

Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/

Research Article

Diameter estimate for a class of compact generalized quasi-Einstein manifolds

Yihua DENG*0

College of Mathematics and Statistics, Hengyang Normal University, Hengyang, Hunan, P. R. China

Received: 23.06.2021	•	Accepted/Published Online: 06.09.2021	•	Final Version: 16.09.2021
		1 /		

Abstract: In this paper, we discuss the lower diameter estimate for a class of compact generalized quasi-Einstein manifolds which are closely related to the conformal geometry. Using the Bochner formula and the Hopf maximum principle, we get a gradient estimate for the potential function of the manifold. Based on the gradient estimate, we get the lower diameter estimate for this class of generalized quasi-Einstein manifolds.

Key words: Generalized quasi-Einstein manifolds, lower diameter estimate, the Bochner formula, maximum principle

1. Introduction

To extend the notion of quasi-Einstein, Catino [3] introduced the concept of generalized quasi-Einstein manifold. Let (M,g) be an *n*-dimensional Riemannian manifold with $n \ge 3$. If there exist three smooth functions f, β and λ on (M,g) such that the Ricci tensor satisfy

$$\operatorname{Ric} + \nabla^2 f - \beta df \otimes df = \lambda g, \tag{1.1}$$

then (M, g) is called a generalized quasi-Einstein manifold, where ∇^2 and \otimes denote the Hessian and the tensorial product, respectively. The function f in (1.1) is usually called potential function. If m is a positive integer and $\beta = m^{-1}$, then (M, g) is called generalized m-quasi-Einstein manifold (see [2]). Natural examples of generalized quasi-Einstein manifolds are given by Einstein manifolds, gradient Ricci solitons, gradient Ricci almost solitons and quasi-Einstein manifolds.

The classification of generalized *m*-quasi-Einstein manifolds is extensively studied, see for example [1, 2, 7, 9, 10, 11, 14]. Nowadays, the study of diameter estimate is an attractive topic in Riemannian geometry. Wei and Wylie [19] studied the upper diameter estimate and extended the Bonnet-Myers theorem to the Riemannian manifold with Bakry-Emery curvature bounded from below. Limoncu [12, 13], Soylu [16] and Tadano [17] improved the upper diameter estimate in [19]. Futaki and Sano [5] obtained a lower diameter bound for compact shrinking Ricci soliton. Futaki and Li [4] improved the diameter estimate in [5]. Wang [18] got a lower diameter bound for compact generalized quasi-Einstein manifold. Hu, Mao and Wang [8] got a lower diameter estimate for compact generalized quasi-Einstein manifold satisfying $\lambda = \lambda(f)$, $\lambda'(t) \ge 0$ and $[t^{\frac{2}{\alpha_0(n-2)}}\lambda(t)]' \ge 0$. Let (M, g) be an *n*-dimensional Riemannian manifold with $n \ge 3$. If there exist smooth functions f

²⁰¹⁰ AMS Mathematics Subject Classification: 53C25, 53C21

^{*}Correspondence: dengchen4032@126.com

and λ on (M,g) such that the Ricci tensor satisfy

$$\operatorname{Ric} + \nabla^2 f - \frac{1}{2 - n} df \otimes df = \lambda g, \qquad (1.2)$$

then M is called generalized (2-n)-quasi-Einstein manifold in this paper. Generalized (2-n)-quasi-Einstein manifolds are closely related to the conformal metric $\tilde{g} = e^{-\frac{2}{n-2}f}g$ which is important in conformal geometry. Jauregui and Wylie [11] got the classification of generalized quasi-Einstein manifolds admitting a conformal diffeomorphism using the metric $\tilde{g} = e^{-\frac{2}{n-2}f}g$. Remark 3.3 in [11] shows that the conformal metric $\tilde{g} = e^{-\frac{2}{n-2}f}g$ is an Einstein metric if and only if (M,g) is a generalized (2-n)-quasi-Einstein manifold. Catino [3] gave a local characterization of generalized quasi-Einstein manifolds with harmonic weyl tensor using $\tilde{g} = e^{-\frac{2}{n-2}f}g$. Ribeiro and Tenenblat [15] provided a complete classification of generalized (2-n)-quasi-Einstein manifolds satisfying (1.2) with $\lambda = 0$.

Motivated by [8, 10, 11, 15, 18], we study the lower diameter estimate for generalized (2 - n)-quasi-Einstein manifolds satisfying (1.2). As far as we know, the study of the diameter estimate for nontrivial generalized quasi-Einstein manifolds is very few up to now. Since λ is a function in generalized quasi-Einstein manifolds, the diameter estimate of generalized quasi-Einstein manifolds is much more difficult than that of quasi-Einstein manifolds. To overcome this difficult, we need to use some new skills.

2. Some basic lemmas for generalized (2 - n)-quasi-Einstein manifolds

Generalized (2 - n)-quasi-Einstein manifolds are closely related to the conformal metric $\tilde{g} = e^{-\frac{2}{n-2}f}g$ which is important in conformal geometry. In this section, we give some basic lemmas for generalized (2 - n)-quasi-Einstein manifolds.

Lemma 2.1 If (M,g) is a generalized (2 - n)-quasi-Einstein manifold satisfying (1.2), then there exists a constant β such that the following equality holds

$$\Delta f - |\nabla f|^2 + (n-2)\lambda - \beta e^{\frac{2}{2-n}f} = 0.$$
(2.1)

Proof Similar to Lemma 2 in [2], we have

$$\nabla R = \frac{2(1-n)}{2-n} \operatorname{Ric}(\nabla f) + \frac{2}{2-n} (R - (n-1)\lambda) \nabla f + 2(n-1)\nabla\lambda$$
(2.2)

and

$$R + \Delta f - \frac{1}{2-n} |\nabla f|^2 = n\lambda.$$
(2.3)

It follows from (1.2) that

$$\operatorname{Ric}(\nabla f) = \lambda \nabla f - \frac{1}{2} \nabla |\nabla f|^2 + \frac{1}{2-n} |\nabla f|^2 \nabla f.$$
(2.4)

Putting (2.4) into (2.2), we obtain

$$\nabla R = \frac{2(1-n)}{2-n} [\lambda \nabla f - \frac{1}{2} \nabla |\nabla f|^2 + \frac{1}{2-n} |\nabla f|^2 \nabla f] + \frac{2}{2-n} (R - (n-1)\lambda) \nabla f + 2(n-1) \nabla \lambda + \frac{1}{2} \nabla f + \frac{1}{2} \nabla$$

$$=\frac{4(1-n)}{2-n}\lambda\nabla f - \frac{1-n}{2-n}\nabla|\nabla f|^2 + \frac{2(1-n)}{(2-n)^2}|\nabla f|^2\nabla f + \frac{2}{2-n}R\nabla f + 2(n-1)\nabla\lambda.$$
(2.5)

By (2.5), we have

$$\nabla R - \frac{2}{2-n}R\nabla f = 2(n-1)(\nabla\lambda - \frac{2}{2-n}\lambda\nabla f) - \frac{1-n}{2-n}(\nabla|\nabla f|^2 - \frac{2}{2-n}|\nabla f|^2\nabla f).$$
 (2.6)

According to (2.6), we arrive at

$$\nabla(Re^{\frac{2}{n-2}f}) = 2(n-1)\nabla(\lambda e^{\frac{2}{n-2}f}) - \frac{1-n}{2-n}\nabla(|\nabla f|^2 e^{\frac{2}{n-2}f}).$$

Therefore, we conclude that there exists a constant β such that

$$Re^{\frac{2}{n-2}f} - 2(n-1)(\lambda e^{\frac{2}{n-2}f}) + \frac{1-n}{2-n}(|\nabla f|^2 e^{\frac{2}{n-2}f}) = -\beta.$$

Thus

$$R - 2(n-1)\lambda + \frac{1-n}{2-n}|\nabla f|^2 + \beta e^{\frac{2}{2-n}f} = 0.$$
(2.7)

On the other hand, by (2.3) we have

$$R = -\triangle f + \frac{1}{2-n} |\nabla f|^2 + n\lambda.$$
(2.8)

Putting (2.8) into (2.7), we conclude that (2.1) is true.

(

Lemma 2.2 Suppose that (M,g) is a compact generalized (2-n)-quasi-Einstein manifold satisfying (1.2), $\lambda_{\max} = \max_{x \in M} \lambda(x)$. If $\beta > 0$, then $\lambda_{\max} > 0$.

Proof Suppose that $x_0 \in M$ is the maximum point of f. Then $\Delta f(x_0) \leq 0$ and $\nabla f(x_0) = 0$. Since $\beta > 0$, by (2.1) we have

$$(n-2)\lambda_{\max} \ge (n-2)\lambda(x_0) \ge \beta e^{\frac{2}{2-n}f(x_0)} > 0.$$

The proof of Lemma 2.2 is complete.

3. Gradient estimate

To consider the lower diameter estimate for compact generalized (2 - n)-quasi-Einstein manifold M satisfying (1.2), we need to get a gradient estimate for $h = e^{\alpha f}$.

Lemma 3.1 Let $h = e^{\alpha f}$. If β is the constant in Lemma 2.1, then the following equality holds

$$\Delta |\nabla h|^{2} = 2|\nabla^{2}h|^{2} + (2 + \frac{1}{\alpha})\frac{\nabla |\nabla h|^{2}\nabla h}{h} - (2 + \frac{2}{\alpha})\frac{|\nabla h|^{4}}{h^{2}} - 2(n - 2)\alpha\lambda|\nabla h|^{2} + 2\lambda|\nabla h|^{2}$$

$$+ 2[1 + \frac{2}{(2 - n)\alpha}]\alpha\beta h^{\frac{2}{(2 - n)\alpha}}|\nabla h|^{2} + \frac{2 + 2(2 - n)\alpha}{\alpha^{2}(2 - n)}\frac{|\nabla h|^{4}}{h^{2}} - 2\alpha(n - 2)h\nabla\lambda\nabla h$$

$$(3.1)$$

on generalized (2-n)-quasi-Einstein manifolds.

Proof Direct calculation shows that

$$\Delta h = \alpha^2 e^{\alpha f} |\nabla f|^2 + \alpha e^{\alpha f} \Delta f = h(\alpha^2 |\nabla f|^2 + \alpha \Delta f).$$
(3.2)

Since $\nabla h = \alpha h \nabla f$, by (2.1) and (3.2) we conclude that

$$\Delta h = (1 + \frac{1}{\alpha}) \frac{|\nabla h|^2}{h} - (n - 2)\alpha\lambda h + \alpha\beta h^{(1 + \frac{2}{(2 - n)\alpha})}.$$
(3.3)

Therefore

$$2\nabla\Delta h \cdot \nabla h = 2\nabla [(1+\frac{1}{\alpha})\frac{|\nabla h|^2}{h} - (n-2)\alpha\lambda h + \alpha\beta h^{(1+\frac{2}{(2-n)\alpha})}]\nabla h$$
$$= (2+\frac{2}{\alpha})\frac{\nabla |\nabla h|^2 \nabla h}{h} - (2+\frac{2}{\alpha})\frac{|\nabla h|^4}{h^2} - 2(n-2)\alpha\lambda |\nabla h|^2$$
$$+ 2(1+\frac{2}{(2-n)\alpha})\alpha\beta h^{\frac{2}{(2-n)\alpha}}|\nabla h|^2 - 2\alpha(n-2)h\nabla\lambda\nabla h.$$
(3.4)

Since $\nabla h = \alpha h \nabla f$, by (1.2) we have

$$2\operatorname{Ric}(\nabla h, \nabla h) = 2\lambda |\nabla h|^2 + \frac{2 + 2(2 - n)\alpha}{\alpha^2 (2 - n)} \frac{|\nabla h|^4}{h^2} - \frac{\nabla |\nabla h|^2 \nabla h}{\alpha h}.$$
(3.5)

On the other hand, according to the Bochner formula we have

$$\Delta |\nabla h|^2 = 2|\nabla^2 h|^2 + 2\nabla \Delta h \cdot \nabla h + 2\operatorname{Ric}(\nabla h, \nabla h).$$
(3.6)

Putting (3.4) and (3.5) into (3.6), we conclude that (3.1) is true.

In the following, we always suppose that M is a compact generalized (2 - n)-quasi-Einstein manifold, $\lambda_{\max} = \max_{x \in M} \lambda(x), \ h = e^{\alpha f}, \ D = \{x \in M; \nabla h(x) \neq 0\}, \ \beta$ is the constant in Lemma 2.1 and

$$F(h) = |\nabla h|^2 + (n-2)\alpha\lambda_{\max}h^2 - \frac{(2-n)\alpha^2}{1+(2-n)\alpha}\beta h^{(2+\frac{2}{(2-n)\alpha})}.$$
(3.7)

Lemma 3.2 If $\alpha > 0$ and $\beta \ge 0$, then there exists a smooth vector field X on M such that

$$\Delta F \ge \nabla F \cdot X + \frac{[\alpha(n-2)-1]^2}{\alpha^2(2-n)(n-1)} \frac{|\nabla h|^4}{h^2} + 2\lambda |\nabla h|^2 - 2\alpha(n-2)\lambda |\nabla h|^2$$

$$-2\alpha(n-2)h\nabla\lambda\nabla h + \left[\frac{2}{n-1}(1+\frac{1}{\alpha})^2 - (2+\frac{2}{\alpha}) + \frac{2+2(2-n)\alpha}{\alpha^2(2-n)}\right]\frac{|\nabla h|^4}{h^2}$$
(3.8)

holds on D.

Proof Direct calculation shows that

$$\nabla F = \nabla |\nabla h|^2 + 2(n-2)\alpha\lambda_{\max}h\nabla h - 2\alpha\beta h^{\left(1 + \frac{2}{(2-n)\alpha}\right)}\nabla h.$$
(3.9)

Therefore, we have

$$\Delta F = \Delta |\nabla h|^2 + 2(n-2)\alpha\lambda_{\max}h|\nabla h|^2 + 2(n-2)\alpha\lambda_{\max}h\Delta h$$
$$-2\alpha\beta h^{\left(1+\frac{2}{(2-n)\alpha}\right)}\Delta h - 2\left[1+\frac{2}{(2-n)\alpha}\right]\alpha\beta h^{\frac{2}{(2-n)\alpha}}|\nabla h|^2.$$
(3.10)

For the purpose of convenience, we let

$$G(h) = (n-2)\alpha\lambda_{\max}h - \alpha\beta h^{(1+\frac{2}{(2-n)\alpha})}, \quad L(h) = (n-2)\alpha\lambda h - \alpha\beta h^{(1+\frac{2}{(2-n)\alpha})}.$$
 (3.11)

Putting (3.1) into (3.10), we obtain

$$\Delta F = 2|\nabla^2 h|^2 + (2 + \frac{1}{\alpha})\frac{\nabla|\nabla h|^2 \nabla h}{h} - (2 + \frac{2}{\alpha})\frac{|\nabla h|^4}{h^2} - 2(n-2)\alpha\lambda|\nabla h|^2 + 2\lambda|\nabla h|^2$$

$$+ \frac{2 + 2(2-n)\alpha}{\alpha^2(2-n)}\frac{|\nabla h|^4}{h^2} - 2\alpha(n-2)h\nabla\lambda\nabla h + 2(n-2)\alpha\lambda_{\max}h|\nabla h|^2 + 2G(h)\Delta h.$$
(3.12)

Consider a point $O \in D$. Rotating the orthonormal frame at O so that $|\nabla h|(O) = h_1(O) \neq 0$. According to (2.10) in [18], we have

$$2|\nabla^2 h|^2 + (2+\frac{1}{\alpha})\frac{\nabla|\nabla h|^2 \nabla h}{h} \ge \frac{2n}{n-1}h_{11}^2 - \frac{4}{n-1}h_{11}\triangle h + \frac{2}{n-1}(\triangle h)^2 + \frac{4\alpha+2}{\alpha}\frac{h_{11}|\nabla h|^2}{h}.$$
 (3.13)

According to (3.9), we get

$$h_{11} = \frac{\nabla F \nabla h}{2|\nabla h|^2} - (n-2)\alpha\lambda_{\max}h + \alpha\beta h^{\left(1 + \frac{2}{(2-n)\alpha}\right)} = \frac{\nabla F \nabla h}{2|\nabla h|^2} - G(h).$$
(3.14)

Putting (3.14) into (3.13), we conclude that there exists a smooth vector field X on M such that

$$2|\nabla^2 h|^2 + (2+\frac{1}{\alpha})\frac{\nabla|\nabla h|^2 \nabla h}{h} \ge \nabla F \cdot X + \frac{2n}{n-1}[G(h)]^2 + \frac{4}{n-1}G(h) \triangle h + \frac{2}{n-1}(\triangle h)^2 - \frac{4\alpha+2}{\alpha}\frac{|\nabla h|^2}{h}G(h).$$
(3.15)

On the other hand, by (3.3) we have

$$2G(h) \triangle h + \frac{2n}{n-1} [G(h)]^2 + \frac{4}{n-1} G(h) \triangle h + \frac{2}{n-1} (\triangle h)^2$$

$$= \frac{2n+2}{n-1} G(h) [(1+\frac{1}{\alpha}) \frac{|\nabla h|^2}{h} - L(h)] + \frac{2n}{n-1} [G(h)]^2 + \frac{2}{n-1} [(1+\frac{1}{\alpha}) \frac{|\nabla h|^2}{h} - L(h)]^2$$

$$= \frac{2n+2}{n-1} G(h) (1+\frac{1}{\alpha}) \frac{|\nabla h|^2}{h} - \frac{2n+2}{n-1} G(h) L(h) + \frac{2n}{n-1} [G(h)]^2 + \frac{2}{n-1} (1+\frac{1}{\alpha})^2 \frac{|\nabla h|^4}{h^2}$$

$$- \frac{4}{n-1} (1+\frac{1}{\alpha}) \frac{|\nabla h|^2}{h} L(h) + \frac{2}{n-1} [L(h)]^2.$$
(3.16)

Since $G(h) \ge L(h)$, then

$$\frac{2n}{n-1}[G(h)]^2 - \frac{2n+2}{n-1}G(h)L(h) + \frac{2}{n-1}[L(h)]^2$$

$$= \frac{2n}{n-1} [G(h)]^2 - \frac{2n}{n-1} G(h)L(h) + \frac{2}{n-1} [L(h)]^2 - \frac{2}{n-1} G(h)L(h)$$
$$= \frac{2n}{n-1} G(h)[G(h) - L(h)] - \frac{2}{n-1} L(h)[G(h) - L(h)]$$
$$= \frac{2}{n-1} [G(h) - L(h)][nG(h) - L(h)] \ge 0.$$
(3.17)

By (3.16) and (3.17), we obtain

$$2G(h) \triangle h + \frac{2n}{n-1} [G(h)]^2 + \frac{4}{n-1} G(h) \triangle h + \frac{2}{n-1} (\triangle h)^2$$

$$\geq \frac{2n+2}{n-1} G(h) (1+\frac{1}{\alpha}) \frac{|\nabla h|^2}{h} + \frac{2}{n-1} (1+\frac{1}{\alpha})^2 \frac{|\nabla h|^4}{h^2} - \frac{4}{n-1} (1+\frac{1}{\alpha}) \frac{|\nabla h|^2}{h} L(h).$$
(3.18)

According to (3.12), (3.15) and (3.18), we get

$$\Delta F \ge \nabla F \cdot X - \frac{4\alpha + 2}{\alpha} \frac{|\nabla h|^2}{h} G(h) + \frac{2n + 2}{n - 1} G(h) (1 + \frac{1}{\alpha}) \frac{|\nabla h|^2}{h} + \frac{2}{n - 1} (1 + \frac{1}{\alpha})^2 \frac{|\nabla h|^4}{h^2} - \frac{4}{n - 1} (1 + \frac{1}{\alpha}) \frac{|\nabla h|^2}{h} L(h) - (2 + \frac{2}{\alpha}) \frac{|\nabla h|^4}{h^2} - 2(n - 2)\alpha\lambda |\nabla h|^2 + \frac{2 + 2(2 - n)\alpha}{\alpha^2(2 - n)} \frac{|\nabla h|^4}{h^2} + 2\lambda |\nabla h|^2 - 2\alpha(n - 2)h\nabla\lambda\nabla h + 2(n - 2)\alpha\lambda_{\max}h |\nabla h|^2.$$

$$(3.19)$$

Since $G(h) \ge L(h)$, $\alpha > 0$ and $\beta \ge 0$, then

$$\left[-\frac{4\alpha+2}{\alpha}G(h) + \frac{2n+2}{n-1}G(h)(1+\frac{1}{\alpha}) - \frac{4}{n-1}(1+\frac{1}{\alpha})L(h)\right]\frac{|\nabla h|^2}{h} + 2(n-2)\alpha\lambda_{\max}h|\nabla h|^2$$
$$= -2G(h)\frac{|\nabla h|^2}{h} + \frac{4}{n-1}(1+\frac{1}{\alpha})[G(h) - L(h)]\frac{|\nabla h|^2}{h} + 2(n-2)\alpha\lambda_{\max}h|\nabla h|^2$$
$$= 2\alpha\beta h^{\frac{2}{(2-n)\alpha}}|\nabla h|^2 + \frac{4}{n-1}(1+\frac{1}{\alpha})[G(h) - L(h)]\frac{|\nabla h|^2}{h} \ge 0.$$
(3.20)

By (3.20) and (3.19), we conclude that (3.8) is true.

Lemma 3.3 Suppose that M is a compact generalized (2 - n)-quasi-Einstein manifold, $\alpha > 0$ and $\beta \ge 0$. If $\nabla \lambda \nabla f \le 0$ holds on M, then there exists a constant $\delta > 0$ such that if $|\alpha - \frac{1}{n-2}| < \delta$ then

$$\Delta F \ge \nabla F \cdot X - \alpha (n-2)h\nabla \lambda \nabla h \tag{3.21}$$

holds on D.

Proof Since M is a compact generalized (2 - n)-quasi-Einstein manifold, then it is obvious that

$$\lim_{n \to \frac{1}{n-2}} \left[\frac{2}{n-1}(1+\frac{1}{\alpha})^2 - (2+\frac{2}{\alpha}) + \frac{2+2(2-n)\alpha}{\alpha^2(2-n)}\right] \frac{|\nabla h|^4}{h^2} = 0$$

and

$$\lim_{n \to \frac{1}{n-2}} [2\lambda |\nabla h|^2 - 2\alpha(n-2)\lambda |\nabla h|^2] = 0.$$

Since $\nabla \lambda \nabla f \leq 0$, then $\alpha(n-2)h\nabla \lambda \nabla h \leq 0$. Therefore, there exists a constant $\delta > 0$ such that if $|\alpha - \frac{1}{n-2}| < \delta$ then

$$\left[\frac{2}{n-1}(1+\frac{1}{\alpha})^2 - (2+\frac{2}{\alpha}) + \frac{2+2(2-n)\alpha}{\alpha^2(2-n)}\right]\frac{|\nabla h|^4}{h^2} + 2\lambda|\nabla h|^2 - 2\alpha(n-2)\lambda|\nabla h|^2 - \alpha(n-2)h\nabla\lambda\nabla h \ge 0.$$
(3.22)

By (3.22) and (3.8), we conclude that (3.21) is true.

Lemma 3.4 Suppose that M is a compact generalized (2 - n)-quasi-Einstein manifold, $\alpha > 0$ and $\beta \ge 0$. If $\nabla \lambda \nabla f \le 0$ and $\nabla \lambda \ne 0$ holds on M, then there exists a constant $\delta > 0$ such that if $|\alpha - \frac{1}{n-2}| < \delta$ then

$$|\nabla h|^2(x) \le \mathcal{G}(h(x_0)) - \mathcal{G}(h(x)) \tag{3.23}$$

holds for all $x \in M$, where x_0 is the maximum point of F(h(x)) on M and

$$\mathcal{G}(h) = (n-2)\alpha\lambda_{\max}h^2 - \frac{(2-n)\alpha^2}{1+(2-n)\alpha}\beta h^{(2+\frac{2}{(2-n)\alpha})}.$$
(3.24)

Proof By Lemma 3.3, there exists a constant $\delta > 0$ such that if $|\alpha - \frac{1}{n-2}| < \delta$ then (3.21) holds. If $x_0 \in D$, then there exists a neighborhood \mathcal{U} of x_0 so that $\mathcal{U} \subset D$. Moreover, x_0 is the maximum point of F(h(x)) on \mathcal{U} . By Lemma 3.3, we conclude that $\Delta F \ge \nabla F \cdot X$ holds on \mathcal{U} . Therefore, by the Hopf maximum principle in [6] we conclude that F is constant on \mathcal{U} . Since $\Delta F(x_0) \le 0$, $\nabla F(x_0) = 0$, $\nabla \lambda \nabla f \le 0$ and $\nabla \lambda \ne 0$, (3.21) tells us that $\nabla h(x_0) = 0$, which is a contradiction with $x_0 \in D$. Therefore, x_0 is not in D, which means that $\nabla h(x_0) = 0$. Thus $|\nabla h|^2(x) + \mathcal{G}(h(x)) \le \mathcal{G}(h(x_0))$.

4. Diameter estimate and main result

In this section, we consider the lower diameter estimate for compact generalized (2-n)-quasi-Einstein manifold M using the gradient estimate obtained in Lemma 3.4. If $\beta \leq 0$ and $\lambda \geq 0$, by (2.1) and the Maximum principle in [6] we conclude that M is an Einstein manifold. Under this consideration, we only discuss the diameter estimate for compact generalized (2-n)-quasi-Einstein manifold with $\beta > 0$. The main result of this paper is

Theorem 4.1 Suppose that M is a compact generalized (2 - n)-quasi-Einstein manifold satisfying (1.2). Let $\omega_f = \max_{x \in M} f(x) - \min_{x \in M} f(x)$ and

$$d_1 = \frac{1}{\sqrt{\lambda_{\max} - \lambda_{\min} e^{\frac{2}{2-n}w_f}}} (\frac{\pi}{2} - \arcsin e^{\frac{w_f}{2-n}}), \quad d_2 = \frac{1}{\sqrt{\lambda_{\max}}} (\frac{\pi}{2} - \arcsin e^{\frac{\omega_f}{2-n}}).$$

If $\nabla \lambda \nabla f \leq 0$ holds on M, $n \geq 3$, $\beta > 0$, then the diameter of M satisfies

$$\operatorname{diam} M \ge \max\{d_1, d_2\}$$

Proof Suppose that δ is the constant mentioned in Lemma 3.4. Let $|\alpha - \frac{1}{n-2}| < \delta$. Then (3.23) holds. Assume that x_0 is the maximum point of F(h(x)) on M. By Lemma 3.4, for all $x \in M$,

$$\mathcal{G}(h(x)) \le |\nabla h|^2(x) + \mathcal{G}(h(x)) \le \mathcal{G}(h(x_0)).$$

Therefore, x_0 is the maximum point of $\mathcal{G}(h(x))$. According to (3.24), we get

$$\mathcal{G}'(t) = -2\left[(n-2)\alpha\lambda_{\max}t - \alpha\beta t^{\left(1 + \frac{2}{(2-n)\alpha}\right)}\right].$$

Let x_1 and x_2 be the maximum and minimum points of h(x) on M, respectively. Similar to the proof of Theorem 1.3 in [18], we conclude that $x_0 = x_1$ or $x_0 = x_2$. we only consider the case that $x_0 = x_1$. Choosing a minimizing geodesic γ jointing x_1 and x_2 . Let $h_1 = h(x_1)$, $h_2 = h(x_2)$. Similar to the proof of Theorem 1.3 in [18], we have

$$\operatorname{diam} M \ge \int_{h_2}^{h_1} \frac{dh}{\sqrt{\mathcal{G}(h(x_1)) - \mathcal{G}(h(x))}}$$

$$= \int_{h_2}^{h_1} \frac{dh}{\sqrt{(n-2)\alpha\lambda_{\max}(h_1^2 - h^2) - \frac{(2-n)\alpha^2\beta}{1+(2-n)\alpha}[h_1^{(2+\frac{2}{(2-n)\alpha})} - h^{(2+\frac{2}{(2-n)\alpha})}]}}$$

$$= \int_{\frac{h_2}{h_1}}^{h} \frac{d\sigma}{\sqrt{(n-2)\alpha\lambda_{\max}(1-\sigma^2) + \frac{(n-2)\alpha^2\beta}{1+(2-n)\alpha}h_1^{\frac{2}{(2-n)\alpha}}[1-\sigma^{(2+\frac{2}{(2-n)\alpha})}]}}$$
(4.1)

Since $\beta > 0$, by Lemma 2.2 we have $\lambda_{\max} > 0$. If $\alpha > \frac{1}{n-2}$, then $1 + (2-n)\alpha < 0$. Therefore, by (4.1) we conclude that

$$\operatorname{diam} M \ge \frac{1}{\sqrt{(n-2)\alpha\lambda_{\max}}} \int_{\frac{h_2}{h_1}}^1 \frac{d\sigma}{\sqrt{1-\sigma^2}} = \frac{1}{\sqrt{(n-2)\alpha\lambda_{\max}}} (\frac{\pi}{2} - \arcsin e^{-\alpha w_f}).$$

Let $\alpha \to \frac{1}{n-2}$ from the right side of $\frac{1}{n-2}$. Then we have

diam
$$M \ge \frac{1}{\sqrt{\lambda_{\max}}} \left(\frac{\pi}{2} - \arcsin e^{\frac{\omega_f}{2-n}}\right).$$
 (4.2)

If $0 < \alpha < \frac{1}{n-2}$, we consider the function

$$S(\sigma) = -[1 + (2 - n)\alpha](1 - \sigma^2) + \sigma^{(2 + \frac{2}{(2 - n)\alpha})} - 1$$

on $[\frac{h_1}{h_0}, 1]$. Since $0 < \alpha < \frac{1}{n-2}$, then $(n-2)\alpha < 1$, $\sigma^{\frac{2}{(2-n)\alpha}} \ge 1$, $2 + \frac{2}{(2-n)\alpha} < 0$. Therefore, we have

$$S'(\sigma) = [2 + \frac{2}{(2-n)\alpha}][\sigma^{\frac{2}{(2-n)\alpha}} - (n-2)\alpha]\sigma < 0.$$

Thus, we conclude that $S(\sigma) > S(1) = 0$. Then

$$1 - \sigma^{\left(2 + \frac{2}{(2-n)\alpha}\right)} < -[1 + (2-n)\alpha](1 - \sigma^2).$$
(4.3)

Since $\beta > 0$ and $1 + (2 - n)\alpha > 0$, by (4.3) we get

$$\frac{(n-2)\alpha^2\beta}{1+(2-n)\alpha}h_1^{\frac{2}{(2-n)\alpha}}[1-\sigma^{(2+\frac{2}{(2-n)\alpha})}] < -(n-2)\alpha^2\beta h_1^{\frac{2}{(2-n)\alpha}}(1-\sigma^2).$$
(4.4)

Since $\alpha > 0$, then x_2 is a minimum point of f(x). Let $\lambda_{\min} = \min_{x \in M} \lambda(x)$. According to (2.2) we have

$$\beta e^{\frac{2}{2-n}f(x_2)} \ge (n-2)\lambda(x_2) \ge (n-2)\lambda_{\min}.$$
(4.5)

By (4.5), we obtain

$$\beta h_1^{\frac{2}{(2-n)\alpha}} = \beta e^{\frac{2}{2-n}w_f} e^{\frac{2}{2-n}f(x_2)} \ge (n-2)\lambda_{\min}e^{\frac{2}{2-n}w_f}.$$
(4.6)

According to (4.1), (4.4) and (4.5), we have

$$\operatorname{diam} M \ge \frac{1}{\sqrt{(n-2)\alpha\lambda_{\max} - (n-2)^2\alpha^2\lambda_{\min}e^{\frac{2}{2-n}w_f}}} (\frac{\pi}{2} - \arcsin e^{-\alpha w_f}).$$

Let $\alpha \to \frac{1}{n-2}$ from the left side of $\frac{1}{n-2}$. Then

$$\operatorname{diam} M \ge \frac{1}{\sqrt{\lambda_{\max} - \lambda_{\min} e^{\frac{2}{2-n}w_f}}} (\frac{\pi}{2} - \arcsin e^{\frac{w_f}{2-n}}).$$
(4.7)

According to (4.2) and (4.7), we conclude that $\operatorname{diam} M \ge \max\{d_1, d_2\}$.

Acknowledgment

This work is supported by the discipline special research projects of Hengyang Normal University (XKZX21002, KYZX21003), Application-oriented Special Disciplines, Double First-Class University Project of Hunan Province (Xiangjiaotong[2018]469), the science and technology plan project of Hunan province (2016TP1020).

References

- Barros A, Gomes J. A compact gradient generalized quasi-Einstein metric with constant scalar curvature. Journal of Mathematical Analysis and Applications 2013; 401: 702-705.
- [2] Barros A, Ribeiro JE. Characterizations and integral formulae for generalized *m*-quasi-Einstein metrics. Bulletin Brazilian Mathematical Society (N.S) 2014; 45: 325-341.
- [3] Catino G. Generalized quasi-Einstein manifolds with harmonic weyl tensor. Mathematische Zeitschrift 2012; 271: 751-756.
- [4] Futaki A, Li H, Li X. On the first eigenvalue of the Witten-Laplacian and the diameter of compact shrinking solitons. Annals of Global Analysis and Geometry 2013; 44: 105-114.
- [5] Futaki A, Sano Y. Lower diameter bounds for compact shrinking Ricci solitons. Asian Journal of Mathematics 2013; 17: 17-32.

- [6] Gilbarg D, Trudinger N. Elliptic Partial Differential Equations of Second Order. Springer, Berlin, 1977
- [7] Hu Z, Li D, Zhai S. On generalized m-quasi-Einstein manifolds with constant Ricci curvatures. Journal of Mathematical Analysis and Applications 2017; 446: 843-851.
- [8] Hu L, Mao J, Wang L. Lower diameter estimate for a spacial quasi-almost-Einstein metric. Journal of East China Normal University (Natural Science) 2014; 27: 27-35.
- [9] Huang G, Wei Y. The classification of (m, ρ)-quasi-Einstein manifolds. Annals of Global Analysis and Geometry 2013; 44: 269-282.
- [10] Huang G, Zeng F. A note on gradient generalized quasi-Einstein manifolds. Journal of Geometry 2015; 106: 297-311.
- [11] Jauregui J, Wylie W. Conformal diffeomorphisms of gradient Ricci solitons and generalized quasi-Einstein manifolds. Journal of Geometric Analysis 2015; 25: 668-708.
- [12] Limoncu M. Modifications of the Ricci tensor and applications. Archiv der Mathematik 2010; 95: 191-199.
- [13] Limoncu M. The Bakry-Émery Ricci tensor and its applications to some compactness theorems. Mathematische Zeitschrift 2012; 271: 715-722.
- [14] Neto B. Generalized quasi-Einstein manifolds with harmonic anti-self dual Weyl tensor. Archiv der Mathematik (Basel) 2016; 106: 489-499.
- [15] Ribeiro JE, Tenenblat K. Noncompact quasi-Einstein manifolds conformal to a Euclidean space. arXiv:1904.11283
- [16] Soylu Y. A Myers-type compactness theorem by the use of Bakry-Émery Ricci tensor. Differential Geometry and its Applications 2017; 54: 245-250.
- [17] Tadano H. Remark on a diameter bound for complete Riemannian manifolds with positive Bakry-Émery Ricci curvature. Differential Geometry and its Applications 2016; 44: 136-143.
- [18] Wang L. Diameter estimate for compact quasi-Einstein metrics. Mathematische Zeitschrift 2012; 273: 801-809.
- [19] Wei G, Wylie W. Comparison geometry for the Bakry-Émery Ricci tensor. Journal of Differential Geometry 2009; 83: 377-405.