tüßítak

Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/

Turk J Math
(2021) 45: $2331-2340$
© TÜBİTAK
doi:10.3906/mat-2106-93

Diameter estimate for a class of compact generalized quasi-Einstein manifolds

Yihua DENG* ${ }^{\text {(}}$
College of Mathematics and Statistics, Hengyang Normal University, Hengyang, Hunan, P. R. China

Received: 23.06.2021 • Accepted/Published Online: 06.09.2021 • Final Version: 16.09 .2021

Abstract

In this paper, we discuss the lower diameter estimate for a class of compact generalized quasi-Einstein manifolds which are closely related to the conformal geometry. Using the Bochner formula and the Hopf maximum principle, we get a gradient estimate for the potential function of the manifold. Based on the gradient estimate, we get the lower diameter estimate for this class of generalized quasi-Einstein manifolds.

Key words: Generalized quasi-Einstein manifolds, lower diameter estimate, the Bochner formula, maximum principle

1. Introduction

To extend the notion of quasi-Einstein, Catino [3] introduced the concept of generalized quasi-Einstein manifold. Let (M, g) be an n-dimensional Riemannian manifold with $n \geq 3$. If there exist three smooth functions f, β and λ on (M, g) such that the Ricci tensor satisfy

$$
\begin{equation*}
\operatorname{Ric}+\nabla^{2} f-\beta d f \otimes d f=\lambda g \tag{1.1}
\end{equation*}
$$

then (M, g) is called a generalized quasi-Einstein manifold, where ∇^{2} and \otimes denote the Hessian and the tensorial product, respectively. The function f in (1.1) is usually called potential function. If m is a positive integer and $\beta=m^{-1}$, then (M, g) is called generalized m-quasi-Einstein manifold (see [2]). Natural examples of generalized quasi-Einstein manifolds are given by Einstein manifolds, gradient Ricci solitons, gradient Ricci almost solitons and quasi-Einstein manifolds.

The classification of generalized m-quasi-Einstein manifolds is extensively studied, see for example $[1,2$, $7,9,10,11,14]$. Nowadays, the study of diameter estimate is an attractive topic in Riemannian geometry. Wei and Wylie [19] studied the upper diameter estimate and extended the Bonnet-Myers theorem to the Riemannian manifold with Bakry-Emery curvature bounded from below. Limoncu [12, 13], Soylu [16] and Tadano [17] improved the upper diameter estimate in [19]. Futaki and Sano [5] obtained a lower diameter bound for compact shrinking Ricci soliton. Futaki and Li [4] improved the diameter estimate in [5]. Wang [18] got a lower diameter bound for compact τ-quasi-Einstein manifold. Hu, Mao and Wang [8] got a lower diameter estimate for compact generalized quasi-Einstein manifold satisfying $\lambda=\lambda(f), \lambda^{\prime}(t) \geq 0$ and $\left[t^{\frac{2}{\alpha_{0}(n-2)}} \lambda(t)\right]^{\prime} \geq 0$.

Let (M, g) be an n-dimensional Riemannian manifold with $n \geq 3$. If there exist smooth functions f

[^0]and λ on (M, g) such that the Ricci tensor satisfy
\[

$$
\begin{equation*}
\operatorname{Ric}+\nabla^{2} f-\frac{1}{2-n} d f \otimes d f=\lambda g \tag{1.2}
\end{equation*}
$$

\]

then M is called generalized $(2-n)$-quasi-Einstein manifold in this paper. Generalized $(2-n)$-quasi-Einstein manifolds are closely related to the conformal metric $\widetilde{g}=e^{-\frac{2}{n-2} f} g$ which is important in conformal geometry. Jauregui and Wylie [11] got the classification of generalized quasi-Einstein manifolds admitting a conformal diffeomorphism using the metric $\widetilde{g}=e^{-\frac{2}{n-2} f} g$. Remark 3.3 in [11] shows that the conformal metric $\widetilde{g}=e^{-\frac{2}{n-2} f} g$ is an Einstein metric if and only if (M, g) is a generalized $(2-n)$-quasi-Einstein manifold. Catino [3] gave a local characterization of generalized quasi-Einstein manifolds with harmonic weyl tensor using $\widetilde{g}=e^{-\frac{2}{n-2} f} g$. Ribeiro and Tenenblat [15] provided a complete classification of generalized ($2-n$)-quasi-Einstein manifolds satisfying (1.2) with $\lambda=0$.

Motivated by $[8,10,11,15,18]$, we study the lower diameter estimate for generalized $(2-n)$-quasiEinstein manifolds satisfying (1.2). As far as we know, the study of the diameter estimate for nontrivial generalized quasi-Einstein manifolds is very few up to now. Since λ is a function in generalized quasi-Einstein manifolds, the diameter estimate of generalized quasi-Einstein manifolds is much more difficult than that of quasi-Einstein manifolds. To overcome this difficult, we need to use some new skills.

2. Some basic lemmas for generalized ($2-n$)-quasi-Einstein manifolds

Generalized $(2-n)$-quasi-Einstein manifolds are closely related to the conformal metric $\widetilde{g}=e^{-\frac{2}{n-2} f} g$ which is important in conformal geometry. In this section, we give some basic lemmas for generalized $(2-n)$-quasiEinstein manifolds.

Lemma 2.1 If (M, g) is a generalized ($2-n$)-quasi-Einstein manifold satisfying (1.2), then there exists a constant β such that the following equality holds

$$
\begin{equation*}
\Delta f-|\nabla f|^{2}+(n-2) \lambda-\beta e^{\frac{2}{2-n} f}=0 . \tag{2.1}
\end{equation*}
$$

Proof Similar to Lemma 2 in [2], we have

$$
\begin{equation*}
\nabla R=\frac{2(1-n)}{2-n} \operatorname{Ric}(\nabla f)+\frac{2}{2-n}(R-(n-1) \lambda) \nabla f+2(n-1) \nabla \lambda \tag{2.2}
\end{equation*}
$$

and

$$
\begin{equation*}
R+\triangle f-\frac{1}{2-n}|\nabla f|^{2}=n \lambda . \tag{2.3}
\end{equation*}
$$

It follows from (1.2) that

$$
\begin{equation*}
\operatorname{Ric}(\nabla f)=\lambda \nabla f-\frac{1}{2} \nabla|\nabla f|^{2}+\frac{1}{2-n}|\nabla f|^{2} \nabla f . \tag{2.4}
\end{equation*}
$$

Putting (2.4) into (2.2), we obtain

$$
\nabla R=\frac{2(1-n)}{2-n}\left[\lambda \nabla f-\frac{1}{2} \nabla|\nabla f|^{2}+\frac{1}{2-n}|\nabla f|^{2} \nabla f\right]+\frac{2}{2-n}(R-(n-1) \lambda) \nabla f+2(n-1) \nabla \lambda
$$

$$
\begin{equation*}
=\frac{4(1-n)}{2-n} \lambda \nabla f-\frac{1-n}{2-n} \nabla|\nabla f|^{2}+\frac{2(1-n)}{(2-n)^{2}}|\nabla f|^{2} \nabla f+\frac{2}{2-n} R \nabla f+2(n-1) \nabla \lambda . \tag{2.5}
\end{equation*}
$$

By (2.5), we have

$$
\begin{equation*}
\nabla R-\frac{2}{2-n} R \nabla f=2(n-1)\left(\nabla \lambda-\frac{2}{2-n} \lambda \nabla f\right)-\frac{1-n}{2-n}\left(\nabla|\nabla f|^{2}-\frac{2}{2-n}|\nabla f|^{2} \nabla f\right) \tag{2.6}
\end{equation*}
$$

According to (2.6), we arrive at

$$
\nabla\left(R e^{\frac{2}{n-2} f}\right)=2(n-1) \nabla\left(\lambda e^{\frac{2}{n-2} f}\right)-\frac{1-n}{2-n} \nabla\left(|\nabla f|^{2} e^{\frac{2}{n-2} f}\right)
$$

Therefore, we conclude that there exists a constant β such that

$$
R e^{\frac{2}{n-2} f}-2(n-1)\left(\lambda e^{\frac{2}{n-2} f}\right)+\frac{1-n}{2-n}\left(|\nabla f|^{2} e^{\frac{2}{n-2} f}\right)=-\beta
$$

Thus

$$
\begin{equation*}
R-2(n-1) \lambda+\frac{1-n}{2-n}|\nabla f|^{2}+\beta e^{\frac{2}{2-n} f}=0 \tag{2.7}
\end{equation*}
$$

On the other hand, by (2.3) we have

$$
\begin{equation*}
R=-\triangle f+\frac{1}{2-n}|\nabla f|^{2}+n \lambda \tag{2.8}
\end{equation*}
$$

Putting (2.8) into (2.7), we conclude that (2.1) is true.

Lemma 2.2 Suppose that (M, g) is a compact generalized $(2-n)$-quasi-Einstein manifold satisfying (1.2), $\lambda_{\max }=\max _{x \in M} \lambda(x)$. If $\beta>0$, then $\lambda_{\max }>0$.

Proof Suppose that $x_{0} \in M$ is the maximum point of f. Then $\triangle f\left(x_{0}\right) \leq 0$ and $\nabla f\left(x_{0}\right)=0$. Since $\beta>0$, by (2.1) we have

$$
(n-2) \lambda_{\max } \geq(n-2) \lambda\left(x_{0}\right) \geq \beta e^{\frac{2}{2-n} f\left(x_{0}\right)}>0
$$

The proof of Lemma 2.2 is complete.

3. Gradient estimate

To consider the lower diameter estimate for compact generalized ($2-n$)-quasi-Einstein manifold M satisfying (1.2), we need to get a gradient estimate for $h=e^{\alpha f}$.

Lemma 3.1 Let $h=e^{\alpha f}$. If β is the constant in Lemma 2.1, then the following equality holds

$$
\begin{align*}
\triangle|\nabla h|^{2}= & 2\left|\nabla^{2} h\right|^{2}+\left(2+\frac{1}{\alpha}\right) \frac{\nabla|\nabla h|^{2} \nabla h}{h}-\left(2+\frac{2}{\alpha}\right) \frac{|\nabla h|^{4}}{h^{2}}-2(n-2) \alpha \lambda|\nabla h|^{2}+2 \lambda|\nabla h|^{2} \\
& +2\left[1+\frac{2}{(2-n) \alpha}\right] \alpha \beta h^{\frac{2}{(2-n) \alpha}}|\nabla h|^{2}+\frac{2+2(2-n) \alpha}{\alpha^{2}(2-n)} \frac{|\nabla h|^{4}}{h^{2}}-2 \alpha(n-2) h \nabla \lambda \nabla h \tag{3.1}
\end{align*}
$$

on generalized $(2-n)$-quasi-Einstein manifolds.

Proof Direct calculation shows that

$$
\begin{equation*}
\Delta h=\alpha^{2} e^{\alpha f}|\nabla f|^{2}+\alpha e^{\alpha f} \Delta f=h\left(\alpha^{2}|\nabla f|^{2}+\alpha \Delta f\right) \tag{3.2}
\end{equation*}
$$

Since $\nabla h=\alpha h \nabla f$, by (2.1) and (3.2) we conclude that

$$
\begin{equation*}
\Delta h=\left(1+\frac{1}{\alpha}\right) \frac{|\nabla h|^{2}}{h}-(n-2) \alpha \lambda h+\alpha \beta h^{\left(1+\frac{2}{(2-n) \alpha}\right)} . \tag{3.3}
\end{equation*}
$$

Therefore

$$
\begin{align*}
2 \nabla \Delta h \cdot \nabla h= & 2 \nabla\left[\left(1+\frac{1}{\alpha}\right) \frac{|\nabla h|^{2}}{h}-(n-2) \alpha \lambda h+\alpha \beta h^{\left(1+\frac{2}{(2-n) \alpha}\right)}\right] \nabla h \\
= & \left(2+\frac{2}{\alpha}\right) \frac{\nabla|\nabla h|^{2} \nabla h}{h}-\left(2+\frac{2}{\alpha}\right) \frac{|\nabla h|^{4}}{h^{2}}-2(n-2) \alpha \lambda|\nabla h|^{2} \\
& +2\left(1+\frac{2}{(2-n) \alpha}\right) \alpha \beta h^{\frac{2}{(2-n) \alpha}}|\nabla h|^{2}-2 \alpha(n-2) h \nabla \lambda \nabla h . \tag{3.4}
\end{align*}
$$

Since $\nabla h=\alpha h \nabla f$, by (1.2) we have

$$
\begin{equation*}
2 \operatorname{Ric}(\nabla h, \nabla h)=2 \lambda|\nabla h|^{2}+\frac{2+2(2-n) \alpha}{\alpha^{2}(2-n)} \frac{|\nabla h|^{4}}{h^{2}}-\frac{\nabla|\nabla h|^{2} \nabla h}{\alpha h} . \tag{3.5}
\end{equation*}
$$

On the other hand, according to the Bochner formula we have

$$
\begin{equation*}
\Delta|\nabla h|^{2}=2\left|\nabla^{2} h\right|^{2}+2 \nabla \Delta h \cdot \nabla h+2 \operatorname{Ric}(\nabla h, \nabla h) \tag{3.6}
\end{equation*}
$$

Putting (3.4) and (3.5) into (3.6), we conclude that (3.1) is true.
In the following, we always suppose that M is a compact generalized $(2-n)$-quasi-Einstein manifold, $\lambda_{\max }=\max _{x \in M} \lambda(x), h=e^{\alpha f}, D=\{x \in M ; \nabla h(x) \neq 0\}, \beta$ is the constant in Lemma 2.1 and

$$
\begin{equation*}
F(h)=|\nabla h|^{2}+(n-2) \alpha \lambda_{\max } h^{2}-\frac{(2-n) \alpha^{2}}{1+(2-n) \alpha} \beta h^{\left(2+\frac{2}{(2-n) \alpha}\right)} . \tag{3.7}
\end{equation*}
$$

Lemma 3.2 If $\alpha>0$ and $\beta \geq 0$, then there exists a smooth vector field X on M such that

$$
\begin{align*}
\Delta F \geq & \nabla F \cdot X+\frac{[\alpha(n-2)-1]^{2}}{\alpha^{2}(2-n)(n-1)} \frac{|\nabla h|^{4}}{h^{2}}+2 \lambda|\nabla h|^{2}-2 \alpha(n-2) \lambda|\nabla h|^{2} \\
& -2 \alpha(n-2) h \nabla \lambda \nabla h+\left[\frac{2}{n-1}\left(1+\frac{1}{\alpha}\right)^{2}-\left(2+\frac{2}{\alpha}\right)+\frac{2+2(2-n) \alpha}{\alpha^{2}(2-n)}\right] \frac{|\nabla h|^{4}}{h^{2}} \tag{3.8}
\end{align*}
$$

holds on D.
Proof Direct calculation shows that

$$
\begin{equation*}
\nabla F=\nabla|\nabla h|^{2}+2(n-2) \alpha \lambda_{\max } h \nabla h-2 \alpha \beta h^{\left(1+\frac{2}{(2-n) \alpha}\right)} \nabla h . \tag{3.9}
\end{equation*}
$$

Therefore, we have

$$
\begin{align*}
\triangle F= & \Delta|\nabla h|^{2}+2(n-2) \alpha \lambda_{\max } h|\nabla h|^{2}+2(n-2) \alpha \lambda_{\max } h \triangle h \\
& -2 \alpha \beta h^{\left(1+\frac{2}{(2-n) \alpha}\right)} \triangle h-2\left[1+\frac{2}{(2-n) \alpha}\right] \alpha \beta h^{\frac{2}{(2-n) \alpha}}|\nabla h|^{2} . \tag{3.10}
\end{align*}
$$

For the purpose of convenience, we let

$$
\begin{equation*}
G(h)=(n-2) \alpha \lambda_{\max } h-\alpha \beta h^{\left(1+\frac{2}{(2-n) \alpha}\right)}, \quad L(h)=(n-2) \alpha \lambda h-\alpha \beta h^{\left(1+\frac{2}{(2-n) \alpha}\right)} . \tag{3.11}
\end{equation*}
$$

Putting (3.1) into (3.10), we obtain

$$
\begin{align*}
\triangle F= & 2\left|\nabla^{2} h\right|^{2}+\left(2+\frac{1}{\alpha}\right) \frac{\nabla|\nabla h|^{2} \nabla h}{h}-\left(2+\frac{2}{\alpha}\right) \frac{|\nabla h|^{4}}{h^{2}}-2(n-2) \alpha \lambda|\nabla h|^{2}+2 \lambda|\nabla h|^{2} \\
& +\frac{2+2(2-n) \alpha}{\alpha^{2}(2-n)} \frac{|\nabla h|^{4}}{h^{2}}-2 \alpha(n-2) h \nabla \lambda \nabla h+2(n-2) \alpha \lambda_{\max } h|\nabla h|^{2}+2 G(h) \triangle h . \tag{3.12}
\end{align*}
$$

Consider a point $O \in D$. Rotating the orthonormal frame at O so that $|\nabla h|(O)=h_{1}(O) \neq 0$. According to (2.10) in [18], we have

$$
\begin{equation*}
2\left|\nabla^{2} h\right|^{2}+\left(2+\frac{1}{\alpha}\right) \frac{\nabla|\nabla h|^{2} \nabla h}{h} \geq \frac{2 n}{n-1} h_{11}^{2}-\frac{4}{n-1} h_{11} \Delta h+\frac{2}{n-1}(\Delta h)^{2}+\frac{4 \alpha+2}{\alpha} \frac{h_{11}|\nabla h|^{2}}{h} . \tag{3.13}
\end{equation*}
$$

According to (3.9), we get

$$
\begin{equation*}
h_{11}=\frac{\nabla F \nabla h}{2|\nabla h|^{2}}-(n-2) \alpha \lambda_{\max } h+\alpha \beta h^{\left(1+\frac{2}{(2-n) \alpha}\right)}=\frac{\nabla F \nabla h}{2|\nabla h|^{2}}-G(h) \tag{3.14}
\end{equation*}
$$

Putting (3.14) into (3.13), we conclude that there exists a smooth vector field X on M such that

$$
\begin{equation*}
2\left|\nabla^{2} h\right|^{2}+\left(2+\frac{1}{\alpha}\right) \frac{\nabla|\nabla h|^{2} \nabla h}{h} \geq \nabla F \cdot X+\frac{2 n}{n-1}[G(h)]^{2}+\frac{4}{n-1} G(h) \triangle h+\frac{2}{n-1}(\triangle h)^{2}-\frac{4 \alpha+2}{\alpha} \frac{|\nabla h|^{2}}{h} G(h) . \tag{3.15}
\end{equation*}
$$

On the other hand, by (3.3) we have

$$
\begin{align*}
& 2 G(h) \triangle h+\frac{2 n}{n-1}[G(h)]^{2}+\frac{4}{n-1} G(h) \triangle h+\frac{2}{n-1}(\triangle h)^{2} \\
&= \frac{2 n+2}{n-1} G(h)\left[\left(1+\frac{1}{\alpha}\right) \frac{|\nabla h|^{2}}{h}-L(h)\right]+\frac{2 n}{n-1}[G(h)]^{2}+\frac{2}{n-1}\left[\left(1+\frac{1}{\alpha}\right) \frac{|\nabla h|^{2}}{h}-L(h)\right]^{2} \\
& \quad= \frac{2 n+2}{n-1} G(h)\left(1+\frac{1}{\alpha}\right) \frac{|\nabla h|^{2}}{h}-\frac{2 n+2}{n-1} G(h) L(h)+\frac{2 n}{n-1}[G(h)]^{2}+\frac{2}{n-1}\left(1+\frac{1}{\alpha}\right)^{2} \frac{|\nabla h|^{4}}{h^{2}} \\
&-\frac{4}{n-1}\left(1+\frac{1}{\alpha}\right) \frac{|\nabla h|^{2}}{h} L(h)+\frac{2}{n-1}[L(h)]^{2} . \tag{3.16}
\end{align*}
$$

Since $G(h) \geq L(h)$, then

$$
\frac{2 n}{n-1}[G(h)]^{2}-\frac{2 n+2}{n-1} G(h) L(h)+\frac{2}{n-1}[L(h)]^{2}
$$

$$
\begin{align*}
& =\frac{2 n}{n-1}[G(h)]^{2}-\frac{2 n}{n-1} G(h) L(h)+\frac{2}{n-1}[L(h)]^{2}-\frac{2}{n-1} G(h) L(h) \\
& =\frac{2 n}{n-1} G(h)[G(h)-L(h)]-\frac{2}{n-1} L(h)[G(h)-L(h)] \\
& =\frac{2}{n-1}[G(h)-L(h)][n G(h)-L(h)] \geq 0 \tag{3.17}
\end{align*}
$$

By (3.16) and (3.17), we obtain

$$
\begin{align*}
2 G(h) & \Delta h+\frac{2 n}{n-1}[G(h)]^{2}+\frac{4}{n-1} G(h) \Delta h+\frac{2}{n-1}(\Delta h)^{2} \\
& \geq \frac{2 n+2}{n-1} G(h)\left(1+\frac{1}{\alpha}\right) \frac{|\nabla h|^{2}}{h}+\frac{2}{n-1}\left(1+\frac{1}{\alpha}\right)^{2} \frac{|\nabla h|^{4}}{h^{2}}-\frac{4}{n-1}\left(1+\frac{1}{\alpha}\right) \frac{|\nabla h|^{2}}{h} L(h) . \tag{3.18}
\end{align*}
$$

According to (3.12), (3.15) and (3.18), we get

$$
\begin{align*}
\triangle F \geq & \nabla F \cdot X-\frac{4 \alpha+2}{\alpha} \frac{|\nabla h|^{2}}{h} G(h)+\frac{2 n+2}{n-1} G(h)\left(1+\frac{1}{\alpha}\right) \frac{|\nabla h|^{2}}{h}+\frac{2}{n-1}\left(1+\frac{1}{\alpha}\right)^{2} \frac{|\nabla h|^{4}}{h^{2}} \\
& -\frac{4}{n-1}\left(1+\frac{1}{\alpha}\right) \frac{|\nabla h|^{2}}{h} L(h)-\left(2+\frac{2}{\alpha}\right) \frac{|\nabla h|^{4}}{h^{2}}-2(n-2) \alpha \lambda|\nabla h|^{2}+\frac{2+2(2-n) \alpha}{\alpha^{2}(2-n)} \frac{|\nabla h|^{4}}{h^{2}} \\
& +2 \lambda|\nabla h|^{2}-2 \alpha(n-2) h \nabla \lambda \nabla h+2(n-2) \alpha \lambda_{\max } h|\nabla h|^{2} . \tag{3.19}
\end{align*}
$$

Since $G(h) \geq L(h), \alpha>0$ and $\beta \geq 0$, then

$$
\begin{align*}
& {\left[-\frac{4 \alpha+2}{\alpha} G(h)+\frac{2 n+2}{n-1} G(h)\left(1+\frac{1}{\alpha}\right)-\frac{4}{n-1}\left(1+\frac{1}{\alpha}\right) L(h)\right] \frac{|\nabla h|^{2}}{h}+2(n-2) \alpha \lambda_{\max } h|\nabla h|^{2}} \\
& \quad=-2 G(h) \frac{|\nabla h|^{2}}{h}+\frac{4}{n-1}\left(1+\frac{1}{\alpha}\right)[G(h)-L(h)] \frac{|\nabla h|^{2}}{h}+2(n-2) \alpha \lambda_{\max } h|\nabla h|^{2} \\
& \quad=2 \alpha \beta h^{\frac{2}{(2-n) \alpha}}|\nabla h|^{2}+\frac{4}{n-1}\left(1+\frac{1}{\alpha}\right)[G(h)-L(h)] \frac{|\nabla h|^{2}}{h} \geq 0 \tag{3.20}
\end{align*}
$$

By (3.20) and (3.19), we conclude that (3.8) is true.

Lemma 3.3 Suppose that M is a compact generalized $(2-n)$-quasi-Einstein manifold, $\alpha>0$ and $\beta \geq 0$. If $\nabla \lambda \nabla f \leq 0$ holds on M, then there exists a constant $\delta>0$ such that if $\left|\alpha-\frac{1}{n-2}\right|<\delta$ then

$$
\begin{equation*}
\Delta F \geq \nabla F \cdot X-\alpha(n-2) h \nabla \lambda \nabla h \tag{3.21}
\end{equation*}
$$

holds on D.

Proof Since M is a compact generalized $(2-n)$-quasi-Einstein manifold, then it is obvious that

$$
\lim _{n \rightarrow \frac{1}{n-2}}\left[\frac{2}{n-1}\left(1+\frac{1}{\alpha}\right)^{2}-\left(2+\frac{2}{\alpha}\right)+\frac{2+2(2-n) \alpha}{\alpha^{2}(2-n)}\right] \frac{|\nabla h|^{4}}{h^{2}}=0
$$

and

$$
\lim _{n \rightarrow \frac{1}{n-2}}\left[2 \lambda|\nabla h|^{2}-2 \alpha(n-2) \lambda|\nabla h|^{2}\right]=0
$$

Since $\nabla \lambda \nabla f \leq 0$, then $\alpha(n-2) h \nabla \lambda \nabla h \leq 0$. Therefore, there exists a constant $\delta>0$ such that if $\left|\alpha-\frac{1}{n-2}\right|<\delta$ then

$$
\begin{equation*}
\left[\frac{2}{n-1}\left(1+\frac{1}{\alpha}\right)^{2}-\left(2+\frac{2}{\alpha}\right)+\frac{2+2(2-n) \alpha}{\alpha^{2}(2-n)}\right] \frac{|\nabla h|^{4}}{h^{2}}+2 \lambda|\nabla h|^{2}-2 \alpha(n-2) \lambda|\nabla h|^{2}-\alpha(n-2) h \nabla \lambda \nabla h \geq 0 . \tag{3.22}
\end{equation*}
$$

By (3.22) and (3.8), we conclude that (3.21) is true.

Lemma 3.4 Suppose that M is a compact generalized $(2-n)$-quasi-Einstein manifold, $\alpha>0$ and $\beta \geq 0$. If $\nabla \lambda \nabla f \leq 0$ and $\nabla \lambda \neq 0$ holds on M, then there exists a constant $\delta>0$ such that if $\left|\alpha-\frac{1}{n-2}\right|<\delta$ then

$$
\begin{equation*}
|\nabla h|^{2}(x) \leq \mathcal{G}\left(h\left(x_{0}\right)\right)-\mathcal{G}(h(x)) \tag{3.23}
\end{equation*}
$$

holds for all $x \in M$, where x_{0} is the maximum point of $F(h(x))$ on M and

$$
\begin{equation*}
\mathcal{G}(h)=(n-2) \alpha \lambda_{\max } h^{2}-\frac{(2-n) \alpha^{2}}{1+(2-n) \alpha} \beta h^{\left(2+\frac{2}{(2-n) \alpha}\right)} \tag{3.24}
\end{equation*}
$$

Proof By Lemma 3.3, there exists a constant $\delta>0$ such that if $\left|\alpha-\frac{1}{n-2}\right|<\delta$ then (3.21) holds. If $x_{0} \in D$, then there exists a neighborhood \mathcal{U} of x_{0} so that $\mathcal{U} \subset D$. Moreover, x_{0} is the maximum point of $F(h(x))$ on \mathcal{U}. By Lemma 3.3, we conclude that $\Delta F \geq \nabla F \cdot X$ holds on \mathcal{U}. Therefore, by the Hopf maximum principle in [6] we conclude that F is constant on \mathcal{U}. Since $\Delta F\left(x_{0}\right) \leq 0, \nabla F\left(x_{0}\right)=0, \nabla \lambda \nabla f \leq 0$ and $\nabla \lambda \neq 0,(3.21)$ tells us that $\nabla h\left(x_{0}\right)=0$, which is a contradiction with $x_{0} \in D$. Therefore, x_{0} is not in D, which means that $\nabla h\left(x_{0}\right)=0$. Thus $|\nabla h|^{2}(x)+\mathcal{G}(h(x)) \leq \mathcal{G}\left(h\left(x_{0}\right)\right)$.

4. Diameter estimate and main result

In this section, we consider the lower diameter estimate for compact generalized $(2-n)$-quasi-Einstein manifold M using the gradient estimate obtained in Lemma 3.4. If $\beta \leq 0$ and $\lambda \geq 0$, by (2.1) and the Maximum principle in [6] we conclude that M is an Einstein manifold. Under this consideration, we only discuss the diameter estimate for compact generalized $(2-n)$-quasi-Einstein manifold with $\beta>0$. The main result of this paper is

Theorem 4.1 Suppose that M is a compact generalized $(2-n)$-quasi-Einstein manifold satisfying (1.2). Let $\omega_{f}=\max _{x \in M} f(x)-\min _{x \in M} f(x)$ and

$$
d_{1}=\frac{1}{\sqrt{\lambda_{\max }-\lambda_{\min } e^{\frac{2}{2-n} w_{f}}}}\left(\frac{\pi}{2}-\arcsin e^{\frac{w_{f}}{2-n}}\right), \quad d_{2}=\frac{1}{\sqrt{\lambda_{\max }}}\left(\frac{\pi}{2}-\arcsin e^{\frac{\omega_{f}}{2-n}}\right)
$$

If $\nabla \lambda \nabla f \leq 0$ holds on $M, n \geq 3, \beta>0$, then the diameter of M satisfies

$$
\operatorname{diam} M \geq \max \left\{d_{1}, d_{2}\right\}
$$

Proof Suppose that δ is the constant mentioned in Lemma 3.4. Let $\left|\alpha-\frac{1}{n-2}\right|<\delta$. Then (3.23) holds. Assume that x_{0} is the maximum point of $F(h(x))$ on M. By Lemma 3.4, for all $x \in M$,

$$
\mathcal{G}(h(x)) \leq|\nabla h|^{2}(x)+\mathcal{G}(h(x)) \leq \mathcal{G}\left(h\left(x_{0}\right)\right) .
$$

Therefore, x_{0} is the maximum point of $\mathcal{G}(h(x))$. According to (3.24), we get

$$
\mathcal{G}^{\prime}(t)=-2\left[(n-2) \alpha \lambda_{\max } t-\alpha \beta t^{\left(1+\frac{2}{(2-n) \alpha}\right)}\right]
$$

Let x_{1} and x_{2} be the maximum and minimum points of $h(x)$ on M, respectively. Similar to the proof of Theorem 1.3 in [18], we conclude that $x_{0}=x_{1}$ or $x_{0}=x_{2}$. we only consider the case that $x_{0}=x_{1}$. Choosing a minimizing geodesic γ jointing x_{1} and x_{2}. Let $h_{1}=h\left(x_{1}\right), h_{2}=h\left(x_{2}\right)$. Similar to the proof of Theorem 1.3 in [18], we have

$$
\begin{align*}
\operatorname{diam} M & \geq \int_{h_{2}}^{h_{1}} \frac{d h}{\sqrt{\mathcal{G}\left(h\left(x_{1}\right)\right)-\mathcal{G}(h(x))}} \\
& =\int_{h_{2}}^{h_{1}} \frac{d h}{\sqrt{(n-2) \alpha \lambda_{\max }\left(h_{1}^{2}-h^{2}\right)-\frac{(2-n) \alpha^{2} \beta}{1+(2-n) \alpha}\left[h_{1}^{\left(2+\frac{2}{(2-n) \alpha}\right)}-h^{\left(2+\frac{2}{(2-n) \alpha}\right)}\right]}} \\
& =\int_{\frac{h_{2}}{h_{1}}}^{1} \frac{d \sigma}{\sqrt{(n-2) \alpha \lambda_{\max }\left(1-\sigma^{2}\right)+\frac{(n-2) \alpha^{2} \beta}{1+(2-n) \alpha} h_{1}^{\frac{2}{(2-n) \alpha}}\left[1-\sigma^{\left(2+\frac{2}{(2-n) \alpha}\right)}\right.}} \tag{4.1}
\end{align*}
$$

Since $\beta>0$, by Lemma 2.2 we have $\lambda_{\max }>0$. If $\alpha>\frac{1}{n-2}$, then $1+(2-n) \alpha<0$. Therefore, by (4.1) we conclude that

$$
\operatorname{diam} M \geq \frac{1}{\sqrt{(n-2) \alpha \lambda_{\max }}} \int_{\frac{h_{2}}{h_{1}}}^{1} \frac{d \sigma}{\sqrt{1-\sigma^{2}}}=\frac{1}{\sqrt{(n-2) \alpha \lambda_{\max }}}\left(\frac{\pi}{2}-\arcsin e^{-\alpha w_{f}}\right)
$$

Let $\alpha \rightarrow \frac{1}{n-2}$ from the right side of $\frac{1}{n-2}$. Then we have

$$
\begin{equation*}
\operatorname{diam} M \geq \frac{1}{\sqrt{\lambda_{\max }}}\left(\frac{\pi}{2}-\arcsin e^{\frac{\omega_{f}}{2-n}}\right) \tag{4.2}
\end{equation*}
$$

If $0<\alpha<\frac{1}{n-2}$, we consider the function

$$
S(\sigma)=-[1+(2-n) \alpha]\left(1-\sigma^{2}\right)+\sigma^{\left(2+\frac{2}{(2-n) \alpha}\right)}-1
$$

on $\left[\frac{h_{1}}{h_{0}}, 1\right]$. Since $0<\alpha<\frac{1}{n-2}$, then $(n-2) \alpha<1, \sigma^{\frac{2}{(2-n) \alpha}} \geq 1,2+\frac{2}{(2-n) \alpha}<0$. Therefore, we have

$$
S^{\prime}(\sigma)=\left[2+\frac{2}{(2-n) \alpha}\right]\left[\sigma^{\frac{2}{(2-n) \alpha}}-(n-2) \alpha\right] \sigma<0 .
$$

Thus, we conclude that $S(\sigma)>S(1)=0$. Then

$$
\begin{equation*}
1-\sigma^{\left(2+\frac{2}{(2-n) \alpha}\right)}<-[1+(2-n) \alpha]\left(1-\sigma^{2}\right) \tag{4.3}
\end{equation*}
$$

Since $\beta>0$ and $1+(2-n) \alpha>0$, by (4.3) we get

$$
\begin{equation*}
\frac{(n-2) \alpha^{2} \beta}{1+(2-n) \alpha} h_{1}^{\frac{2}{(2-n) \alpha}}\left[1-\sigma^{\left(2+\frac{2}{(2-n) \alpha}\right)}\right]<-(n-2) \alpha^{2} \beta h_{1}^{\frac{2}{(2-n) \alpha}}\left(1-\sigma^{2}\right) \tag{4.4}
\end{equation*}
$$

Since $\alpha>0$, then x_{2} is a minimum point of $f(x)$. Let $\lambda_{\min }=\min _{x \in M} \lambda(x)$. According to (2.2) we have

$$
\begin{equation*}
\beta e^{\frac{2}{2-n} f\left(x_{2}\right)} \geq(n-2) \lambda\left(x_{2}\right) \geq(n-2) \lambda_{\min } \tag{4.5}
\end{equation*}
$$

By (4.5), we obtain

$$
\begin{equation*}
\beta h_{1}^{\frac{2}{(2-n) \alpha}}=\beta e^{\frac{2}{2-n} w_{f}} e^{\frac{2}{2-n} f\left(x_{2}\right)} \geq(n-2) \lambda_{\min } e^{\frac{2}{2-n} w_{f}} \tag{4.6}
\end{equation*}
$$

According to (4.1), (4.4) and (4.5), we have

$$
\operatorname{diam} M \geq \frac{1}{\sqrt{(n-2) \alpha \lambda_{\max }-(n-2)^{2} \alpha^{2} \lambda_{\min } e^{\frac{2}{2-n} w_{f}}}}\left(\frac{\pi}{2}-\arcsin e^{-\alpha w_{f}}\right)
$$

Let $\alpha \rightarrow \frac{1}{n-2}$ from the left side of $\frac{1}{n-2}$. Then

$$
\begin{equation*}
\operatorname{diam} M \geq \frac{1}{\sqrt{\lambda_{\max }-\lambda_{\min } e^{\frac{2}{2-n} w_{f}}}}\left(\frac{\pi}{2}-\arcsin e^{\frac{w_{f}}{2-n}}\right) \tag{4.7}
\end{equation*}
$$

According to (4.2) and (4.7), we conclude that $\operatorname{diam} M \geq \max \left\{d_{1}, d_{2}\right\}$.

Acknowledgment

This work is supported by the discipline special research projects of Hengyang Normal University (XKZX21002, KYZX21003), Application-oriented Special Disciplines, Double First-Class University Project of Hunan Province (Xiangjiaotong[2018]469), the science and technology plan project of Hunan province (2016TP1020).

References

[1] Barros A, Gomes J. A compact gradient generalized quasi-Einstein metric with constant scalar curvature. Journal of Mathematical Analysis and Applications 2013; 401: 702-705.
[2] Barros A, Ribeiro JE. Characterizations and integral formulae for generalized m-quasi-Einstein metrics. Bulletin Brazilian Mathematical Society (N.S) 2014; 45: 325-341.
[3] Catino G. Generalized quasi-Einstein manifolds with harmonic weyl tensor. Mathematische Zeitschrift 2012; 271: 751-756.
[4] Futaki A, Li H, Li X. On the first eigenvalue of the Witten-Laplacian and the diameter of compact shrinking solitons. Annals of Global Analysis and Geometry 2013; 44: 105-114.
[5] Futaki A, Sano Y. Lower diameter bounds for compact shrinking Ricci solitons. Asian Journal of Mathematics 2013; 17: 17-32.
[6] Gilbarg D, Trudinger N. Elliptic Partial Differential Equations of Second Order. Springer, Berlin, 1977
[7] Hu Z, Li D, Zhai S. On generalized m-quasi-Einstein manifolds with constant Ricci curvatures. Journal of Mathematical Analysis and Applications 2017; 446: 843-851.
[8] Hu L, Mao J, Wang L. Lower diameter estimate for a spacial quasi-almost-Einstein metric. Journal of East China Normal University (Natural Science) 2014; 27: 27-35.
[9] Huang G, Wei Y. The classification of (m, ρ)-quasi-Einstein manifolds. Annals of Global Analysis and Geometry 2013; 44: 269-282.
[10] Huang G, Zeng F. A note on gradient generalized quasi-Einstein manifolds. Journal of Geometry 2015; 106: 297-311.
[11] Jauregui J, Wylie W. Conformal diffeomorphisms of gradient Ricci solitons and generalized quasi-Einstein manifolds. Journal of Geometric Analysis 2015; 25: 668-708.
[12] Limoncu M. Modifications of the Ricci tensor and applications. Archiv der Mathematik 2010; 95: 191-199.
[13] Limoncu M. The Bakry-Émery Ricci tensor and its applications to some compactness theorems. Mathematische Zeitschrift 2012; 271: 715-722.
[14] Neto B. Generalized quasi-Einstein manifolds with harmonic anti-self dual Weyl tensor. Archiv der Mathematik (Basel) 2016; 106: 489-499.
[15] Ribeiro JE, Tenenblat K. Noncompact quasi-Einstein manifolds conformal to a Euclidean space. arXiv:1904.11283
[16] Soylu Y. A Myers-type compactness theorem by the use of Bakry-Émery Ricci tensor. Differential Geometry and its Applications 2017; 54: 245-250.
[17] Tadano H. Remark on a diameter bound for complete Riemannian manifolds with positive Bakry-Émery Ricci curvature. Differential Geometry and its Applications 2016; 44: 136-143.
[18] Wang L. Diameter estimate for compact quasi-Einstein metrics. Mathematische Zeitschrift 2012; 273: 801-809.
[19] Wei G, Wylie W. Comparison geometry for the Bakry-Émery Ricci tensor. Journal of Differential Geometry 2009; 83: 377-405.

[^0]: *Correspondence: dengchen4032@126.com
 2010 AMS Mathematics Subject Classification: 53C25, 53C21

