a2, . . . , ar} {i, a2, . . . , ar}

i −

)
,

then we have β ∈ V (Γ) and αβ = βα = θ . Moreover, βγa2 = γa2β = θ . So, in this case, we have a path in Γ

such that α− β − γa2 where γa2 ∈ V (G) . In other case, we can write

α =

(
A1 A2

i −

)
,

so, i ∈ A2 since i ∈ codom (α) . There exists j ∈ Xn such that i ̸= j , moreover, Xn \ {i, j} ̸= ∅ since n ≥ 3 .
Let

β =

(
Xn \ {i, j} {i, j}

i −

)
.

Then we have β ∈ V (Γ) and αβ = βα = θ . Moreover, βγj = γjβ = θ . So, in this case, we have a path in Γ

such that α− β − γj where γj ∈ V (G) . It follows that Γ is a connected graph. 2

Lemma 3.2 diam(Γ) = 4 for n ≥ 3 .

Proof Let n ≥ 3 and α, β ∈ V (Γ) . Then we have

α =

(
A1 A2 · · · Ar Ar+1

a1 a2 · · · ar −

)
, β =

(
B1 B2 · · · Bk Bk+1

b1 b2 · · · bk −

)

where ai, bj ∈ Xn for 1 ≤ i ≤ r and 1 ≤ j ≤ k , 1 ≤ r ≤ n − 1 and 1 ≤ k ≤ n − 1 , {A1, A2, . . . , Ar+1} is
a partition of Xn and {B1, B2, . . . , Bk+1} is a partition of Xn . Firstly we will show that dΓ(α, β) ≤ 4 . Let
Y = {a1, a2, . . . , ar} ∪ {b1, b2, . . . , bk} .

Case 1: If Y ̸= Xn and Ar+1 ∩ Bk+1 ̸= ∅ . Then there exists z, t ∈ Xn such that z ∈ Xn \ Y and
t ∈ Ar+1 ∩Bk+1 . Let

γ =

(
z Xn \ {z}
t −

)
.

It is clear that γ ∈ V (Γ) and α− γ − β in Γ .
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Case 2: If Y = Xn and Ar+1 ∩ Bk+1 ̸= ∅ . There exists x, y ∈ Xn such that x ∈ {b1, b2, . . . , bk} \
{a1, a2, . . . , ar} and y ∈ {a1, a2, . . . , ar} \ {b1, b2, . . . , bk} since 1 ≤ r ≤ n− 1 , 1 ≤ k ≤ n− 1 and Y = Xn . So
we have x ̸= y and there exists z ∈ Xn such that z ∈ Xn \ {x, y} since n ≥ 3 . Let t ∈ Ar+1 ∩Bk+1 . Let

λ1 =

(
x Xn \ {x}
t −

)
, λ2 =

(
y Xn \ {y}
t −

)
, λ3 =

(
Xn \ {t} t

z −

)
.

Then it is clear that λ1, λ2, λ3 ∈ V (Γ) . If t /∈ {x, y} , then α − λ1 − λ2 − β in Γ . If t ∈ {x, y} , then
α− λ1 − λ3 − λ2 − β in Γ .

Case 3: If Y ̸= Xn and Ar+1 ∩ Bk+1 = ∅ . There exists z ∈ Xn such that z ∈ Xn \ Y . Let x ∈ Ar+1 ,
y ∈ Bk+1 and t ∈ Xn \ {z} . Let

λ1 =

(
z Xn \ {z}
x −

)
, λ2 =

(
z Xn \ {z}
y −

)
, λ3 =

(
Xn \ {x, y} {x, y}

t −

)
.

Then it is clear that λ1, λ2, λ3 ∈ V (Γ) . If z /∈ {x, y} , then α − λ1 − λ2 − β in Γ . If z ∈ {x, y} , then
α− λ1 − λ3 − λ2 − β in Γ .

Case 4: If Y = Xn and Ar+1 ∩ Bk+1 = ∅ . There exists x, y ∈ Xn such that x ∈ {b1, b2, . . . , bk} \
{a1, a2, . . . , ar} and y ∈ {a1, a2, . . . , ar} \ {b1, b2, . . . , bk} since 1 ≤ r ≤ n− 1 , 1 ≤ k ≤ n− 1 and Y = Xn . So
we have x ̸= y and there exists z ∈ Xn such that z ∈ Xn \ {x, y} since n ≥ 3 . Let a ∈ Ar+1 and b ∈ Bk+1 .
Then a ̸= b since Ar+1 ∩Bk+1 = ∅ . Let

λ1 =

(
x Xn \ {x}
a −

)
, λ2 =

(
y Xn \ {y}
b −

)
.

Then it is clear that λ1, λ2 ∈ V (Γ) . If x ̸= b and y ̸= a , then α− λ1 − λ2 − β in Γ . If x = b , then we take

λ3 =

(
Xn \ {x, a} {x, a}

z −

)
.

Then it is clear that λ3 ∈ V (Γ) and α− λ1 − λ3 − λ2 − β in Γ . If y = a , then we take

λ4 =

(
Xn \ {y, b} {y, b}

z −

)
.

Then it is clear that λ4 ∈ V (Γ) and α− λ1 − λ4 − λ2 − β in Γ .
So we have concluded that dΓ(α, β) ≤ 4 for all cases. Let

α1 =

(
1 2 · · · n− 1 n
1 2 · · · n− 1 −

)
, β1 =

(
1 2 · · · n− 1 n
2 3 · · · n −

)
.

α1 and β1 are not adjacent vertices in Γ . Moreover, α1 has only one adjacent vertex in Γ which is µ1 =(
n Xn \ {n}
n −

)
, similarly β1 has only one adjacent vertex in Γ which is µ2 =

(
1 Xn \ {1}
n −

)
. So we have

µ1 ̸= µ2 , moreover, µ1 and µ2 are not adjacent vertices in Γ , thus dΓ(α1, β1) = 4 . It follows that diam(Γ) = 4

for n ≥ 3 . 2
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Theorem 3.3 gr(Γ) = 3 for n ≥ 3 .

Proof First of all, since Γ is a simple graph gr(Γ) ≥ 3 . For n ≥ 3 , let γi ∈ Pn such that dom (γi) = {i}
and iγi = i for 1 ≤ i ≤ n , then it is clear that γi ∈ V (Γ) for 1 ≤ i ≤ n . Then we have a cycle such that
γ1 − γ2 − γ3 − γ1 , it follows that gr(Γ) = 3 for n ≥ 3 . 2

Theorem 3.4 For n ≥ 3 , let α ∈ V (Γ) . If r = |im(α)| and k = |codom (α)| , then

degΓ(α) =

 (k + 1)
(n−r) − 1 if im(α) ⊈ codom (α)

(k + 1)
(n−r) − 2 if im(α) ⊆ codom (α).

Proof For n ≥ 3 , let α ∈ V (Γ) , r = |im(α)| and k = |codom (α)| . For any β ∈ Pn suppose that αβ = θ = βα .
It follows from Lemma 2.1 that im(β) ⊆ codom (α) and im(α) ⊆ codom (β) . If im(α) ⊈ codom (α) , then we
have α2 ̸= θ , so β ̸= α . Moreover, we have if x ∈ im(α) , then x ∈ codom (β) and if x ∈ Xn \ im(α) , then
xβ ∈ codom (α) or x ∈ codom (β) . So we have k+1 different choice for ∀x ∈ Xn\ im(α) since k = |codom (α)| .

However, if x ∈ codom (β) for ∀x ∈ Xn\im(α) , then β = θ /∈ V (Γ) . It follows that, degΓ(α) = (k + 1)
(n−r)−1

since |Xn\im(α)| = n−r . If im(α) ⊆ codom (α) , then we have α2 = θ , so if we take β = α , then αβ = θ = βα .

So from the definition of vertex degree we have degΓ(α) = ((k + 1)
(n−r) − 1)− 1 = (k + 1)

(n−r) − 2 . 2

For n ≥ 3 , if we consider α ∈ V (Γ) such that |im(α)| = n − 1 and |codom (α)|= 1 , then we have
im(α) ⊈ codom (α) and so degΓ(α) = 1 from Theorem 3.4. If we consider β ∈ V (Γ) such that |im(β)| = r

and |codom (β)|= k , then it is clear that 1 ≤ r ≤ n− 1 and 1 ≤ k ≤ n− 1 . For the maximum degree, we take
k = n−1 and r = 1 . Moreover, let xβ = x for x ∈ dom (β) then im(β) ⊈ codom (β) , so degΓ(β) = n(n−1)−1 .
Thus we have the following immediate corollary.

Corollary 3.5 ∆(Γ) = n(n−1) − 1 and δ(Γ) = 1 for n ≥ 3 .

Theorem 3.6 γ(Γ) = n2 for n ≥ 3 .

Proof For n ≥ 3 , let αij ∈ Pn such that dom (αij) = {i} and iαij = j for 1 ≤ i ≤ n , 1 ≤ j ≤ n . We have
αij ∈ V (Γ) . Let

A = {αij | 1 ≤ i ≤ n and 1 ≤ j ≤ n}

then it is clear that |A| = n2 . If i = j then degΓ(αij) = nn−1 − 1 and if i ̸= j then degΓ(αij) = nn−1 − 2 . Let
Xn \ {i} = {i1, i2, . . . , in−1} with i1 < i2 < . . . < in−1 and Xn \ {j} = {j1, j2, . . . , jn−1} with j1 < j2 < . . . <

jn−1 . For 1 ≤ i ≤ n , 1 ≤ j ≤ n , let βij ∈ Pn such that codom (βij) = {j} and jkβij = ik for 1 ≤ k ≤ n− 1 .
Then we have βij ∈ V (Γ) and degΓ(βij) = 1 . Let

B = {βij | 1 ≤ i ≤ n and 1 ≤ j ≤ n}.

Then we have |B| = n2 , moreover, A and B are disjoint sets. In Γ , βij has only one adjacent vertex which is
αij for 1 ≤ i ≤ n , 1 ≤ j ≤ n . It follows that γ(Γ) ≥ n2 from the pigeonhole principle. Let α ∈ V (Γ)\A . Then
there exist i, j ∈ Xn such that i ∈ Xn \ im(α) and j ∈ codom (α) . We have α and αij are adjacent vertices
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in Γ . Thus A is a dominating set for Γ . We have γ(Γ) ≥ n2 , A is a dominating set for Γ and |A| = n2 . So
γ(Γ) = n2 for n ≥ 3 . 2

We have ω(Γ) ≥ n from the proof of Lemma 3.1. In the following theorem, we give better lower bound
for clique number of Γ for n ≥ 3 .

Theorem 3.7 If n ≥ 3 , then ω(Γ) ≥ (r + 1)n−r − 1 for 1 ≤ r ≤ n− 1 .

Proof Let n ≥ 3 and A = {x1, x2, . . . , xr} ⊆ Xn for 1 ≤ r ≤ n− 1 . Let

B = {α ∈ Pn | A ⊆ codom (α) and ∅ ̸= im(α) ⊆ A}.

It is clear that B ̸= ∅ and if α ∈ B , then α ∈ V (Γ) . Let α1, α2 ∈ B and α1 ̸= α2 , then we have
im(α1) ⊆ A ⊆ codom (α2) and im(α2) ⊆ A ⊆ codom (α1) , so α1 and α2 adjacent vertices in Γ from Lemma
2.1. Let G be an induced subgraph of Γ induced by the vertex set B , then we have G is a complete graph.
Moreover |B| = (r + 1)n−r − 1 . Thus for n ≥ 3 , ω(Γ) ≥ (r + 1)n−r − 1 for 1 ≤ r ≤ n− 1 . 2

For any graph G , it is known that χ(G) ≥ ω(G) (see Corollary 6.2 in [3]), so we have the following
corollary.

Corollary 3.8 If n ≥ 3 , then χ(Γ) ≥ (r + 1)n−r − 1 for 1 ≤ r ≤ n− 1 .

Example 3.9 Let Γ = Γ(P5) , then Γ is a connected graph, |V (Γ)| = 4650 , diam(Γ) = 4 , gr(Γ) = 3 ,

∆(Γ) = 624 , δ(Γ) = 1 , γ(Γ) = 25 , ω(Γ) ≥ 26 and χ(Γ) ≥ 26 . Moreover, if α =

(
1 2 3 4 5
− − 5 − 2

)
, then

α ∈ V (Γ) and degΓ(α) = 63 .
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