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Abstract: This paper aims to introduce 2-absorbing φ -δ -primary ideals over commutative rings which unify the concepts
of all generalizations of 2-absorbing and 2-absorbing primary ideals. Let A be a commutative ring with a nonzero identity
and I(A) be the set of all ideals of A . Suppose that δ : I(A) → I(A) is an expansion function and φ : I(A) → I(A)∪{∅}
is a reduction function. A proper ideal Q of A is said to be a 2-absorbing φ -δ -primary if whenever abc ∈ Q − φ(Q) ,
where a, b, c ∈ R, then either ab ∈ Q or ac ∈ δ(Q) or bc ∈ δ(Q). Various examples, properties, and characterizations of
this new class of ideals are given.
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1. Introduction
In this paper, we focus only on commutative rings with a nonzero identity. Let A denote such a ring and I(A)

denote the set of all ideals of A. The concepts of prime ideals and its generalizations have a distinguished place
in commutative algebra since they have some applications to other areas such as graph theory, coding theory,
algebraic geometry, cryptology, and general topology. See, for instance, [1, 3, 14, 17, 22]. Among several recent
generalizations of prime ideals in commutative rings, we find the following, due to Badawi [4]. A nonzero proper
ideal Q of A is said to be a 2-absorbing ideal (weakly 2-absorbing ideal) if whenever abc ∈ Q (0 ̸= abc ∈ Q) for
some a, b, c ∈ A, then ab ∈ Q or ac ∈ Q or bc ∈ Q [4] ([5]). Afterwards, Badawi et al. introduced the
concept of 2-absorbing primary (weakly 2-absorbing primary) ideals as follows: a proper ideal Q of A is said
to be a 2-absorbing primary ideal (weakly 2-absorbing primary ideal) if whenever abc ∈ Q (0 ̸= abc ∈ Q) for
some a, b, c ∈ A, then ab ∈ Q or ac ∈

√
Q or bc ∈

√
Q, where

√
Q denotes the radical of the ideal Q of

A [8] ([10]). In a recent study, Fahid and Zhao introduced and studied the concept of 2-absorbing δ -primary
ideals which unify 2-absorbing ideals and 2-absorbing primary ideals [11]. Recall from [23] that a function
δ : I(A) → I(A) is said to be an expansion function if I ⊆ δ(I) and I ⊆ J implies that δ(I) ⊆ δ(J) for every
I, J ∈ I(A) . For various examples of expansion functions, the reader may consult [23, Example 1.2]. Note that
the radical operation, denoted by √

, is an example of expansion function. A proper ideal Q of A is said to be
a δ -primary ideal if whenever ab ∈ Q for some a, b ∈ A, then either a ∈ Q or b ∈ δ(Q) [23]. Also, Q is said
to be a 2-absorbing δ -primary ideal if whenever abc ∈ Q for some a, b, c ∈ A, then ab ∈ Q or ac ∈ δ(Q) or
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bc ∈ δ(Q) [11]. If we take δ as the radical operation, all 2-absorbing δ -primary ideals and 2-absorbing primary
ideals are equivalent. On the other hand, if δ(I) = I for every I ∈ I(A) , that is, δ is the identity function, then
all 2-absorbing ideals and 2-absorbing δ -primary ideals coincide. In this point of view, 2-absorbing δ -primary
ideals unify the concepts of 2-absorbing ideals and 2-absorbing primary ideals. In a very recent paper, Fahid
and Badawi presented a generalization of 2-absorbing δ -primary ideals as follows: a proper ideal Q of A is said
to be weakly 2-absorbing δ -primary if whenever 0 ̸= abc ∈ Q for some a, b, c ∈ A then ab ∈ Q or ac ∈ δ(Q) or
bc ∈ δ(Q) [6]. In fact, weakly 2-absorbing δ -primary ideals unify the concepts of weakly 2-absorbing ideals
and weakly 2-absorbing primary ideals. For various generalizations of prime ideals and 2-absorbing ideals, we
refer to [7, 9, 12, 15, 16, 19–21]. Our aim in this paper is to unify the concepts of 2-absorbing δ -primary
ideals and weakly 2-absorbing δ -primary ideals and to extend their properties to the our new concept. Let
φ : I(A) → I(A) ∪ {∅} be a function. Recall from [13] that a function φ is said to be a reduction function if
φ(I) ⊆ I and I ⊆ J implies that φ(I) ⊆ φ(J) for every I, J ∈ I(A). We call a proper ideal Q of A a 2-absorbing
φ -δ -primary ideal if whenever abc ∈ Q − φ(Q) for some a, b, c ∈ Q then ab ∈ Q or ac ∈ δ(Q) or bc ∈ δ(Q).

It is clear that if we take φ(I) = 0 (φ(I) = ∅) for every I ∈ I(A) , then all weakly 2-absorbing δ -primary
ideals (2-absorbing δ -primary ideals) and 2-absorbing φ -δ -primary ideals coincide. Among many results in
this paper, we give several characterizations of 2-absorbing φ -δ -primary ideals in commutative rings (See,
Proposition 2.2, Lemma 2.6, and Theorem 2.7). Also, we investigate the stability of 2-absorbing φ -δ -primary
ideals under intersection, under the radical operation, under the homomorphism, in factor rings, in localization
of rings (See, Proposition 2.3, Theorem 2.5, Theorem 2.12, Corollary 2.14, Proposition 2.21). Moreover, we
give the Correspondence Theorem for 2-absorbing φ -δ -primary ideals (See Theorem 2.13). Furthermore, we
show that if Q is a 2-absorbing φ -δ -primary ideal that is not a 2-absorbing δ -primary ideal, then Q3 ⊆ φ(Q)

(See, Theorem 2.18). Finally, we determine all 2-absorbing φ -δ -primary ideals in direct product of rings (See,
Theorem 2.24-Theorem 2.26).

2. Characterization of 2-absorbing φ-δ -primary ideals

Throughout this section, A denotes a commutative ring with 1 ̸= 0 , δ : I(A) → I(A) denote, an expansion
function, and φ : I(A) → I(A) ∪ {∅} denotes a reduction function.

Definition 2.1 A proper ideal Q of A is said to be a 2-absorbing φ-δ -primary ideal if abc ∈ Q − φ(Q) for
some a, b, c ∈ A then ab ∈ Q or ac ∈ δ(Q) or bc ∈ δ(Q).

The following is our first result which can be easily verified. Hence, we omit the proof.

Proposition 2.2 Suppose that δ, γ : I(A) → I(A) are two expansion functions and φ,ψ : I(A) → I(A)∪{∅}
are two reduction functions. The following statements are satisfied.

(i) If δ ≤ γ, then every 2-absorbing φ-δ -primary ideal is also a 2-absorbing φ-γ -primary ideal.
(ii) If φ ≤ ψ, then every 2-absorbing φ-δ -primary ideal is also a 2-absorbing ψ -δ -primary ideal.
(iii) If δ ≤ γ and φ ≤ ψ, then every 2-absorbing φ-δ -primary ideal is also a 2-absorbing ψ -γ -primary

ideal.
(iv) Every 2-absorbing δ -primary ideal is also 2-absorbing φ-δ -primary ideal.
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Proposition 2.3 (i) Assume that {Qi}i∈∆ is a directed family of 2-absorbing φ-δ -primary ideals of A. Then,∪
i∈∆

Qi is a 2-absorbing φ-δ -primary ideal of A.

(ii) Assume that {Qi}i∈∆ is a family of 2-absorbing φ-δ -primary ideals of A , φ(Qi) = φ(Qj) and
δ(Qi) = δ(Qj) for every i, j ∈ ∆. If δ, φ have the intersection property, then

∩
i∈∆

Qi is a 2-absorbing φ-δ -

primary ideal of A.

Proof (i) Suppose that abc ∈
∪
i∈∆

Qi − φ

( ∪
i∈∆

Qi

)
for some a, b, c ∈ A. Assume that ac, bc /∈ δ

( ∪
i∈∆

Qi

)
.

Then for each i, we have ac, bc /∈ δ(Qi). Since abc ∈
∪
i∈∆

Qi − φ

( ∪
i∈∆

Qi

)
, we have abc ∈ Qt − φ(Qt) for some

t ∈ ∆ . Since Qt is a 2-absorbing φ -δ -primary ideal, ab ∈ Qt ⊆
∪
i∈∆

Qi which completes the proof.

(ii) Let φ(Qi) = I and δ(Qi) = J. Then first note that φ

( ∩
i∈∆

Qi

)
= I and δ

( ∩
i∈∆

Qi

)
= J. Let

abc ∈
∩
i∈∆

Qi−I for some a, b, c ∈ A. Then for every i, we have abc ∈ Qi. We may assume that ac, bc /∈ J. Since

Qi is a 2-absorbing φ -δ -primary ideal of A, we conclude that ab ∈ Qi for each i. This implies that ab ∈∩
i∈∆

Qi. Hence,
∩
i∈∆

Qi is a 2-absorbing φ -δ -primary ideal. 2

The condition ”δ(Qi) = δ(Qj) for every i, j ” in Proposition 2.3 is necessary. See the following example.

Example 2.4 Let A = Z, Q1 = 6Z and Q2 = 15Z. Then Q1, Q2 are 2-absorbing φ-δ -primary ideal for every
expansion function δ and every reduction function φ. Assume that δ(I) = I and φ(I) = ∅ for every ideal I of
A. Then note that δ(Q1) ̸= δ(Q2) and also Q1∩Q2 = 30Z = δ(Q1∩Q2). Since 2 ·3 ·5 ∈ Q1∩Q2, 6 /∈ Q1∩Q2,

10, 15 /∈ δ(Q1 ∩Q2), it follows that Q1 ∩Q2 is not a 2-absorbing φ-δ -primary ideal.

Theorem 2.5 If Q is a 2-absorbing φ-δ -primary ideal of A such that
√
δ(Q) ⊆ δ(

√
Q) and

√
φ(Q) ⊆ φ(

√
Q),

then
√
Q is a 2-absorbing φ-δ -primary ideal of A .

Proof Suppose that a, b, c ∈ A such that abc ∈
√
Q − φ(

√
Q) and ab /∈

√
Q, ac /∈ δ(

√
Q). Since

abc ∈
√
Q − φ(

√
Q), there exists a positive integer n such that (abc)n = anbncn ∈ Q − φ(Q). As ab /∈

√
Q,

ac /∈ δ(
√
Q), we have that (ab)n /∈ Q and (ac)n /∈ δ(Q) . On the other hand, since Q is a 2-absorbing φ -

δ -primary ideal of A, we have (bc)n ∈ δ(Q) , that is bc ∈
√
δ(Q) ⊆ δ(

√
Q) . Hence,

√
Q is a 2-absorbing

φ -δ -primary ideal of A . 2

Let Q be an ideal of A and J a nonempty subset of A. The residual of Q by J is denoted by
(Q : J) = {a ∈ A : aJ ⊆ Q}. In particular, if J = {a} is the singleton, we use (Q : a) instead of (Q : {a}).

Lemma 2.6 Let Q be a proper ideal of A. The following statements are equivalent.
(i) Q is a 2-absorbing φ-δ -primary ideal of A.
(ii) For each a, b ∈ A such that ab /∈ Q, (Q : ab) = (φ(Q) : ab) ∪ (δ(Q) : a) ∪ (δ(Q) : b).

Proof (i) ⇒ (ii) : Let c ∈ (Q : ab), that is, abc ∈ Q. If abc ∈ φ(Q), we have c ∈ (φ(Q) : ab). Hence, assume
that abc ∈ Q−φ(Q) . Since Q is a 2-absorbing φ -δ -primary ideal of A, we have ac ∈ δ(Q) or bc ∈ δ(Q). This

1929



YAVUZ et al./Turk J Math

gives c ∈ (δ(Q) : a) ∪ (δ(Q) : b). Thus, we conclude that (Q : ab) ⊆ (φ(Q) : ab) ∪ (δ(Q) : a) ∪ (δ(Q) : b). Since
the reverse inclusion always holds, we have the equality.

(ii) ⇒ (i) : It is easy. 2

Recall from [18] that a ring A is said to be a u -ring if whenever I ⊆
n∪

i=1

Ii for some ideals I, I1, I2, . . . , In of

A, then I ⊆ Ii for some 1 ≤ i ≤ n. Note that Prüfer domains and principal ideal domains are some examples
of u -rings.

Theorem 2.7 Let Q be a proper ideal of a u-ring A. The following statements are equivalent.
(i) Q is a 2-absorbing φ-δ -primary ideal of A.
(ii) For each a, b ∈ A such that ab /∈ Q, (Q : ab) = (φ(Q) : ab) ∪ (δ(Q) : a) ∪ (δ(Q) : b).

(iii) If abJ ⊆ Q and abJ ⊈ φ(Q) for some a, b ∈ A and an ideal J of A, then ab ∈ Q or aJ ⊆ δ(Q)

or bJ ⊆ δ(Q).

(iv) For each a ∈ A, J ∈ I(A) with aJ ⊈ δ(Q), (Q : aJ) = (Q : a) or (Q : aJ) = (φ(Q) : aJ) or
(Q : aJ) ⊆ (δ(Q) : J).

(v) If aIJ ⊆ Q and aIJ ⊈ φ(Q) for some a ∈ A and ideals I, J of A, then aI ⊆ Q or aJ ⊆ δ(Q) or
IJ ⊆ δ(Q).

(vi) For each I, J ∈ I(A) with IJ ⊈ δ(Q), (Q : IJ) = (Q : I) or (Q : IJ) = (φ(Q) : IJ) or
(Q : IJ) ⊆ (δ(Q) : J).

(vii) If IJK ⊆ Q and IJK ⊈ φ(Q) for some ideals I, J,K of A, then IJ ⊆ Q or IK ⊆ δ(Q) or
JK ⊆ δ(Q).

Proof (i) ⇔ (ii) : It follows from Lemma 2.6.
(ii) ⇒ (iii) : Let abJ ⊆ Q and abJ ⊈ φ(Q) for some a, b ∈ A and an ideal J of A. If ab ∈ Q, then we are

done. Assume that ab /∈ Q. Since A is a u -ring, by(ii), we have (Q : ab) ⊆ (φ(Q) : ab) or (Q : ab) ⊆ (δ(Q) : a)

or (Q : ab) ⊆ (δ(Q) : b). Since J ⊆ (Q : ab) and J ⊈ (φ(Q) : ab), we conclude either J ⊆ (δ(Q) : a) or
J ⊆ (δ(Q) : b) that means aJ ⊆ δ(Q) or bJ ⊆ δ(Q).

(iii) ⇒ (iv) : Let aJ ⊈ δ(Q) for some a ∈ A, J ∈ I(A) . Let b ∈ (Q : aJ). Then we have abJ ⊆ Q. If
ab ∈ Q, then we have b ∈ (Q : a), so assume that ab /∈ Q . If abJ ⊆ φ(Q) , then we have b ∈ (φ(Q) : aJ) .
Hence, assume that abJ ⊈ φ(Q) . Since abJ ⊆ Q , abJ ⊈ φ(Q) and ab /∈ Q , by (iii), we have aJ ⊆ δ(Q)

or bJ ⊆ δ(Q). Thus, we have (Q : aJ) ⊆ (Q : a) ∪ (φ(Q) : aJ) ∪ (δ(Q) : J). Since A is a u -ring, we
conclude that (Q : aJ) ⊆ (Q : a) or (Q : aJ) ⊆ (φ(Q) : aJ) or (Q : aJ) ⊆ (δ(Q) : J) . Case 1: Assume
that (Q : aJ) ⊆ (Q : a) . Since the reverse inclusion is always true, we obtain (Q : aJ) = (Q : a) .
Case 2: Assume that (Q : aJ) ⊆ (φ(Q) : aJ) . As φ(Q) ⊆ Q , we have (φ(Q) : aJ) ⊆ (Q : aJ) ,
which implies that (φ(Q) : aJ) = (Q : aJ) . Case 3: If (Q : aJ) ⊆ (δ(Q) : J) , then we are done.
(iv) ⇒ (v) : Suppose that aIJ ⊆ Q and aIJ ⊈ φ(Q) for some a ∈ A and ideals I, J of A. Then I ⊆ (Q : aJ)

and I ⊈ (φ(Q) : aJ). If aJ ⊆ δ(Q), then we are done. Thus, assume that aJ ⊈ δ(Q). By (iv), (Q : aJ) = (Q : a)

or (Q : aJ) ⊆ (δ(Q) : J). Since I ⊆ (Q : aJ), we have aI ⊆ Q or IJ ⊆ δ(Q) which completes the proof.
(v) ⇒ (vi) : Let I, J ∈ I(A) with IJ ⊈ δ(Q). Now, take a ∈ (Q : IJ). Then we get aIJ ⊆ Q. If

aIJ ⊆ φ(Q), then a ∈ (φ(Q) : IJ). Now, assume that aIJ ⊈ φ(Q). Then by (v), aI ⊆ Q or aJ ⊆ δ(Q) which
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implies that a ∈ (Q : I) or a ∈ (δ(Q) : J). Thus, we conclude that (Q : IJ) ⊆ (φ(Q) : IJ) ∪ (Q : I) ∪ (δ(Q) :

J). Since A is a u -ring, we get (Q : IJ) ⊆ (φ(Q) : IJ) or (Q : IJ) ⊆ (Q : I) or (Q : IJ) ⊆ (δ(Q) : J) . Case
1: Assume that (Q : IJ) ⊆ (φ(Q) : IJ) . Since φ(Q) ⊆ Q , we have (φ(Q) : IJ) ⊆ (Q : IJ) , which implies
that (φ(Q) : IJ) = (Q : IJ) . Case 2: Assume that (Q : IJ) ⊆ (Q : I) . Since (Q : I) ⊆ (Q : IJ) , we have
(Q : IJ) = (Q : I) . Case 3: Assume that (Q : IJ) ⊆ (δ(Q) : J) . Then there is nothing to prove.

(vi) ⇒ (vii) : Suppose that IJK ⊆ Q and IJK ⊈ φ(Q) for some ideals I, J,K of A. Then we have
I ⊆ (Q : JK) and I ⊈ (φ(Q) : JK). Then by (vi), we have JK ⊆ δ(Q) or I ⊆ (Q : JK) = (Q : J) or
I ⊆ (Q : JK) ⊆ (δ(Q) : K), which completes the proof.

(vii) ⇒ (i) : It is straightforward. 2

In Theorem 2.7 (iv), the containment ”(Q : aJ) ⊆ (δ(Q) : J)” may be strict even if Q satisfies all axioms
in Theorem 2.7. See the following example.

Example 2.8 Let A = Z be the ring of integers and Q = 36Z . Assume that δ(Q) =
√
Q and φ(Q) = (0) .

Then note that A is a u-ring and Q is a 2-absorbing φ-δ -primary ideal of A . Then Q satisfies all axioms
in Theorem 2.7. Let J = 3Z and a = 3 . Then note that aJ = 9Z ⊈ δ(Q) = 6Z . Moreover, it is
easy to see that (Q : aJ) = 4Z ̸= (Q : a) = 12Z and (Q : aJ) = 4Z ̸= ((0) : aJ) = (0) . However,
(Q : aJ) = 4Z ⊊ (δ(Q) : J) = 2Z .

Theorem 2.9 Let Q be a 2-absorbing φ-δ -primary ideal of A and x ∈ A−Q such that (φ(Q) : x) ⊆ φ(Q : x)

and (δ(Q) : x) ⊆ δ(Q : x). Then (Q : x) is a 2-absorbing φ-δ -primary ideal of A. In particular, if J is an ideal
of A with J ⊈ Q such that (φ(Q) : J) ⊆ φ(Q : J) and (δ(Q) : J) ⊆ δ(Q : J), then (Q : J) is a 2-absorbing
φ-δ -primary ideal of A.

Proof Let abc ∈ (Q : x)− φ((Q : x)). Then ab(cx) ∈ Q− φ(Q). Since Q is a 2-absorbing φ -δ -primary ideal
of A, we have ab ∈ Q or acx ∈ δ(Q) or bcx ∈ δ(Q). Since (δ(Q) : x) ⊆ δ(Q : x), we have ab ∈ (Q : x) or
ac ∈ δ(Q : x) or bc ∈ δ(Q : x). The rest is similar. 2

Let f : A→ B be a ring homomorphism. Suppose that δ is an ideal expansion of I(A) , φ is a reduction
function of I(A) and also, γ is an ideal expansion of I(B) , ψ is a reduction function of I(B) . Then f is said to
be a (δ, φ) -(γ, ψ) -homomorphism if δ(f−1(J)) = f−1(γ(J)) and φ(f−1(J)) = f−1(ψ(J)) for every J ∈ I(B).

Example 2.10 Let δ be the radical operation on I(A) and γ the radical operation on I(B). Also assume that
φ and ψ are empty reduction functions. Then note that every homomorphism from A to B is a (δ, φ)-(γ, ψ)-
homomorphism.

Remark 2.11 Supoose that f is a (δ, φ)-(γ, ψ)-epimorphism from A to B and I is an ideal of A containing
Ker(f). Then γ(f(I)) = f(δ(I)) and ψ(f(I)) = f(φ(I)). To see this, let J = f(I). Then (δ, φ)-(γ, ψ)-
epimorphism gives the equalities δ(f−1(J)) = f−1(γ(J)) and φ(f−1(J)) = f−1(ψ(J)). Since f−1(J) = I and
f(f−1(K)) = K for every ideal K of B, we conclude that

f(δ(f−1(J))) = f(δ(I)) = f(f−1(γ(J))) = γ(J) = γ(f(I))

f(φ(f−1(J))) = f(φ(I)) = f(f−1(ψ(J))) = ψ(J) = ψ(f(I)).
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Theorem 2.12 Let f : A → B be a (δ, φ)-(γ, ψ)-homomorphism, where δ is an ideal expansion of I(A) , φ
is a reduction function of I(A) , and also, γ is an ideal expansion of I(B) , ψ is a reduction function of I(B).
Then the following statements are satisfied.

(i) If J is a 2-absorbing ψ -γ -primary ideal of B, then f−1(J) is a 2-absorbing φ-δ -primary ideal of
A.

(ii) If Q is a 2-absorbing φ-δ -primary ideal of A containing Ker(f) and f is surjective, then f(Q) is
a 2-absorbing ψ -γ -primary ideal of B.

Proof (i) : Let J be a 2-absorbing ψ -γ -primary ideal of B. Choose a, b, c ∈ A such that abc ∈ f−1(J) −
φ(f−1(J)). Then we have f(a)f(b)f(c) ∈ J − ψ(J). Since J is a 2-absorbing ψ -γ -primary ideal of B, we
conclude that f(a)f(b) ∈ J or f(a)f(c) ∈ γ(J) or f(b)f(c) ∈ γ(J) , which imples that ab ∈ f−1(J) or
ac ∈ f−1(γ(J)) = δ(f−1(J)) or bc ∈ f−1(γ(J)) = δ(f−1(J)). Hence, f−1(J) is a 2-absorbing φ -δ -primary
ideal of A.

(ii) : Let Q be a 2-absorbing φ -δ -primary ideal of A containing Ker(f) and f surjective xyz ∈
f(Q) − ψ(f(Q)) for some x, y, z ∈ B. Since f is surjective, we can write f(a) = x, f(b) = y, f(c) = z

for some a, b, c ∈ A. This implies that f(abc) = xyz ∈ f(Q). Since Ker(f) ⊆ Q, we conclude that abc ∈ Q.

Moreover, by Remark 2.11, abc ∈ Q− φ(Q) . As Q is a 2-absorbing φ -δ -primary ideal of A, we have ab ∈ Q

or ac ∈ δ(Q) or bc ∈ δ(Q). Thus, we conclude that xy = f(ab) ∈ f(Q) or xz = f(ac) ∈ f(δ(Q)) = γ(f(Q)) or
yz ∈ γ(f(Q)). Therefore, f(Q) is a 2-absorbing ψ -γ -primary ideal of B. 2

From the previous theorem, we obtain the following correspondence theorem for 2-absorbing φ -δ -primary
ideals.

Theorem 2.13 (Correspondence theorem) Let f : A → B be a (δ, φ)-(γ, ψ)-epimorphism, where δ is
an ideal expansion of I(A) , φ is a reduction function of I(A) and also, γ is an ideal expansion of I(B) ,
ψ is a reduction function of I(B). Then f induces to a one-to-one correspondence (that preserves inclusion)
between the 2-absorbing φ-δ -primary ideals of A containining Ker(f) and the 2-absorbing ψ -γ -primary ideals
of B in such a way that if Q is a 2-absorbing φ-δ -primary ideal of A containing Ker(f) then f(Q) is the
corresponding 2-absorbing ψ -γ -primary ideal of B , and J is a 2-absorbing ψ -γ -primary ideal of B , then
f−1 (J) is the corresponding 2-absorbing φ-δ -primary ideal of A .

Assume that δ is an expansion function of I(A) , φ is a reduction function of I(A) , and J is an ideal
of A . Then δq : I(A/J) → I(A/J) defined by δq(I/J) = δ(I)/J , and φq : I(A/J) → I(A/J)∪{∅} defined
by φq(I/J) = φ(I)/J are expansion and reduction functions, respectively.

Theorem 2.14 (i) Let J and Q be two proper ideals of A such that J ⊆ φ(Q) ⊆ Q . Then Q is a 2-absorbing
φ-δ -primary ideal of A if and only if Q/J is a 2-absorbing φq -δq -primary ideal of A/J.

(ii) Let Q be a proper ideal of A. Then Q is a 2-absorbing φ-δ -primary ideal of A if and only if Q/φ(Q)

is a weakly 2-absorbing δq -primary ideal of A/φ(Q).

(iii) Let Q be a proper ideal of A. Then Q is a φ-δ -primary ideal of A if and only if Q/φ(Q) is a
weakly δq -primary ideal of A/φ(Q).

Proof (i) : Let Q be a 2-absorbing φ -δ -primary ideal of A and (a+ J)(b+ J)(c+ J) ∈ Q/J −φq(Q/J) for
some a, b, c ∈ A. Then we have abc ∈ Q − φ(Q). As Q is a 2-absorbing φ -δ -primary ideal, we conclude that
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ab ∈ Q or ac ∈ δ(Q) or bc ∈ δ(Q). This implies that (a + J)(b + J) ∈ Q/J or (a + J)(c + J) ∈ δq(Q/J) or
(b+ J)(c+ J) ∈ δq(Q/J). Thus, Q/J is a 2-absorbing φq -δq -primary ideal of A/J.

Conversely, assume that Q/J is a 2-absorbing φq -δq -primary ideal of A/J. Let abc ∈ Q − φ(Q) for
some a, b, c ∈ A. Then we have (a + J)(b + J)(c + J) ∈ Q/J − φq(Q/J) because J ⊆ φ(Q). Since Q/J is a
2-absorbing φq -δq -primary ideal, we have (a + J)(b + J) ∈ Q/J or (a + J)(c + J) ∈ δq(Q/J) = δ(Q)/J or
(b+J)(c+J) ∈ δ(Q)/J. Thus, we conclude that ab ∈ Q or ac ∈ δ(Q) or bc ∈ δ(Q) , which completes the proof.

(ii) : Let Q be a 2-absorbing φ -δ -primary ideal of A and 0A/φ(Q) ̸= (a + φ(Q))(b + φ(Q))(c +

φ(Q)) ∈ Q/φ(Q) for some a, b, c ∈ A. Then we have abc ∈ Q − φ(Q). This implies that ab ∈ Q or
ac ∈ δ(Q) or bc ∈ δ(Q). Then we conclude that (a + φ(Q))(b + φ(Q)) ∈ Q/φ(Q) or (a + φ(Q))(c + φ(Q)) ∈
δq(Q/φ(Q)) or (b+ φ(Q))(c+ φ(Q)) ∈ δq(Q/φ(Q)) . Hence, Q/φ(Q) is a weakly 2-absorbing δq -primary ideal
of A/φ(Q). Conversely, assume that Q/φ(Q) is a weakly 2-absorbing δq -primary ideal of A/φ(Q) and let
abc ∈ Q − φ(Q) for some a, b, c ∈ A. This gives 0A/φ(Q) ̸= (a + φ(Q))(b + φ(Q))(c + φ(Q)) ∈ Q/φ(Q). Then
by assumption, we conclude that (a + φ(Q))(b + φ(Q)) ∈ Q/φ(Q) or (a + φ(Q))(c + φ(Q)) ∈ δq(Q/φ(Q))

or (b + φ(Q))(c + φ(Q)) ∈ δq(Q/φ(Q)). Since δq(Q/φ(Q)) = δ(Q)/φ(Q), we have ab ∈ Q or ac ∈ δ(Q) or
bc ∈ δ(Q). Therefore, Q is a 2-absorbing φ -δ -primary ideal of A.

(iii) : It is similar to (ii). 2

Let Q be a proper ideal of A. Recall from [13] that Q is said to be a φ -δ -primary ideal if whenever
ab ∈ Q−φ(Q) for some a, b ∈ A then a ∈ Q or b ∈ δ(Q). If φ(Q) = 0, then φ -δ -primary ideal is just called a
weakly δ -primary ideal.

Recall from [6] that if an ideal Q of A is a weakly 2-absorbing δ -primary (weakly δ -primary) that is not a
2-absorbing δ -primary (δ -primary) ideal of A, then there exist a, b, c ∈ A (a, b ∈ A) such that abc = 0, ab /∈ Q

and ac, bc /∈ δ(Q) (ab = 0, a /∈ Q and b /∈ δ(Q)). In this case, (a, b, c) ((a, b)) is said to be a δ -triple zero
(δ -twin zero) of Q.

Remark 2.15 (1) Suppose that Q is a φ-δ -primary ideal of A that is not δ -primary. Then there exist a, b ∈ A

such that ab ∈ φ(Q) , a /∈ Q and b /∈ δ(Q). In this case, we say that (a, b) is a φ-δ -twin zero of Q.
(2) Suppose that Q is a 2-absorbing φ-δ -primary ideal of A that is not a 2-absorbing δ -primary. Then

there exist a, b, c ∈ A such that abc ∈ φ(Q) , ab /∈ Q and ac, bc /∈ δ(Q). In this case, we say that (a, b, c) is a
φ-δ -triple zero of Q.

Lemma 2.16 Let Q be a 2-absorbing φ-δ -primary ideal of A and a, b, c ∈ A. The following statements are
equivalent.

(i) (a, b, c) is a φ-δ -triple zero of Q.
(ii) (a+ φ(Q), b+ φ(Q), c+ φ(Q)) is a δq -triple zero of Q/φ(Q).

Proof (i) ⇒ (ii) : Suppose that (a, b, c) is a φ -δ -triple zero of Q. Then abc ∈ φ(Q), ab /∈ Q and
ac, bc /∈ δ(Q). This implies that (a + φ(Q))(b + φ(Q))(c + φ(Q)) = 0Q/φ(Q) , (a + φ(Q))(b + φ(Q)) /∈ Q/φ(Q)

and (a + φ(Q))(c + φ(Q)), (b + φ(Q))(c + φ(Q)) are not in δ(Q)/φ(Q) = δq(Q/φ(Q)). Thus, (a + φ(Q), b +

φ(Q), c+ φ(Q)) is a δq -triple zero of Q/φ(Q).

(ii) ⇒ (i) : Suppose that (a+φ(Q), b+φ(Q), c+φ(Q)) is a δq -triple zero of Q/φ(Q). This implies that
(a + φ(Q))(b + φ(Q))(c + φ(Q)) = 0Q/φ(Q) , (a + φ(Q))(b + φ(Q)) /∈ Q/φ(Q) and (a + φ(Q))(c + φ(Q)), (b +
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φ(Q))(c + φ(Q)) are not in δ(Q)/φ(Q) = δq(Q/φ(Q)). Thus, abc ∈ φ(Q), ab /∈ Q and ac, bc /∈ δ(Q). Hence,
(a, b, c) is a φ -δ -triple zero of Q. 2

The following result can be proved similar to the previous lemma. Hence, we omit the proof.

Lemma 2.17 Let Q be a φ-δ -primary ideal of A and a, b ∈ A. The following statements are equivalent.
(i) (a, b) is a φ-δ -twin zero of Q.
(ii) (a+ φ(Q), b+ φ(Q)) is a δq -twin zero of Q/φ(Q).

Theorem 2.18 Suppose that Q is a 2-absorbing φ-δ -primary ideal of A and (a, b, c) is a φ-δ -triple zero of
Q for some a, b, c ∈ A. Then,

(i) abQ, acQ, bcQ ⊆ φ(Q).

(ii) aQ2, bQ2, cQ2 ⊆ φ(Q).

(iii) Q3 ⊆ φ(Q).

Proof Suppose that (a, b, c) is a φ -δ -triple zero of Q and Q is a 2-absorbing φ -δ -primary ideal of A. Then by
Theorem 2.14 and Lemma 2.16, Q/φ(Q) is a weakly 2-absorbing δq -primary ideal and (a+φ(Q), b+φ(Q), c+

φ(Q)) is a δq -triple zero of Q/φ(Q). Also note that Q/φ(Q) is not a 2-absorbing δq -primary ideal since Q is
not a 2-absorbing δ -primary ideal. Then by [6, Theorem 2.8], (a+ φ(Q))(b+ φ(Q))(Q/φ(Q)) = 0Q/φ(Q), (a+

φ(Q))(c + φ(Q))(Q/φ(Q)) = 0Q/φ(Q) and (b + φ(Q))(c + φ(Q))(Q/φ(Q)) = 0Q/φ(Q). This implies that
abQ, acQ, bcQ ⊆ φ(Q). On the other hand, again by [6, Theorem 2.8], (a+ φ(Q))(Q/φ(Q))2 = 0Q/φ(Q), (b+

φ(Q))(Q/φ(Q))2 = 0Q/φ(Q) and (c+φ(Q))(Q/φ(Q))2 = 0Q/φ(Q). This yields that aQ2, bQ2, cQ2 ⊆ φ(Q). The
statement (iii) follows from [6, Theorem 2.9]. 2

Theorem 2.19 Suppose that Q is a φ-δ -primary ideal of A and (a, b) is a φ-δ -twin zero of Q for some
a, b ∈ A. Then, aQ, bQ ⊆ φ(Q). In this case, Q2 ⊆ φ(Q).

Proof It follows from Theorem 2.14, Lemma 2.17, [6, Theorem 2.8], and [6, Theoerem 2.9]. 2

Corollary 2.20 (i) Suppose that Q is a 2-absorbing φ-δ -primary ideal of A with Q3 ⊈ φ(Q). Then Q is a
2-absorbing δ -primary ideal of A.

(ii) Suppose that Q is a 2-absorbing φ-δ -primary ideal of A that is not a 2-absorbing δ -primary ideal
of A. Then

√
Q =

√
φ(Q).

Proof (i) : Suppose that Q is a 2-absorbing φ -δ -primary ideal of A with Q3 ⊈ φ(Q). Now, we will
show that Q is a 2-absorbing δ -primary ideal of A. Suppose not. Then there exist a, b, c ∈ A such that
abc ∈ φ(Q), ab /∈ Q and ac, bc /∈ δ(Q). Then (a, b, c) is a φ -δ -triple zero of Q. By Theorem 2.18, we have
Q3 ⊆ φ(Q) , which is a contradiction.

(ii) : Suppose that Q is a 2-absorbing φ -δ -primary ideal of A that is not a 2-absorbing δ -primary ideal
of A. Then there exists a φ -δ -triple zero (a, b, c) of Q. Then by Theorem 2.18, we have Q3 ⊆ φ(Q) ⊆ Q. This
implies that

√
Q =

√
φ(Q). 2
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Let S be a nonempty subset of R . Then S is said to be a multiplicatively closed set if whenever
(i) 0 /∈ S , (ii) 1 ∈ S , and (iii) st ∈ S for every s, t ∈ S . Let Q be a proper ideal of A. Then the set
{x ∈ A : xy ∈ Q for some y ∈ A−Q} is denoted by ZQ(A).

Proposition 2.21 Let Q be a 2-absorbing φ-δ -primary ideal of A and S ⊆ A a multiplicatively closed set.
Suppose that δS : I(AS) → I(AS) is an expansion function such that δS(IS) = (δ(I))S for every ideal I of
A and φS : I(AS) → I(AS) is a reduction function such that φS(IS) = (φ(I))S for every ideal I of A .
Furthermore, assume that S ∩ Zφ(Q)(A) = S ∩Q = S ∩ ZQ(A) = S ∩ Zδ(Q)(A) = ∅. The following statements
are equivalent.

(i) Q is a 2-absorbing φ-δ -primary ideal of A.
(ii) QS is a 2-absorbing φS -δS -primary ideal of AS .

Proof (i) ⇒ (ii) : Suppose that Q is a 2-absorbing φ -δ -primary ideal of A. Let a
s
b
t
c
u ∈ QS − φS(QS) for

some a
s ,

b
t ,

c
u ∈ AS . Then there exists w ∈ S such that wabc ∈ Q− φ(Q). As Q is a 2-absorbing φ -δ -primary

ideal of A, we conclude that wab ∈ Q or wac ∈ δ(Q) or bc ∈ δ(Q). Since δ(Q)S = δS(QS), we get a
s
b
t ∈ QS or

a
s

c
u ∈ δS(QS) or b

t
c
u ∈ δS(QS). Therefore, QS is a 2-absorbing φS -δS -primary ideal of AS .

(ii) ⇒ (i) : Suppose that QS is a 2-absorbing φS -δS -primary ideal of AS and let abc ∈ Q−φ(Q). Then
we have a

1
b
1
c
1 ∈ QS . Assume that a

1
b
1
c
1 ∈ φS(QS) = (φ(Q))S , there exists t ∈ S such that tabc ∈ φ(Q). As

abc /∈ φ(Q), we conclude t ∈ S ∩ Zφ(Q)(A) , which is a contradiction. So we have a
1
b
1
c
1 ∈ QS − φS(QS) . Since

QS is a 2-absorbing φS -δS -primary ideal of AS , we have a
1
b
1 ∈ QS or a

1
c
1 ∈ δS(QS) or b

1
c
1 ∈ δS(QS). Then

there exists s ∈ S such that sab ∈ Q or sac ∈ δ(Q) or sbc ∈ δ(Q). Case 1: Let sab ∈ Q. If ab /∈ Q, then
s ∈ S ∩ ZQ(A) which is a contradiction. Thus, ab ∈ Q. Case 2: Let sac ∈ δ(Q). If ac /∈ δ(Q), then we
have s ∈ S ∩ Zδ(Q)(A) which is again a contradiction. Hence, we have ac ∈ δ(Q). Moreover, note that if
sbc ∈ δ(Q), then bc ∈ δ(Q). 2

Let Q be a weakly 2-absorbing δ -primary ideal of A and 0 ̸= I1I2I3 ⊆ Q for some ideals I1, I2, I3 of
A. Recall from [6] that Q is said to be a δ -free triple zero with respect to I1I2I3 if (a, b, c) is not a δ -triple
zero of Q for every a ∈ I1, b ∈ I2 and c ∈ I3. In addition, Q is said to be a δ -free triple zero if whenever
0 ̸= I1I2I3 ⊆ Q for some ideals I1, I2, I3 of A, then I is a δ -free triple zero with respect to I1I2I3.

Definition 2.22 Suppose that Q is a 2-absorbing φ-δ -primary ideal of A and I1I2I3 ⊆ Q with I1I2I3 ⊈ φ(Q)

for some ideals I1, I2, I3 of A. Then Q is said to be a φ-δ -free triple zero with respect to I1I2I3 if (a, b, c) is
not a φ-δ -triple zero of Q for every a ∈ I1, b ∈ I2 and c ∈ I3. In particular, Q is said to be a φ-δ -free triple
zero if whenever I1I2I3 ⊆ Q with I1I2I3 ⊈ φ(Q) for some ideals I1, I2, I3 of A, then I is a φ-δ -free triple
zero with respect to I1I2I3.

Theorem 2.23 Let Q be a 2-absorbing φ-δ -primary ideal of A and I1I2I3 ⊆ Q with I1I2I3 ⊈ φ(Q) for
some ideals I1, I2, I3 of A. Suppose that Q is a φ-δ -free triple zero with respect to I1I2I3. Then I1I2 ⊆ Q or
I1I3 ⊆ δ(Q) or I2I3 ⊆ δ(Q).

Proof Suppose that Q is a 2-absorbing φ -δ -primary ideal of A and I1I2I3 ⊆ Q with I1I2I3 ⊈ φ(Q) for
some ideals I1, I2, I3 of A. Further assume that Q is a φ -δ -free triple zero with respect to I1I2I3. Then note
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that
((I1 + φ(Q))/φ(Q)) ((I2 + φ(Q))/φ(Q)) ((I3 + φ(Q))/φ(Q)) ⊆ Q/φ(Q)

and also
((I1 + φ(Q))/φ(Q)) ((I2 + φ(Q))/φ(Q)) ((I3 + φ(Q))/φ(Q)) ̸= 0A/φ(Q).

Now, we will show that Q/φ(Q) is a δq -free triple zero with respect to
((I1 + φ(Q))/φ(Q)) ((I2 + φ(Q))/φ(Q)) ((I3 + φ(Q))/φ(Q)) . Suppose to the contrary. Then for each i ∈
{1, 2, 3} , xi+φ(Q) ∈ ((Ii + φ(Q))/φ(Q)) such that (x1+φ(Q))(x2+φ(Q))(x3+φ(Q)) = φ(Q) , (x1+φ(Q))(x2+

φ(Q)) /∈ Q/φ(Q) and (x1+φ(Q))(x3+φ(Q)), (x2+φ(Q))(x3+φ(Q)) are not in δq(Q/φ(Q)). Since xi ∈ Ii+

φ(Q) for each i , we can write xi = ai+bi for some ai ∈ Ii and bi ∈ φ(Q). Then note that x1x2x3 = (a1+b1)(a2+

b2)(a3 + b3) ∈ φ(Q). As b1, b2, b3 ∈ φ(Q), we conclude that a1a2a3 ∈ φ(Q). On the other hand, since x1x2 =

(a1 + b1)(a2 + b2) /∈ Q and b1, b2 ∈ φ(Q) ⊆ Q, we get a1a2 /∈ Q. Similarly, we have a1a3, a2a3 /∈ δ(Q). Thus,
(a1, a2, a3) is a φ -δ -free triple zero of Q and ai ∈ Ii which is a contradiction. Thus, we have Q/φ(Q) is a δq -free
triple zero with respect to ((I1 + φ(Q))/φ(Q)) ((I2 + φ(Q))/φ(Q)) ((I3 + φ(Q))/φ(Q)) . Then by [6, Theorem
3.5], we have ((I1 + φ(Q))/φ(Q)) ((I2 + φ(Q))/φ(Q)) ⊆ Q/φ(Q) or ((I1 + φ(Q))/φ(Q)) ((I3 + φ(Q))/φ(Q)) ⊆
δq(Q/φ(Q)) = δ(Q)/φ(Q) or ((I2 + φ(Q))/φ(Q)) ((I3 + φ(Q))/φ(Q)) ⊆ δ(Q)/φ(Q) , which implies that I1I2 ⊆
Q or I1I3 ⊆ δ(Q) or I2I3 ⊆ δ(Q). 2

Let Ai be commutative rings with identity for each i = 1, 2 and A = A1 ×A2 denote the direct product
of rings A1, A2 . Suppose that φi : I(Ai) → I(Ai)∪ {∅} is a reduction function and δi : I(Ai) → I(Ai) is an
expansion function for each i = 1, 2. Now, define the following two functions:

δ×(I1 × I2) = δ1(I1)× δ2(I2),

φ×(I1 × I2) = φ1(I1)× φ2(I2).

Then it is easy to see that δ× and φ× are expansion and reduction functions of I(A), respectively.

Theorem 2.24 Let A1, A2 be two commutative rings, Q1 a proper ideal of A1, and A = A1 × A2. Suppose
that δi : I(Ai) → I(Ai) is an expansion function and φi : I(Ai) → I(Ai) ∪ {∅} is a reduction function for
each i = 1, 2 such that φ2(A2) ̸= A2. Then the following statements are equivalent.

(i) Q1 ×A2 is a 2-absorbing φ× -δ× -primary ideal of A.
(ii) Q1 ×A2 is a 2-absorbing δ× -primary ideal of A.
(iii) Q1 is a 2-absorbing δ1 -primary ideal of A1.

Proof (i) ⇒ (ii) : Suppose that Q1 ×A2 is a 2-absorbing φ× -δ× -primary ideal of A. Let abc ∈ Q1 for some
a, b, c ∈ A1. Then we have (a, 1)(b, 1)(c, 1) ∈ Q1 × A2 − φ×(Q1 × A2). This implies that (a, 1)(b, 1) ∈ Q1 × A2

or (a, 1)(c, 1) ∈ δ×(Q1 × A2) or (b, 1)(c, 1) ∈ δ×(Q1 × A2). Then we conclude that ab ∈ Q1 or ac ∈ δ1(Q1) or
bc ∈ δ1(Q1). Thus, Q1 is a 2-absorbing δ1 -primary ideal of A1. If Q1 × A2 is not a 2-absorbing δ× -primary
ideal of A, then by Theorem 2.18, we have (Q1 ×A2)

3 ⊆ φ×(Q1 × A2) which implies that A2 = φ2(A2), a
contradiction. Thus, Q1 ×A2 is a 2-absorbing δ× -primary ideal of A.

(ii) ⇒ (iii) : It is clear.
(iii) ⇒ (i) : Follows from [6, Theorem 4.1]. 2
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Theorem 2.25 Let A1, A2 be two commutative rings, Q1 a proper ideal of A1 and A = A1 × A2. Suppose
that δi : I(Ai) → I(Ai) is an expansion function and φi : I(Ai) → I(Ai) ∪ {∅} is a reduction function for
each i = 1, 2. Then the following statements are equivalent.

(i) Q1 × A2 is a 2-absorbing φ× -δ× -primary ideal of A that is not a 2-absorbing δ× -primary ideal of
A.

(ii) φ×(Q1 × A2) ̸= ∅, φ2(A2) = A2 and Q1 is a 2-absorbing φ1 -δ1 -primary that is not 2-absorbing
δ1 -primary ideal.

Proof (i) ⇒ (ii) : Suppose that Q1×A2 is a 2-absorbing φ× -δ× -primary ideal of A that is not a 2-absorbing
δ× -primary ideal of A. Then it is clear that φ×(Q1×A2) ̸= ∅.If φ2(A2) ̸= A2, then by Theorem 2.24, Q1×A2 is
a 2-absorbing δ× -primary ideal of A which is a contradiction. Thus, φ2(A2) = A2. Moreover, it is easy to see
that Q1 is a 2-absorbing φ1 -δ1 -primary ideal that is not a 2-absorbing δ1 -primary.

(ii) ⇒ (i) : Let (x1, y1)(x2, y2)(x3, y3) ∈ Q1 ×A2 − φ×(Q1 ×A2). Then we have x1x2x3 ∈ Q1 − φ1(Q1)

since φ2(A2) = A2. This implies that x1x2 ∈ Q1 or x1x3 ∈ δ1(Q1) or x2x3 ∈ δ1(Q1). Then we conclude that
(x1, y1)(x2, y2) ∈ Q1×A2 or (x1, y1)(x3, y3) ∈ δ×(Q1×A2) or (x2, y2)(x3, y3) ∈ δ×(Q1×A2). Thus, Q1×A2 is
a 2-absorbing φ× -δ× -primary ideal of A. If Q1 ×A2 is a 2-absorbing δ× -primary, then one can easily see that
Q1 is a 2-absorbing δ1 -primary ideal which is a contradiction. Hence, Q1×A2 is not a 2-absorbing δ× -primary
ideal of A. 2

Recall from [20] that an ideal expansion δ of I(A) is said to satisfy (∗) -condition if δ(I) = A implies
I = A, or equivalently, I ̸= A implies δ(I) ̸= A. Note that the radical operation is an example of expansion
function satisfying the (∗) -condition.

Theorem 2.26 Let Ai be a commutative ring, Qi an ideal of Ai for each i = 1, 2, and A = A1×A2. Suppose
that δi : I(Ai) → I(Ai) is an expansion function satifying the (∗)-condition and φi : I(Ai) → I(Ai)∪ {∅} is
a reduction function for each i = 1, 2. Let Q = Q1 ×Q2 be a proper ideal of A such that φi(Qi) ̸= Qi. Then
the following statements are equivalent.

(i) Q is a 2-absorbing φ× -δ× -primary ideal of A.
(ii) Q1 = A1 and Q2 is a 2-absorbing δ2 -primary ideal of A2 or Q2 = A2 and Q1 is a 2-absorbing

δ1 -primary ideal of A1 or Qi is a δi -primary ideal of Ai for each i = 1, 2.

(iii) Q is a 2-absorbing δ× -primary ideal of A.

Proof (i) ⇒ (ii) : Suppose that Q is a 2-absorbing φ× -δ× -primary ideal of A. If Q2 = A2, then by
Theorem 2.24, Q1 is a 2-absorbing δ1 -primary ideal of A1. If Q1 = A1, similarly, Q2 is a 2-absorbing δ2 -
primary ideal of A2. Thus, assume that Q1, Q2 are proper. Now, we will show that Qi is a δi -primary ideal
of Ai . Let ab ∈ Q1 for some a, b ∈ A1. Then choose x ∈ Q2 − φ2(Q2). Then note that (1, x)(a, 1)(b, 1) =

(ab, x) ∈ Q − φ×(Q). Since Q is a 2-absorbing φ× -δ× -primary ideal of A, we conclude that (1, x)(a, 1) ∈ Q

or (1, x)(b, 1) ∈ δ×(Q) or (a, 1)(b, 1) ∈ δ×(Q). If (a, 1)(b, 1) ∈ δ×(Q), then 1 ∈ δ2(Q2) which implies that
Q2 = A2 since δ2 satisfies the (∗) -condition. Hence, we have (1, x)(a, 1) ∈ Q or (1, x)(b, 1) ∈ δ×(Q). This
implies that a ∈ Q1 or b ∈ δ1(Q1). Thus, Q1 is a δ1 -primary ideal of A1. Likewise, Q2 is a δ2 -primary ideal
of A2.

(ii) ⇒ (iii) : Follows from [6, Theorem 4.2].
(iii) ⇒ (i) : Follows from Proposition 2.2. 2
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3. Conclusion
In this paper, the theoretical point of view of 2-absorbing φ -δ -primary ideals which is the generalization of
2-absorbing ideal and 2-absorbing primary ideals are examined. In order to extend this study, one could study
other algebraic structures and do some further study on their properties.
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