
Turk J Math
(2021) 45: 2331 – 2340
© TÜBİTAK
doi:10.3906/mat-2106-93

Turkish Journal of Mathematics

http :// journa l s . tub i tak .gov . t r/math/

Research Article

Diameter estimate for a class of compact generalized quasi-Einstein manifolds

Yihua DENG∗

College of Mathematics and Statistics, Hengyang Normal University, Hengyang, Hunan, P. R. China

Received: 23.06.2021 • Accepted/Published Online: 06.09.2021 • Final Version: 16.09.2021

Abstract: In this paper, we discuss the lower diameter estimate for a class of compact generalized quasi-Einstein
manifolds which are closely related to the conformal geometry. Using the Bochner formula and the Hopf maximum
principle, we get a gradient estimate for the potential function of the manifold. Based on the gradient estimate, we get
the lower diameter estimate for this class of generalized quasi-Einstein manifolds.
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1. Introduction
To extend the notion of quasi-Einstein, Catino [3] introduced the concept of generalized quasi-Einstein manifold.
Let (M, g) be an n -dimensional Riemannian manifold with n ≥ 3 . If there exist three smooth functions f , β

and λ on (M, g) such that the Ricci tensor satisfy

Ric +∇2f − βdf ⊗ df = λg, (1.1)

then (M, g) is called a generalized quasi-Einstein manifold, where ∇2 and ⊗ denote the Hessian and the
tensorial product, respectively. The function f in (1.1) is usually called potential function. If m is a positive
integer and β = m−1 , then (M, g) is called generalized m -quasi-Einstein manifold (see [2]). Natural examples
of generalized quasi-Einstein manifolds are given by Einstein manifolds, gradient Ricci solitons, gradient Ricci
almost solitons and quasi-Einstein manifolds.

The classification of generalized m -quasi-Einstein manifolds is extensively studied, see for example [1, 2,
7, 9, 10, 11, 14]. Nowadays, the study of diameter estimate is an attractive topic in Riemannian geometry.
Wei and Wylie [19] studied the upper diameter estimate and extended the Bonnet-Myers theorem to the
Riemannian manifold with Bakry-Emery curvature bounded from below. Limoncu [12, 13], Soylu [16] and
Tadano [17] improved the upper diameter estimate in [19]. Futaki and Sano [5] obtained a lower diameter
bound for compact shrinking Ricci soliton. Futaki and Li [4] improved the diameter estimate in [5]. Wang [18]
got a lower diameter bound for compact τ -quasi-Einstein manifold. Hu, Mao and Wang [8] got a lower diameter

estimate for compact generalized quasi-Einstein manifold satisfying λ = λ(f) , λ′(t) ≥ 0 and [t
2

α0(n−2)λ(t)]′ ≥ 0 .
Let (M, g) be an n -dimensional Riemannian manifold with n ≥ 3 . If there exist smooth functions f
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and λ on (M, g) such that the Ricci tensor satisfy

Ric +∇2f − 1

2− n
df ⊗ df = λg, (1.2)

then M is called generalized (2− n) -quasi-Einstein manifold in this paper. Generalized (2− n) -quasi-Einstein

manifolds are closely related to the conformal metric g̃ = e−
2

n−2 fg which is important in conformal geometry.
Jauregui and Wylie [11] got the classification of generalized quasi-Einstein manifolds admitting a conformal

diffeomorphism using the metric g̃ = e−
2

n−2 fg . Remark 3.3 in [11] shows that the conformal metric g̃ = e−
2

n−2 fg

is an Einstein metric if and only if (M, g) is a generalized (2 − n) -quasi-Einstein manifold. Catino [3] gave a

local characterization of generalized quasi-Einstein manifolds with harmonic weyl tensor using g̃ = e−
2

n−2 fg .
Ribeiro and Tenenblat [15] provided a complete classification of generalized (2 − n) -quasi-Einstein manifolds
satisfying (1.2) with λ = 0 .

Motivated by [8, 10, 11, 15, 18], we study the lower diameter estimate for generalized (2 − n) -quasi-
Einstein manifolds satisfying (1.2). As far as we know, the study of the diameter estimate for nontrivial
generalized quasi-Einstein manifolds is very few up to now. Since λ is a function in generalized quasi-Einstein
manifolds, the diameter estimate of generalized quasi-Einstein manifolds is much more difficult than that of
quasi-Einstein manifolds. To overcome this difficult, we need to use some new skills.

2. Some basic lemmas for generalized (2− n)-quasi-Einstein manifolds

Generalized (2 − n) -quasi-Einstein manifolds are closely related to the conformal metric g̃ = e−
2

n−2 fg which
is important in conformal geometry. In this section, we give some basic lemmas for generalized (2− n) -quasi-
Einstein manifolds.

Lemma 2.1 If (M, g) is a generalized (2 − n)-quasi-Einstein manifold satisfying (1.2), then there exists a
constant β such that the following equality holds

△f − |∇f |2 + (n− 2)λ− βe
2

2−n f = 0. (2.1)

Proof Similar to Lemma 2 in [2], we have

∇R =
2(1− n)

2− n
Ric(∇f) +

2

2− n
(R− (n− 1)λ)∇f + 2(n− 1)∇λ (2.2)

and

R+△f − 1

2− n
|∇f |2 = nλ. (2.3)

It follows from (1.2) that

Ric(∇f) = λ∇f − 1

2
∇|∇f |2 + 1

2− n
|∇f |2∇f. (2.4)

Putting (2.4) into (2.2), we obtain

∇R =
2(1− n)

2− n
[λ∇f − 1

2
∇|∇f |2 + 1

2− n
|∇f |2∇f ] +

2

2− n
(R− (n− 1)λ)∇f + 2(n− 1)∇λ
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=
4(1− n)

2− n
λ∇f − 1− n

2− n
∇|∇f |2 + 2(1− n)

(2− n)2
|∇f |2∇f +

2

2− n
R∇f + 2(n− 1)∇λ. (2.5)

By (2.5), we have

∇R− 2

2− n
R∇f = 2(n− 1)(∇λ− 2

2− n
λ∇f)− 1− n

2− n
(∇|∇f |2 − 2

2− n
|∇f |2∇f). (2.6)

According to (2.6), we arrive at

∇(Re
2

n−2 f ) = 2(n− 1)∇(λe
2

n−2 f )− 1− n

2− n
∇(|∇f |2e

2
n−2 f ).

Therefore, we conclude that there exists a constant β such that

Re
2

n−2 f − 2(n− 1)(λe
2

n−2 f ) +
1− n

2− n
(|∇f |2e

2
n−2 f ) = −β.

Thus

R− 2(n− 1)λ+
1− n

2− n
|∇f |2 + βe

2
2−n f = 0. (2.7)

On the other hand, by (2.3) we have

R = −△f +
1

2− n
|∇f |2 + nλ. (2.8)

Putting (2.8) into (2.7), we conclude that (2.1) is true. 2

Lemma 2.2 Suppose that (M, g) is a compact generalized (2 − n)-quasi-Einstein manifold satisfying (1.2),
λmax = maxx∈M λ(x) . If β > 0 , then λmax > 0 .

Proof Suppose that x0 ∈ M is the maximum point of f . Then △f(x0) ≤ 0 and ∇f(x0) = 0 . Since β > 0 ,
by (2.1) we have

(n− 2)λmax ≥ (n− 2)λ(x0) ≥ βe
2

2−n f(x0) > 0.

The proof of Lemma 2.2 is complete. 2

3. Gradient estimate
To consider the lower diameter estimate for compact generalized (2− n) -quasi-Einstein manifold M satisfying
(1.2), we need to get a gradient estimate for h = eαf .

Lemma 3.1 Let h = eαf . If β is the constant in Lemma 2.1, then the following equality holds

△|∇h|2 = 2|∇2h|2 + (2 +
1

α
)
∇|∇h|2∇h

h
− (2 +

2

α
)
|∇h|4

h2
− 2(n− 2)αλ|∇h|2 + 2λ|∇h|2

+2[1 +
2

(2− n)α
]αβh

2
(2−n)α |∇h|2 + 2 + 2(2− n)α

α2(2− n)

|∇h|4

h2
− 2α(n− 2)h∇λ∇h (3.1)

on generalized (2− n)-quasi-Einstein manifolds.
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Proof Direct calculation shows that

∆h = α2eαf |∇f |2 + αeαf∆f = h(α2|∇f |2 + α∆f). (3.2)

Since ∇h = αh∇f , by (2.1) and (3.2) we conclude that

∆h = (1 +
1

α
)
|∇h|2

h
− (n− 2)αλh+ αβh(1+ 2

(2−n)α
). (3.3)

Therefore

2∇∆h · ∇h = 2∇[(1 +
1

α
)
|∇h|2

h
− (n− 2)αλh+ αβh(1+ 2

(2−n)α
)]∇h

= (2 +
2

α
)
∇|∇h|2∇h

h
− (2 +

2

α
)
|∇h|4

h2
− 2(n− 2)αλ|∇h|2

+2(1 +
2

(2− n)α
)αβh

2
(2−n)α |∇h|2 − 2α(n− 2)h∇λ∇h. (3.4)

Since ∇h = αh∇f , by (1.2) we have

2Ric(∇h,∇h) = 2λ|∇h|2 + 2 + 2(2− n)α

α2(2− n)

|∇h|4

h2
− ∇|∇h|2∇h

αh
. (3.5)

On the other hand, according to the Bochner formula we have

△|∇h|2 = 2|∇2h|2 + 2∇∆h · ∇h+ 2Ric(∇h,∇h). (3.6)

Putting (3.4) and (3.5) into (3.6), we conclude that (3.1) is true. 2

In the following, we always suppose that M is a compact generalized (2 − n) -quasi-Einstein manifold,
λmax = maxx∈M λ(x) , h = eαf , D = {x ∈ M ;∇h(x) ̸= 0} , β is the constant in Lemma 2.1 and

F (h) = |∇h|2 + (n− 2)αλmaxh
2 − (2− n)α2

1 + (2− n)α
βh(2+ 2

(2−n)α
). (3.7)

Lemma 3.2 If α > 0 and β ≥ 0 , then there exists a smooth vector field X on M such that

∆F ≥ ∇F ·X +
[α(n− 2)− 1]2

α2(2− n)(n− 1)

|∇h|4

h2
+ 2λ|∇h|2 − 2α(n− 2)λ|∇h|2

−2α(n− 2)h∇λ∇h+ [
2

n− 1
(1 +

1

α
)2 − (2 +

2

α
) +

2 + 2(2− n)α

α2(2− n)
]
|∇h|4

h2
(3.8)

holds on D .

Proof Direct calculation shows that

∇F = ∇|∇h|2 + 2(n− 2)αλmaxh∇h− 2αβh(1+ 2
(2−n)α

)∇h. (3.9)
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Therefore, we have
△F = △|∇h|2 + 2(n− 2)αλmaxh|∇h|2 + 2(n− 2)αλmaxh△h

−2αβh(1+ 2
(2−n)α

)△h− 2[1 +
2

(2− n)α
]αβh

2
(2−n)α |∇h|2. (3.10)

For the purpose of convenience, we let

G(h) = (n− 2)αλmaxh− αβh(1+ 2
(2−n)α

), L(h) = (n− 2)αλh− αβh(1+ 2
(2−n)α

). (3.11)

Putting (3.1) into (3.10), we obtain

△F = 2|∇2h|2 + (2 +
1

α
)
∇|∇h|2∇h

h
− (2 +

2

α
)
|∇h|4

h2
− 2(n− 2)αλ|∇h|2 + 2λ|∇h|2

+
2 + 2(2− n)α

α2(2− n)

|∇h|4

h2
− 2α(n− 2)h∇λ∇h+ 2(n− 2)αλmaxh|∇h|2 + 2G(h)△h. (3.12)

Consider a point O ∈ D . Rotating the orthonormal frame at O so that |∇h|(O) = h1(O) ̸= 0 . According to
(2.10) in [18], we have

2|∇2h|2 + (2 +
1

α
)
∇|∇h|2∇h

h
≥ 2n

n− 1
h2
11 −

4

n− 1
h11△h+

2

n− 1
(△h)2 +

4α+ 2

α

h11|∇h|2

h
. (3.13)

According to (3.9), we get

h11 =
∇F∇h

2|∇h|2
− (n− 2)αλmaxh+ αβh(1+ 2

(2−n)α
) =

∇F∇h

2|∇h|2
−G(h). (3.14)

Putting (3.14) into (3.13), we conclude that there exists a smooth vector field X on M such that

2|∇2h|2+(2+
1

α
)
∇|∇h|2∇h

h
≥ ∇F ·X+

2n

n− 1
[G(h)]2+

4

n− 1
G(h)△h+

2

n− 1
(△h)2−4α+ 2

α

|∇h|2

h
G(h). (3.15)

On the other hand, by (3.3) we have

2G(h)△h+
2n

n− 1
[G(h)]2 +

4

n− 1
G(h)△h+

2

n− 1
(△h)2

=
2n+ 2

n− 1
G(h)[(1 +

1

α
)
|∇h|2

h
− L(h)] +

2n

n− 1
[G(h)]2 +

2

n− 1
[(1 +

1

α
)
|∇h|2

h
− L(h)]2

=
2n+ 2

n− 1
G(h)(1 +

1

α
)
|∇h|2

h
− 2n+ 2

n− 1
G(h)L(h) +

2n

n− 1
[G(h)]2 +

2

n− 1
(1 +

1

α
)2
|∇h|4

h2

− 4

n− 1
(1 +

1

α
)
|∇h|2

h
L(h) +

2

n− 1
[L(h)]2. (3.16)

Since G(h) ≥ L(h) , then

2n

n− 1
[G(h)]2 − 2n+ 2

n− 1
G(h)L(h) +

2

n− 1
[L(h)]2
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=
2n

n− 1
[G(h)]2 − 2n

n− 1
G(h)L(h) +

2

n− 1
[L(h)]2 − 2

n− 1
G(h)L(h)

=
2n

n− 1
G(h)[G(h)− L(h)]− 2

n− 1
L(h)[G(h)− L(h)]

=
2

n− 1
[G(h)− L(h)][nG(h)− L(h)] ≥ 0. (3.17)

By (3.16) and (3.17), we obtain

2G(h)△h+
2n

n− 1
[G(h)]2 +

4

n− 1
G(h)△h+

2

n− 1
(△h)2

≥ 2n+ 2

n− 1
G(h)(1 +

1

α
)
|∇h|2

h
+

2

n− 1
(1 +

1

α
)2
|∇h|4

h2
− 4

n− 1
(1 +

1

α
)
|∇h|2

h
L(h). (3.18)

According to (3.12), (3.15) and (3.18), we get

△F ≥ ∇F ·X − 4α+ 2

α

|∇h|2

h
G(h) +

2n+ 2

n− 1
G(h)(1 +

1

α
)
|∇h|2

h
+

2

n− 1
(1 +

1

α
)2
|∇h|4

h2

− 4

n− 1
(1 +

1

α
)
|∇h|2

h
L(h)− (2 +

2

α
)
|∇h|4

h2
− 2(n− 2)αλ|∇h|2 + 2 + 2(2− n)α

α2(2− n)

|∇h|4

h2

+2λ|∇h|2 − 2α(n− 2)h∇λ∇h+ 2(n− 2)αλmaxh|∇h|2. (3.19)

Since G(h) ≥ L(h) , α > 0 and β ≥ 0 , then

[−4α+ 2

α
G(h) +

2n+ 2

n− 1
G(h)(1 +

1

α
)− 4

n− 1
(1 +

1

α
)L(h)]

|∇h|2

h
+ 2(n− 2)αλmaxh|∇h|2

= −2G(h)
|∇h|2

h
+

4

n− 1
(1 +

1

α
)[G(h)− L(h)]

|∇h|2

h
+ 2(n− 2)αλmaxh|∇h|2

= 2αβh
2

(2−n)α |∇h|2 + 4

n− 1
(1 +

1

α
)[G(h)− L(h)]

|∇h|2

h
≥ 0. (3.20)

By (3.20) and (3.19), we conclude that (3.8) is true. 2

Lemma 3.3 Suppose that M is a compact generalized (2− n)-quasi-Einstein manifold, α > 0 and β ≥ 0 . If
∇λ∇f ≤ 0 holds on M , then there exists a constant δ > 0 such that if |α− 1

n−2 | < δ then

∆F ≥ ∇F ·X − α(n− 2)h∇λ∇h (3.21)

holds on D .
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Proof Since M is a compact generalized (2− n) -quasi-Einstein manifold, then it is obvious that

lim
n→ 1

n−2

[
2

n− 1
(1 +

1

α
)2 − (2 +

2

α
) +

2 + 2(2− n)α

α2(2− n)
]
|∇h|4

h2
= 0

and
lim

n→ 1
n−2

[2λ|∇h|2 − 2α(n− 2)λ|∇h|2] = 0.

Since ∇λ∇f ≤ 0 , then α(n−2)h∇λ∇h ≤ 0 . Therefore, there exists a constant δ > 0 such that if |α− 1
n−2 | < δ

then

[
2

n− 1
(1 +

1

α
)2 − (2 +

2

α
) +

2 + 2(2− n)α

α2(2− n)
]
|∇h|4

h2
+ 2λ|∇h|2 − 2α(n− 2)λ|∇h|2 − α(n− 2)h∇λ∇h ≥ 0. (3.22)

By (3.22) and (3.8), we conclude that (3.21) is true. 2

Lemma 3.4 Suppose that M is a compact generalized (2− n)-quasi-Einstein manifold, α > 0 and β ≥ 0 . If
∇λ∇f ≤ 0 and ∇λ ̸= 0 holds on M , then there exists a constant δ > 0 such that if |α− 1

n−2 | < δ then

|∇h|2(x) ≤ G(h(x0))− G(h(x)) (3.23)

holds for all x ∈ M , where x0 is the maximum point of F (h(x)) on M and

G(h) = (n− 2)αλmaxh
2 − (2− n)α2

1 + (2− n)α
βh(2+ 2

(2−n)α
). (3.24)

Proof By Lemma 3.3, there exists a constant δ > 0 such that if |α− 1
n−2 | < δ then (3.21) holds. If x0 ∈ D ,

then there exists a neighborhood U of x0 so that U ⊂ D . Moreover, x0 is the maximum point of F (h(x)) on
U . By Lemma 3.3, we conclude that ∆F ≥ ∇F ·X holds on U . Therefore, by the Hopf maximum principle
in [6] we conclude that F is constant on U . Since ∆F (x0) ≤ 0 , ∇F (x0) = 0 , ∇λ∇f ≤ 0 and ∇λ ̸= 0 , (3.21)
tells us that ∇h(x0) = 0 , which is a contradiction with x0 ∈ D . Therefore, x0 is not in D , which means that
∇h(x0) = 0 . Thus |∇h|2(x) + G(h(x)) ≤ G(h(x0)) . 2

4. Diameter estimate and main result
In this section, we consider the lower diameter estimate for compact generalized (2−n) -quasi-Einstein manifold
M using the gradient estimate obtained in Lemma 3.4. If β ≤ 0 and λ ≥ 0 , by (2.1) and the Maximum
principle in [6] we conclude that M is an Einstein manifold. Under this consideration, we only discuss the
diameter estimate for compact generalized (2−n) -quasi-Einstein manifold with β > 0 . The main result of this
paper is

Theorem 4.1 Suppose that M is a compact generalized (2− n)-quasi-Einstein manifold satisfying (1.2). Let
ωf = maxx∈M f(x)−minx∈M f(x) and

d1 =
1√

λmax − λmine
2

2−nwf

(
π

2
− arcsin e

wf
2−n ), d2 =

1√
λmax

(
π

2
− arcsin e

ωf
2−n ).
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If ∇λ∇f ≤ 0 holds on M , n ≥ 3 , β > 0 , then the diameter of M satisfies

diamM ≥ max{d1, d2}.

Proof Suppose that δ is the constant mentioned in Lemma 3.4. Let |α − 1
n−2 | < δ . Then (3.23) holds.

Assume that x0 is the maximum point of F (h(x)) on M . By Lemma 3.4, for all x ∈ M ,

G(h(x)) ≤ |∇h|2(x) + G(h(x)) ≤ G(h(x0)).

Therefore, x0 is the maximum point of G(h(x)) . According to (3.24), we get

G′(t) = −2[(n− 2)αλmaxt− αβt(1+
2

(2−n)α
)].

Let x1 and x2 be the maximum and minimum points of h(x) on M , respectively. Similar to the proof of
Theorem 1.3 in [18], we conclude that x0 = x1 or x0 = x2 . we only consider the case that x0 = x1 . Choosing
a minimizing geodesic γ jointing x1 and x2 . Let h1 = h(x1) , h2 = h(x2) . Similar to the proof of Theorem 1.3
in [18], we have

diamM ≥
∫ h1

h2

dh√
G(h(x1))− G(h(x))

=

∫ h1

h2

dh√
(n− 2)αλmax(h2

1 − h2)− (2−n)α2β
1+(2−n)α [h

(2+ 2
(2−n)α

)

1 − h(2+ 2
(2−n)α

)]

=

∫ 1

h2
h1

dσ√
(n− 2)αλmax(1− σ2) + (n−2)α2β

1+(2−n)αh
2

(2−n)α

1 [1− σ(2+ 2
(2−n)α

)]

(4.1)

Since β > 0 , by Lemma 2.2 we have λmax > 0 . If α > 1
n−2 , then 1 + (2 − n)α < 0 . Therefore, by (4.1) we

conclude that

diamM ≥ 1√
(n− 2)αλmax

∫ 1

h2
h1

dσ√
1− σ2

=
1√

(n− 2)αλmax

(
π

2
− arcsin e−αwf ).

Let α → 1
n−2 from the right side of 1

n−2 . Then we have

diamM ≥ 1√
λmax

(
π

2
− arcsin e

ωf
2−n ). (4.2)

If 0 < α < 1
n−2 , we consider the function

S(σ) = −[1 + (2− n)α](1− σ2) + σ(2+ 2
(2−n)α

) − 1

on [h1

h0
, 1] . Since 0 < α < 1

n−2 , then (n− 2)α < 1 , σ
2

(2−n)α ≥ 1 , 2 + 2
(2−n)α < 0 . Therefore, we have

S′(σ) = [2 +
2

(2− n)α
][σ

2
(2−n)α − (n− 2)α]σ < 0.
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Thus, we conclude that S(σ) > S(1) = 0 . Then

1− σ(2+ 2
(2−n)α

) < −[1 + (2− n)α](1− σ2). (4.3)

Since β > 0 and 1 + (2− n)α > 0 , by (4.3) we get

(n− 2)α2β

1 + (2− n)α
h

2
(2−n)α

1 [1− σ(2+ 2
(2−n)α

)] < −(n− 2)α2βh
2

(2−n)α

1 (1− σ2). (4.4)

Since α > 0 , then x2 is a minimum point of f(x) . Let λmin = minx∈M λ(x) . According to (2.2) we have

βe
2

2−n f(x2) ≥ (n− 2)λ(x2) ≥ (n− 2)λmin. (4.5)

By (4.5), we obtain

βh
2

(2−n)α

1 = βe
2

2−nwf e
2

2−n f(x2) ≥ (n− 2)λmine
2

2−nwf . (4.6)

According to (4.1), (4.4) and (4.5), we have

diamM ≥ 1√
(n− 2)αλmax − (n− 2)2α2λmine

2
2−nwf

(
π

2
− arcsin e−αwf ).

Let α → 1
n−2 from the left side of 1

n−2 . Then

diamM ≥ 1√
λmax − λmine

2
2−nwf

(
π

2
− arcsin e

wf
2−n ). (4.7)

According to (4.2) and (4.7), we conclude that diamM ≥ max{d1, d2} . 2
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