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Abstract: An application of Gromov–Witten invariants is that they distinguish the deformation types of symplectic
structures on a smooth manifold. In this manuscript, it is proven that the use of Gromov–Witten invariants in the
class of embedded J -holomorphic spheres is restricted. This restriction is in the sense that they cannot distinguish the
deformation types of symplectic structures on X1 × S2 and X2 × S2 for two minimal, simply connected, symplectic
4 -manifolds X1 and X2 with b+2 (X1) > 1 and b+2 (X2) > 1 . The result employs the adjunction inequality for symplectic
4 -manifolds which is derived from Seiberg–Witten theory.
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1. Introduction
The count of J -holomorphic curves in a symplectic manifold carries information about the properties of the
symplectic structure on the manifold. This kind of study was first established by M. Gromov in 1985 [5]. Later,
it was improved and applied in many ways [7, 13, 15, 19].

The study of symplectic structures on six dimensional manifolds is so incomplete that even for manifolds
with a simple topology like the homotopy projective spaces, it is not clear if they admit any symplectic structures
except CP 3 itself. Nevertheless, it is conjectured that given a topological 4 -manifold X which admits symplectic
structures, the classification of smooth structures on X is equivalent to the classification of deformation types of
symplectic structures on X×S2 ([10] page 437, [14]). It is shown that this conjecture holds for elliptic surfaces
by Ruan and Tian [16]. Moreover, it was proven that if X1 ×S2 and X2 ×S2 are deformation equivalent, then
some branched covers of X1 and X2 are diffeomorphic [14].

The main result of this paper exploits the adjunction inequality for symplectic 4 -manifolds which is
derived from Seiberg–Witten theory. In Remark 3.6, the relation of Gromov–Witten invariants of a 4 -manifold
X to its Seiberg–Witten invariants is discussed in a nutshell. This suggests that some of Gromov–Witten
invariants of X × S2 can be given in terms of the Seiberg–Witten invariants of X . However, our results imply
that in genus zero case, one cannot get information except for the class of an exceptional sphere. In particular,
for a minimal symplectic 4 -manifold, Seiberg–Witten invariants do not contribute to genus zero Gromov–Witten
theory. In the last section, we prove Theorem 4.5, which lays out that the efficiency of genus zero Gromov–
Witten invariants to distinguish the symplectic deformation types on a smooth 6 -manifold is restricted in the
sense that they cannot distinguish the symplectic structures on X1 × S2 and X2 × S2 for two minimal, simply
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connected, symplectic 4 -manifolds X1 and X2 (with b+2 (X1) > 1 and b+2 (X2) > 1) in the pushforwards of
second homology classes with minimal genus zero. Another consequence of Theorem 4.5 is Corollary 4.8 which
states that if X1 and X2 are homeomorphic symplectic 4 -manifolds with b+2 (X1) > 1 and b+2 (X2) > 1 and if
X1 is not minimal and X2 is minimal, then X1 × S2 and X2 × S2 are not symplectic deformation equivalent.
These two 6 -manifolds are known to be diffeomorphic.

The outline of the paper is as follows. In Section 2, genus zero Gromov–Witten invariants of a symplectic
manifold are defined tracking the definitions in [11]. In Section 3, we explain how these invariants are applied
in dimension four with some examples. Conditions to have nonzero invariants are discussed in the same section
and the first main result, Theorem 3.5, is proved. In the last section, the second main result, Theorem 4.5, is
proved and its consequences are discussed. This final section is mostly about applications and limitations of
the Gromov–Witten invariants for distinguishing symplectic 6 -manifolds.

In the following discussion, as a convention, g(A) will be the genus of a surface and g([A]) will be the
minimal genus of embedded representatives of [A] ∈ H2(X;Z) in a 4 -manifold X . The self intersection of A

and [A] in X is denoted by A2 and [A]2 , respectively.

2. Genus zero Gromov–Witten invariants
In this section the definition of Gromov–Witten invariants in genus zero is reviewed as given by McDuff and
Salamon in [11]. A Gromov–Witten type invariant is an invariant of the deformation type of symplectic
structures on a manifold. Gromov–Witten invariants of symplectic manifolds count the number of connected
J -holomorphic curves in a particular homology class which pass through a number of points. In practice, for
genus zero invariants, for a given homology class this count is done by tracing the oriented intersection points
of a moduli space and a number of cohomology elements. The invariants are defined using regular curves.

A compact symplectic manifold (M,ω) of dimension 2n is called semipositive if there are no spherical
homology classes [A] ∈ H2(M ;Z) such that ω([A]) > 0 and 2 − n < c1(M)[A] < 0 . In particular, if the
dimension of the manifold in this definition is less than or equal to six, then the manifold is semipositive.

2.1. Gromov–Witten invariants
For a 2n dimensional symplectic manifold (M,ω) (we write M when there is no ambiguity), let J be a generic
compatible almost complex structure. A J -holomorphic curve in M is a smooth map u from a genus g complex
curve into M such that J ◦ du = du ◦ i where i is the complex structure on the curve.

Given a nonzero homology class [A] ∈ H2(M ;Z) and a positive integer k , consider the moduli space
MM

[A],g,k of all simple genus g maps into M with k distinct marked points where the homology class of the

image is [A] , up to reparametrization. MM
[A],g,k consists of the equivalence classes [u, x1, · · · , xk] . Since we

deal with genus zero Gromov–Witten invariants, i.e. g = 0 , we drop the subscript g from the notation.
Let Mk denote the Cartesian product of k copies of M for k > 0 . For 1 < j < k , let πj denote

the projection map Mk → M onto the j th factor. The evaluation map ev : MM
[A],k ↪→ Mk is defined by

ev([u, x1, · · · , xk]) = (u(x1), · · · , u(xk)) .
Theorem 6.6.1 of [11] states the following lemma. For the definition of a pseudocycle see Definition 6.5.1

of [11].
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Lemma 2.1 Let M be semipositive and if [A] ∈ H2(M ;Z) such that [A] = m[B] and c1(M)[B] = 0 ⇒ m = 1

for every positive integer m > 0 and for all spherical homology classes [B] ∈ H2(M ;Z) . Then the evaluation
map ev : MM

[A],k ↪→ Mk is a pseudocycle of real dimension 2n− 6 + 2c1(M)[A] + 2k .

The condition in the statement of Lemma 2.1 on [A] that [A] = m[B] and c1(M)[B] = 0 implies m = 1

for every integer m > 0 and for all spherical homology class [B] ∈ H2(M ;Z) is not restrictive in the context
of this paper because such classes cannot be represented by embedded J -holomorphic spheres in a symplectic
4 -manifold with b+2 > 1 . If there was any such class [B] , it should have self intersection −2 by the adjunction
formula and this is not the case as we are going to see.

According to Theorem 7.1.1 of [11], the Gromov–Witten invariants are calculated as in Lemma 2.2 below.
See also Lemma 6.5.5(iii) of [11].

Lemma 2.2 The k -pointed genus zero Gromov–Witten invariant of M in the class [A] is defined as

GWM
[A],k(α1, · · · , αk) = ev · f

where α1, · · · , αk are cohomology classes of M and f is a pseudocycle which is Poincaré dual to
π∗
1(α1) ∪ · · · ∪ π∗

k(αk) .

To get nonzero invariants, the sum of the degrees of the cohomology elements must be equal to the
dimension of MM

[A],k , which is 2n− 6 + 2c1(M)[A] + 2k . This is called the dimension condition.

Gromov–Witten invariants can be consistently extended to the case where k is zero. If [A] is zero,
GWM

0,0 is set as zero. When k is zero, Mk is a point and any pseudocycle is trivial. If [A] is nonzero, for the
dimension condition to be satisfied 2n− 6 + 2c1(M)[A] should be zero. When the dimension 2n of M is four,
under the assumption that [A] has an embedded sphere representative, this implies that [A]2 should be −1 and
GWM

[A],0 counts the exceptional spheres in the class [A] . This is either zero or one (not −1 as a convention) as

in Example 3.1. If 2n is six, then for GWM
[A],0 to be nonzero, c1(M)[A] should be zero.

Two facts about Gromov–Witten invariants which are used in the subsequent sections are the following two
lemmas which are known as the fundamental class axiom and the divisor axiom for Gromov–Witten invariants
(Proposition 7.5.6 of [11]).

Lemma 2.3 Let M be a semipositive symplectic manifold, [A] be a nonzero second homology class and k ≥ 1 .
Then GWM

[A],k(α1, · · · , αk−1, PD([M ])) is zero. In other words, there cannot be a degree zero cohomology class
among αi ’s.

Lemma 2.4 Let M be a semipositive symplectic manifold, [A] be a nonzero second homology class and k ≥ 1 .
If the degree of αk is two, then

GWM
[A],k(α1, · · · , αk−1, αk) = (αk · [A]) GW[A],k−1(α1, · · · , αk−1)
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3. Dimension four
In the proofs, we are going to apply different results which appeal to a generic set of compatible almost complex
structures. These are Baire sets as well as their intersections; thus, one can find a compatible almost complex
structure J which is in all of these sets.

3.1. Exceptional spheres

We start this subsection with an example on calculations of Gromov–Witten invariants.

Example 3.1 Let Y be a simply connected symplectic 4-manifold and X be its blowup. Topologically X is
diffeomorphic to Y#CP 2 . In the blowup of a 4-manifold, there is an exceptional sphere which is a smooth
sphere with self intersection −1 . Let us find the Gromov–Witten invariant of X for the homology class [E] of
the exceptional sphere in H2(X;Z) with no other constraints. No constraint means that the number of points
through which the exceptional sphere must pass is zero, that is k is zero. By the adjunction formula for symplectic
4-manifolds, c1(X)[E] is calculated as one. The expected dimension of the moduli space is 2n− 6 + 2c1(X)[E]

which is equal to zero. The moduli space MX
[E],0 is a finite set of points with orientation. By the positivity of

intersections of J -holomorphic curves in an almost complex manifold, there is only one J -holomorphic sphere
E which represents [E] in X , so GWX

[E],0 is 1 .

Similar examples are studied in [14] (pages 140 and 141) where k is taken to be three instead of zero.
The next theorem is an extension of Example 3.1 and examples in [14] to all positive values of k .

Theorem 3.2 Let Y be a symplectic 4-manifold and X be Y#CP 2 . If [E] is the homology class of the
exceptional sphere, then GWX

[E],k(PD[E], · · · , PD[E]) is equal to (−1)k .

Proof Let J be a compatible almost complex structure on X . By positivity of intersections of J -holomorphic
curves in an almost complex manifold, there is only one J -holomorphic sphere which represents [E] in X , which
will be denoted by E . GWX

[E],0 is one. PD([E])·[E] is −1 . Applying the divisor axiom (Lemma 2.4) inductively,

we find GWX
[E],k(PD[E], · · · , PD[E]) = (−1)k .

2

Theorem 3.3 Let k > 0 . If Y is a simply connected, symplectic 4-manifold and X is Y#CP 2 , then the
Gromov–Witten invariant GWX

[E],k(α1, · · · , αk) is zero unless αi ∈ H2(X;Z) . If αi ∈ H2(X;Z) for all i ∈ Z

such that 1 ≤ i ≤ k (k > 0), then

GWX
[E],k(α1, · · · , αk) = (α1 · [E]) · · · (αk · [E])

Proof By the dimension condition, the sum of degrees of αi should be equal to the dimension of the moduli
space MX

[E],k , which is 2n− 6+2c1(X)[E]+2k = 2k . There is no odd degree cohomology because X is simply

connected. By the fundamental class axiom (Lemma 2.3), in order to get a nonzero invariant, all classes must
be of degree two. By the divisor axiom, the result follows.

2
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3.2. Nonzero invariants
This subsection is on the conditions for the invariants to be nonzero. Since a homologically essential embedded
2 -sphere in a symplectic 4 -manifold with b+ > 1 always has negative self intersection (otherwise Seiberg–Witten
invariants would vanish which is not the case for a symplectic manifold, [9]), we necessarily have A2 ≤ −1 .
A symplectic 4 -manifold is of Seiberg–Witten simple type. The following lemma, which is a version of the
adjunction inequality of Seiberg–Witten theory (Theorem 2.4.8 in [4]), is critical in the proofs of the main
theorems.

Lemma 3.4 Let X be a symplectic 4-manifold with b+2 (X) > 1 and J be a generic almost complex structure
on X which is compatible with the symplectic structure. Let A ⊂ X be a connected J -holomorphic sphere in
the class of [A] ∈ H2(X;Z) such that [A] is nonzero and [A] can be represented by an embedded, connected
J -holomorphic sphere. Then A2 is less than or equal to −1 .

The next theorem is one of the main results.

Theorem 3.5 Let X be a symplectic 4-manifold with b+2 (X) > 1 and J be a generic almost complex structure
on X which is compatible with the symplectic structure. Let [A] be a nonzero second homology class of X which
can be represented by an embedded, connected J -holomorphic sphere. Let α1, · · · , αk be cohomology classes of
X . If GWX

[A],k(α1, · · · , αk) is nonzero, then [A] is the class of an exceptional sphere in X .

Proof If the Gromov–Witten invariant is nonzero then [A] must have a connected J -holomorphic sphere
representative, say A . A can be chosen to be embedded. Lemma 3.4 implies that A2 ≤ −1 . By the regularity
of J and Corollary 3.3.4 of [11] A2 ≥ −1 , so A2 is −1 . Therefore, [A] is the class of an exceptional sphere.

2

The case where [A] can be the zero class is excluded. We refer the reader to a more general source [11]
for a discussion of the zero class.

Remark 3.6 These results are compatible with the results of Taubes [17]. If X is a symplectic manifold with
b+2 (X) > 1 and [A] is a second homology class of X such that all of its representatives are connected and
g([A]) ̸= 1 , then the relation between the Gromov–Witten invariants and the Gromov invariants of Taubes is

GrX([A]) = GWX
[A],k[A]

(PD([point]), · · · , PD([point]))

where k[A] = [A]2 + 1− g([A]) and PD([point]) is repeated k[A] times.

The number of points in X for [E] is determined by Taubes as k[E] = [E]2 + 1 − g([E]) = 0 .
Keeping in mind that the representative for [E] is connected, according to the formula which gives the relation
between the Gromov invariants of Taubes and the Seiberg–Witten invariants ([2]), GWX

[E],0 = GrX([E]) =

SWX(2[E]+c1(X)) = ±1 . The last equality is justified by the blowup formula for the Seiberg–Witten invariants,
i.e. SWX(2[E] + c1(X)) = SWX(2[E] + c1(Y )− [E]) = ±SWY (c1(Y )) = ±1 .

The similarity of the calculations in Example 3.1 and to the calculations in Lemma 4.2 inspires that there
may be relation between the invariants of the symplectic structure on a 4 -manifold X and the Gromov–Witten
invariants of X × S2 . Unfortunately, we see that no interesting relation may occur in the genus zero case.
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4. Exotic symplectic manifolds in dimension six

Example 4.1 is brought first by Ruan in [12] in the context of exotic symplectic structures on smooth 6 -manifolds.
See [11] (page 335) for another explanation of this example. The manifolds in these examples have b+2 = 1 .

Example 4.1 Let X1 be CP 2#8CP 2 and X2 = B8 be the Barlow surface. X1 and X2 are homeomorphic but
they are not diffeomorphic [1, 3, 8]. The Barlow surface is minimal and CP 2#8CP 2 is not minimal. X1 × S2

and X2 × S2 are not symplectic deformation equivalent [12].

The next lemma is based on this example.

Lemma 4.2 Let Y be a symplectic 4-manifold and X be its blowup, i.e X = Y#CP 2 . Let [E] be the class of
the exceptional sphere and let [E] denote the pushforward of the homology class [E] under the inclusion map

in H2(X × S2) . Then GWX×S2

[E],1
(PD([E])) is equal to −1 .

Proof Let J be a compatible almost complex structure on X × S2 . The dimension of MX×S2

[E],1
is 2c1(X ×

S2)[E] + 2 = 2c1(X)[E] + 2 which is equal to four, and the dimension condition is satisfied. By positivity of
intersections of J -holomorphic curves in an almost complex manifold, there is only one curve which represents
[E] in X , which will be denoted by E . For each point of S2 factor, we have the curve E in X × · , where
E is the image of E in X × S2 . If we put the condition of passing through a marked point, this adds two
real dimensions to the moduli space for the freedom of choosing a point on the sphere E . The moduli space is
diffeomorphic to E×S2 in X×S2 which is compact and smooth and the evaluation map is the diffeomorphism.
In this case, the intersection of the pseudocycles in the definition of Gromov–Witten invariants are in fact an

intersection of cycles in M . Therefore, GWX×S2

[E],1
(PD([E])) is equal to [E × S2] · [E] which is −1 .

2

When k is zero, as discussed at the end of Section 2, the dimension condition does not hold since

c1(X × S2)[E] is nonzero. Thus, GWX×S2

[E],0
is zero.

The following theorem extends Lemma 4.2 to the cases where k is greater than one. See also [14].

Theorem 4.3 Let Y be a symplectic 4-manifold, X be Y#CP 2 and k ≥ 1 . Then

GWX×S2

[E],k
(PD([E]), PD([E × S2]), · · · , PD([E × S2])) = (−1)k

where PD([E × S2] is repeated k − 1 times.

Proof The dimension of MX×S2

[E],k
is 2c1(X × S2)[E] + 2k = 2 + 2k . If k is one, then by Lemma 4.2

GWX×S2

[E],1
(PD([E])) is −1 . PD([E×S2]) is a degree two cohomology class of X×S2 . Thus, we can apply the di-

visor axiom (Lemma 2.4 ). Applying the divisor axiom inductively, we conclude that GWX×S2

[E],k
(PD([E]), PD([E×

S2]), · · · , PD([E × S2])) is (−1)k .
2
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The second homology classes of X×S2 are pushforwards of the second homology classes of X or [ ·×S2] .
The next theorem is on the former classes.

Theorem 4.4 Let X be a symplectic 4-manifold with b+2 (X) > 1 and J be a generic almost complex structure
on X which is compatible with the symplectic structure. Let [A] be a nonzero second homology class of X

which can be represented by an embedded, connected J -holomorphic sphere. Let [A] be the pushforward of [A]

in H2(X × S2;Z) and α1, · · · , αk be cohomology classes of X × S2 . If GWX×S2

[A],k
(α1, · · · , αk) is nonzero, then

[A] is the homology class of an exceptional sphere in X .

Proof This result is a straightforward consequence of Theorem 3.5.
2

The next theorem says that Ruan’s example (Example 4.1) is the only meaningful application of genus
zero Gromov–Witten invariants in the case of 6 -manifolds that appear as the Cartesian products of 4 -manifolds
with S2 .

Theorem 4.5 Let X be a simply connected, symplectic 4-manifold with b+2 (X) > 1 and J be a generic
almost complex structure on X which is compatible with the symplectic structure. Let [A] be a nonzero second
homology class of X which can be represented by an embedded, connected J -holomorphic sphere. Let [A] be the

pushforward of [A] in H2(X×S2;Z) and α1, · · · , αk be cohomology classes of X×S2 . If GWX×S2

[A],k
(α1, · · · , αk)

is nonzero, then the following conditions are satisfied.

1. [A] is the homology class [E] of E for an exceptional sphere E in X .

2. For a unique j , αj is a fourth cohomology class of X×S2 which evaluates nonzero on [E×S2] ∈ X×S2

where E is the image of E in X × S2 under the inclusion map,

3. For all i which are not equal to j , αi is a second cohomology class of X × S2 which evaluates nonzero
on [E] ∈ X × S2 .

Proof Assume that GWX×S2

[A],k
(α1, · · · , αk) is not zero. Theorem 4.4 imposes that [A] should be the homology

class of an exceptional sphere E in X , i.e. [A] is identical with [E] in H2(X;Z) . By the dimension

condition, the sum of degrees of αi should be equal to the dimension of the moduli space MX×S2

[A],k
, which

is 2n − 6 + 2c1(X × S2)[A] + 2k = 2 + 2k . X × S2 is simply connected; thus, its odd cohomology groups are
trivial, and all αi ’s (1 ≤ i ≤ k ) have even degrees. By the fundamental class axiom (Lemma 2.3), in order to
get a nonzero invariant, there must be one class of degree four, and the remaining ones are of degree two.

Without loss of generality, since there is no odd degree cohomology class, assume that α1 is the fourth
degree class.

If k = 1 , then the moduli space MX×S2

[E],1
is diffeomorphic to E × S2 in X × S2 which is compact and

smooth and the evaluation map is the diffeomorphism. In this case, the intersection of the pseudocycles in the

definition of Gromov–Witten invariants are in fact an intersection of cycles in M . Therefore, GWX×S2

[E],1
(α1) is

equal to α1 · [E × S2] , the evaluation of α1 on [E × S2] , and is nonzero only if the latter is nonzero.
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If k > 1 , let us turn to the cohomology classes αi , 2 ≤ i ≤ k . Each αi is of degree two, so the divisor
axiom is applicable and the result follows.

2

Corollary 4.6 Let k be a positive integer, α1 ∈ H4(X;Z) and αi ∈ H2(X;Z) for all i ∈ Z such that
2 ≤ i ≤ k . If X is a simply connected, symplectic 4-manifold, then

GWX×S2

[A],k
(α1, · · · , αk) = (α1 · [E × S2]) · (αk · [E]) · · · (αk · [E])

Remark 4.7 Let X be a 4-manifold as in Theorem 4.5. If GWX×S2

[A],k
(α1, · · · , αk) is nonzero for a nonzero

second homology class [A] of X which can be represented by an embedded, connected J -holomorphic sphere
and for some cohomology classes α1, · · · , αk of X × S2 , then X is a blowup of a 4-manifold Y . H2(X;Z) is
isomorphic to the direct sum H2(Y ;Z)⊕H2(CP 2;Z) . By a slight abuse of notation, suppose that H2(CP 2;Z)

is generated by [E] . Then H2(X ×S2;Z) is isomorphic to the direct sum H2(Y ;Z)⊕H2(CP 2;Z)⊕H2(S
2;Z) .

A generator of H2(X × S2;Z) is either the pushforward of a generator [B] of H2(Y ;Z) under the inclusion
map into X × S2 , [E] or [ · × S2] . If the Poincaré dual of the degree four cohomology class α1 in the proof of
the theorem is written as a linear combination of these generators, then the coefficient of [E] cannot be zero.
That is α1 has a PD([E]) term. A similar argument applies to αi (2 ≤ i ≤ k ) and PD([E × S2]) .

Another corollary to Theorem 4.5 is the existence of exotic symplectic deformation types on a fixed
smooth 6 -manifold.

Corollary 4.8 Let X1 and X2 be homeomorphic symplectic 4-manifolds with b+2 (X1) > 1 and b+2 (X2) > 1 . If
X1 is not minimal and X2 is minimal, then X1×S2 and X2×S2 are diffeomorphic but they are not symplectic
deformation equivalent.

Proof In Lemma 4.2, one of the invariants of X1 × S2 , GWX×S2

[E],1
(PD([E])) , is found to be nonzero.

X1 × S2 and X2 × S2 are diffeomorphic [6, 18]. Let h : X1 × S2 → X2 × S2 be a diffeomorphism. The
diffeomorphism h induces an isomorphism of the homology, the cohomology and the triple intersection forms.
Under this isomorphism c1(X1 × S2) is taken to c1(X2 × S2) , and by Theorem 9 of [18] homotopy class of
the compatible almost complex structures is preserved. Theorem 4.5 implies that for a generic almost complex
structure X2 × S2 has all its corresponding genus zero Gromov–Witten invariants zero since X2 is minimal.
Therefore, the symplectic structures on X1 × S2 and X2 × S2 are not symplectic deformation equivalent.

2

As another outcome of Theorem 4.5, we see the following corollary.

Corollary 4.9 Given a minimal, simply connected, symplectic 4-manifold X such that b+2 (X) > 1 , the genus

zero Gromov–Witten invariant GWX×S2

[A],k vanishes for all k ≥ 0 and for any nonzero second homology class [A]

of X × S2 .
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Corollary 4.9 implies that for two minimal, simply connected, symplectic 4 -manifolds X1 and X2 such
that b+2 (X1) > 1 and b+2 (X2) > 1 , genus zero Gromov–Witten invariants cannot distinguish the symplectic
structures on X1 × S2 and X2 × S2 , regardless of whether or not the two 6 -manifolds are diffeomorphic.
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