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Abstract: “Fusion rules” are laws of multiplication among eigenspaces of an idempotent. This terminology is relatively
new and is closely related to axial algebras, introduced recently by Hall, Rehren and Shpectorov. Axial algebras, in turn,
are closely related to 3 -transposition groups and Vertex operator algebras.

In this paper we consider fusion rules for semisimple idempotents, following Albert in the power-associative case.
We examine the notion of an axis in the non-commutative setting and show that the dimension d of any algebra A

generated by a pair a, b of (not necessarily Jordan) axes of respective types (λ, δ) and (λ′, δ′) must be at most 5 ; d

cannot be 4. If d ≤ 3 we list all the possibilities for A up to isomorphism.
We prove a variety of additional results and mention some research questions at the end.
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1. Introduction
Our goal in this paper is to further the study of axes, i.e., semi-simple idempotents, in an arbitrary algebra
A. Throughout this paper A is an algebra (not necessarily associative or commutative, not necessarily with a
multiplicative unit element) over a field F.

Let a ∈ A be an idempotent, and λ, δ ∈ F.

1. We define the left and right multiplication maps La(b) := a · b and Ra(b) := b · a.

2. We write Aλ(Xa) for the eigenspace of λ with respect to the transformation Xa , X ∈ {L,R}, i.e.,
Aλ(La) = {v ∈ A : a · v = λv}, and similarly for Aλ(Ra). Often we just write Aλ for Aλ(La) , when a is
understood. We note that it may happen that Aλ(Xa) = 0.

3. We write Aλ,δ(a) := Aλ(La) ∩ Aδ(Ra). We just write Aλ,δ when the idempotent a is understood. An
element in Aλ,δ(a) will be called a (λ, δ) -eigenvector of a, and (λ, δ) will be called its eigenvalue.

An idempotent a ∈ A is a left axis (resp. right axis) if La (resp. Ra ) is a semi-simple operator. An axis
is an idempotent a which is both a left and a right axis, and satisfies LaRa = RaLa. If A is associative with
an identity element, then A = A1,1(a) +A0,0(a) +A1,0(a) +A0,1(a), for any idempotent a ∈ A.
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Axes a in a power-associative algebra A (although not under that name) were already studied by
Albert [1]. He showed that when A is commutative, A = A1,1(a) + A0,0(a) + A1/2, 1/2(a), for any idempotent
a ∈ A. In particular this is the case when A is a Jordan algebra.

In [3], Hall, Rehren and Shpectorov introduced axial algebras. These are commutative algebras, which are
not necessaily power associative, and which are generated by axes. Axial algebras, and, in particular, “primitive
axial algebras of Jordan type” are of interest because of their connection with group theory and with Vertex
operator algebras. We refer the reader to the introduction of [3] for further information.

Axial (composition) algebras are (non-associative) algebras generated by axes. These algebras are not
necessarily power associative and not necessarily commutative. However, they are generated by axes satisfying
certain fusion rules (see [2] for the most general notion of fusion rules and for the notion of decomposition
algebra).

Our main interest in this paper, continuing our work in [5], is to place (commutative) axial algebras in
a general non-commutative framework. We hope that in addition to being interesting in its own right, this
information might be used to understand (and prove) the finite dimensionality of various finitely generated
primitive axial algebras.

Definitions 1.1

1. The algebra A is flexible if it satisfies the identity (xy)x = x(yx). In a flexible algebra we write xyx

without parentheses since there is no ambiguity.

2. A is power-associative if F [x] is associative (and therefore commutative) for each x ∈ A.

Commutative algebras are flexible since

(xy)x = (yx)x = x(yx). (1.1)

We first study eigenvalues of idempotents a ∈ A in the spirit of [1]. We often assume flexibility. In
subsection 2.1 we also often assume that A is power-associative, relying heavily on Albert [1].

Definitions 1.2 Let a ∈ A be an idempotent, and λ, δ /∈ {0, 1} in F .

1. a is a left axis if a is a left semisimple idempotent, i.e., La satisfies a polynomial p[t] = t(t−1)
∏m

i=1(t−λi)

with only simple roots 0, 1, λ1, . . . , λm. Note that we do not require p[t] to be the minimal polynomial of
La. We call λ1, . . . , λm the type of a. The left axis a is primitive if A1 = Fa .

For a primitive left axis a of type λ1, . . . , λm, and x ∈ A, we write

x = αxa+ x0 +
∑m

i=1 xλi
, xλi

∈ Aλi
(La).

and we call it the left decomposition of x with respect to a .

2. Given a left axis a, let B := A1 +A0. We say that a satisfies the left basic fusion rule if

(i) B is a subalgebra of A.

(ii) BAλ = AλB ⊆ Aλ for each eigenvalue λ 6= 0, 1.
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(iii) For each λ there is λ′ such that AλAλ′ ⊆ B.

The left involutory fusion rules are the basic fusion rules together with A2
λ ⊆ B, for each λ.

3. Thus a is a primitive left axis of type λ with the left involutory fusion rule if

(i) (La − λ)(La − 1)La = 0. (In particular the only left eigenvalues are contained in {0, 1, λ} .)

(ii) There is a direct sum decomposition of A which is a Z2 -grading:

A =

+︷ ︸︸ ︷
Fa⊕A0 ⊕

−︷︸︸︷
Aλ ,

recalling that Aλ means Aλ(La) .

4. A right axis of type δ1, . . . , δn is defined similarly. Also the right fusion rules are defined as in (2). As
with a left axis, for a right axis a and x ∈ A, we write

x = βxa+ 0x+
∑m

i=1 λix, λix ∈ Aλi(Ra).

and we call it the right decomposition of x with respect to a .

5. a is a (2-sided) primitive axis of type (λ1, . . . , λm; δ1, . . . , δn) if a is a primitive left axis of type λ1, . . . , λm

and a primitive right axis of type δ1, . . . , δn, satisfying the left and right involutory fusion rules, and, in
addition, LaRa = RaLa. In particular, a is a primitive axis of type (λ, δ), when m = n = 1.

Note that for any primitive axis a , A1,1 = Fa = A1(La) = A1(Ra) ; in particular A1,µ = Aν,1 = 0, for
any ν, µ distinct from 1. So if a is a primitive axis, and x ∈ A, we write

x = αxa+ x0,0 +
∑m

i=1 xλi,0 +
∑n

j=1 x0,δi +
∑

i,j xλi,δj .

and we call it the decomposition of x with respect to a .

6. ([5]) An axis a is of Jordan type (λ, δ) if Aλ,0(a) = 0 = A0,δ(a). Note that in this case

x = αxa+ x0,0 + xλ,δ, ∀x ∈ A.

In this case we sometimes call a an axis of Jordan type.

3

Hence, if a is an axis of type (λ, δ), then

A =

++︷ ︸︸ ︷
A1,1 ⊕A0,0 ⊕

+−︷︸︸︷
A0,δ ⊕

−+︷︸︸︷
Aλ,0 ⊕

−−︷︸︸︷
Aλ,δ,

is Z2 × Z2 grading of A (multiplication (ϵ, ϵ′)(ρ, ρ′) is defined in the obvious way for ϵ, ϵ′, ρ, ρ′ ∈ {+,−}).
If a is an axis of Jordan type (λ, δ), then

A = A1 ⊕A0 ⊕Aλ,δ.
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Jordan type is close to commutative, but there are natural non-commutative examples given in [5, Examples 2.6].
Also see Examples 2.2 for axes not of Jordan type.

Note that besides being non-commutative, Definition 1.2(2) does not require the condition that A0 is
a subalgebra, contrary to the usual hypothesis in the commutative theory of primitive axial algebras. But this
condition does not seem to pertain to any of the proofs.

If a is a primitive axis of type (λ, δ), then by Definition 1.2(5), we can write x ∈ A as

x = αxa+ x0,0 + x0,δ + xλ,0 + xλ,δ, xµ,ν ∈ Aµ,ν(a), (1.2)

which we call the (2-sided) decomposition of x with respect to a.

When a is of Jordan type, we have the much simpler decomposition

x = αxa+ x0 + xλ,δ

with x0 ∈ A0,0, and xλ,δ ∈ Aλ,δ, which is both the left decomposition and right decomposition.
Next, for λ ∈ F, write

Åλ(a) = {x ∈ A | ax+ xa = 2λx}. (1.3)

(We write Åλ, when a is understood.) Albert proved for A power-associative with char(F ) 6= 2, 3, that

A = A1,1 ⊕A0,0 ⊕ Å1/2.

This is reproved directly as Theorem 2.8(1). The following theorem of Albert then describes the appropriate
fusion laws in a power-associative algebra A :

Albert’s Fusion Theorem ([1, Theorem 3, p. 560, Theorem 5, p. 562]) Suppose that A is power-associative
with char(F ) 6= 2, 3. Let a ∈ A be an idempotent (not necessarily primitive).

1. A = A1,1 ⊕A0,0 ⊕ Å1/2.

2. A0,0, A1,1 are subalgebras.

Furthermore for A flexible,

3. Aλ,λÅ1/2 ⊆ A1−λ,1−λ + Å1/2, Å1/2Aλ,λ ⊆ A1−λ,1−λ + Å1/2, for λ = 0, 1.

4. aÅ1/2, Å1/2a ⊆ Å1/2. 3

We prove
Theorem A (Theorem 4.3). Assume that A is generated by two axes a, b of type (λ, δ) and (λ′, δ′). Then the
dimension of A is at most 5.

In [5, Theorem 2.5], we classified all algebras as in Theorem A, of dimension 2. We prove
Theorem B (Theorem 4.10). Assume that A is generated by two axes a, b of type (λ, δ) and (λ′, δ′). If
dim(A) = 3, then a and b are of Jordan type, and hence the possibilities for A are given in [5, Theorem B].
Proposition C. Assume that A is generated by two axes a, b of type (λ, δ) and (λ′, δ′). Then

1. (Lemma 4.9) If ab ∈ Fa+ Fb, then dim(A) = 2.
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2. (Lemma 4.8) If ab = 0, then ba = 0.

We prove a number of additional results and we mention some questions in §5.

Remark 1.3 Along the period that this paper was refereed we proved that there are no algebras of dimension 4

generated by two primitive axes of type (λ, δ) and (λ′, δ′). This result will appear somewhere else. The referee
has pointed out that [7] contains some similar results for alternative algebras.

2. General results about axes
The next proposition provides a useful decomposition result into eigenspaces.

Proposition 2.1 Suppose a is a left axis, where La satisfies the polynomial
∏m

i=1(x − µi), with only simple
roots µ1, . . . , µm. For y ∈ A , write y =

∑m
j=1 yj , where yj is the left µj -eigenvector in the La -eigenvector

decomposition of y , and define the vector space Va(y) =
∑m−1

i=0 FLi
ay. Then

Va(y) = ⊕m
j=1Fyj .

Proof By induction, Lk
a(y) =

∑
µk
j yj for 0 ≤ k ≤ m− 1. Thus

Va(y) ⊆ ⊕m
j=1Fyj .

But on the other hand, we have a system of m equations in the yj with coefficients (µk
j ) , the Vandermonde

matrix, which is non-singular, so there is a unique solution for the yj in Va(y) . 2

This space Va(b) plays a key role in investigating a second axis b (see Proposition 4.7).

2.1. Basic properties of flexible idempotents

An idempotent a ∈ A is called flexible if (ax)a = a(xa) and (xa)x = x(ax) for all x ∈ A . We present some
examples of axes that are not flexible, to justify full generality.

Examples 2.2

1. Let A = Fa⊕ Fb⊕ Fc with multiplication given by

a2 = a, x2 = a = y2,

ax = λx, xa = 0,

ay = 0, ya = δy, xy = yx = 0.

Then a(xa) = 0 = (ax)a , and a(ya) = 0 = (ay)a, so LaRa = RaLa.

(La − λ)x = λ(x− x) = 0 = Lay,

implying (La − λ)(La − 1)La = 0. Likewise (Ra − δ)(Ra − 1)Ra = 0.

Hence a is a primitive axis of type (λ, δ) which is not of Jordan type, with Fx = Aλ,0(a) and Fy = A0,δ(a) ;
a is the only axis in A .
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2. Let 0 6= λ, δ ∈ F, with λ+ δ = 1. Let

A = Fa⊕ Fy ⊕ Fx⊕ Fy ⊕ Fz,

with multiplication defined by:

a2 = a, ac = ca = 0, ax = λx, xa = 0, ay = 0, ya = δy,

az = λz, za = δz.

c2 = cx = xc = cy = yc = cz = zc = 0.

x2 = 0, xy = 0 = yx, xz = λy, zx = 0.

y2 = c, yz = δx, zy = 0, z2 = 0.

So
A1,1 = Fa, A0,0 = Fy, Aλ,0 = Fx, A0,δ = Fy, Aλ,δ = Fz.

It is easy to check that (av)a = a(va), for v ∈ {a, c, x, y, z}, and a is a primitive axis of type (λ, δ), not
of Jordan type. Also, a is not a flexible axis since (xa)x = 0, while x(ax) = λx2 = −λc.

Let b = a+ c+ x+ y + z. Then

b2 =a2 + x2 + (y)2 + ax+ ya+ az + za+ xz + yz

= a− c+ c+ (λ+ δ)x+ (λ+ δ)y + (λ+ δ)z = b.

Note that A has dimension 5. Since a, b, ab, ba, and aba are independent, they span A .

Flexible idempotents to axis are rather special.

Lemma 2.3 If a is an idempotents to axis satisfying (xa)x = x(ax), for all x ∈ A, then L2
a −La = R2

a −Ra.

Proof We have:
a+ ax+ (xa)a+ xax = (a+ xa)(a+ x) = ((a+ x)a)(a+ x) =

(a+ x)(a(a+ x)) = (a+ x)(a+ ax) = a+ a(ax) + xa+ xax,

so ax+ (xa)a = a(ax) + xa . 2

Lemma 2.4 Suppose a ∈ A is an idempotent satisfying L2
a − La = R2

a −Ra. (In particular this holds when a

is an idempotent satisfying (xa)x = x(ax), for all x ∈ A, by Lemma 2.3.)

1. If Aµ,ν(a) 6= 0, then either ν = µ or ν = 1− µ.

2. A decomposes as ⊕λAλ,λ ⊕Aλ,1−λ, summed over all left eigenvalues λ of a .

Proof (1) Let z 6= 0 is a (µ, ν) -eigenvector, then

(µ2 − µ)z = a(az)− az = (za)a− za = (ν2 − ν)z,

implying µ2 − µ = ν2 − ν, or (µ− ν)(µ+ ν − 1) = 0.

(2) These are the only possibilities, in view of (1). 2
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Lemma 2.5 Suppose a ∈ A is a flexible idempotent. Then

Ra(Ra + La − 1) = La(Ra + La − 1).

Proof By Lemma 2.3, and since LaRa = RaLa,

Ra(Ra + La − 1) = RaLa +R2
a −Ra = RaLa + L2

a − La

= La(Ra + La − 1).

2

2.2. Albert’s power-associative results

As an application, we reprove Albert’s theorem on power-associative algebras, but first we need:

Lemma 2.6 If A is flexible and power-associative over a field of characteristic 6= 2, 3, then

(Xa − 1)Ya(La +Ra − 1) = 0, for X,Y ∈ {R,L}.

Proof We show that (Ra − 1)Ra(La +Ra − 1) = 0, the rest follows from Lemma 2.3 and Lemma 2.5.
By [1, Equation 12, p. 556], and applying Lemma 2.3,

0 = R2
a + LaRa + L2

a −R3
a − LaR

2
a − La

= R2
a + LaRa +R2

a −R3
a − LaR

2
a −Ra

= 2R2
a −R3

a + La(Ra −R2
a)−Ra,

(2.1)

so
(Ra − 1)2Ra = R3

a − 2R2
a +Ra = La(Ra −R2

a) = −LaRa(Ra − 1),

so
(Ra − 1)Ra(La +Ra − 1) = 0.

2

Remark 2.7 In an easy argument in the first three lines of the proof of [1, Theorem 3, p. 560] Albert proves
that Åλ = Aλ,λ for λ ∈ {0, 1} (see Equation (1.3) for notation). This is used in the following result of Albert
on power-associative algebras ([1, (22), p. 559] and [1, Thm. 3, p. 562]).

Theorem 2.8 ([1]) Suppose that A is power-associative, and that char(F ) 6= 2, 3. Let a ∈ A be an idempotent.
Then

1. A = A1,1 ⊕A0,0 ⊕ Å1/2.

2. We have

A1 = Xa(La +Ra − 1)A; A0 = (Xa − 1)(La +Ra − 1)A;

Å1/2 = (Ra + La)(Ra + La − 2)A, X ∈ {R,L}.
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Here is an alternate proof that is rather conceptual and reasonably quick, working directly in A.

Proof (1) Assume first that A is commutative. Then A is flexible (see Equation (1.1)), so we may use
Lemma 2.5 and Lemma 2.6. Let x ∈ A.

Let x1 = Rax and x2 = (1−Ra)x, so that x = x1 + x2. By Lemma 2.6 we have

(Ra − 1)(Ra + La − 1)(x1) = 0 = (La − 1)(Ra + La − 1)(x1). (2.2)

and
Ra(Ra + La − 1)(x2) = 0 = La(Ra + La − 1)(x2). (2.3)

Let

x′
1 = (Ra + La − 1)(x1), x′′

1 = (Ra + La − 2)(x1),

x′
2 = (Ra + La − 1)(x2), x′′

2 = (Ra + La)(x2),

Of course
x = x′

1 − x′′
1 + x′′

2 − x′
2.

By Equations (2.2) and (2.3),

Ra(x
′
1) = x′

1 = La(x
′
1), Ra(x

′
2) = 0 = La(x

′
2).

So
x′
1 ∈ A1, and x′

2 ∈ A0.

Also by Equation (2.2), (Ra+La−1)(x′′
1) = 0, that is x′′

1 ∈ Å1/2, and by Equation (2.3), (Ra+La−1)(x′′
2) = 0,

that is x′′
2 ∈ Å1/2.

For the general case where A is not commutative, Å is commutative and power-associative; hence
A = Å1 ⊕ Å0 ⊕ Å1/2. However, Åλ = Aλ,λ, for λ ∈ {0, 1}, by Remark 2.7.
(2) follows from (1). Indeed

Xa(La +Ra − 1)A0 = 0 = Xa(La +Ra − 1)Å1/2,

and Xa(La+Ra− 1)(x) = x, for x ∈ A1, and similarly for (Xa− 1)(La+Ra− 1) and (Xa+La)(Ra+La− 2).
2

Note that if A is commutative then Å1/2 = A1/2, so Theorem 2.8 generalizes the commutative description
of axes.

2.3. Properties of primitive axes of type (λ, δ)

Here are some computations.

Lemma 2.9 Suppose a is a primitive axis of type (λ, δ), and let y ∈ A.

1. a(Fa+A0) = Fa.

2. ay = αya+ λyλ, so yλ = 1
λ (ay − αya).
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3. a(ay) = αy(1− λ)a+ λay.

4. y0 = y − 1
λ (ay − (λ+ 1)αya).

5. (ay)a = αya+ λδyλ,δ, implying yλ,δ = 1
λδ ((ay)a− αya).

Proof (1) This is obvious.
(2) Apply La and solve.
(3) a(ay) = αya+ λ2yλ = αya+ λ(ay − αya), yielding (3).

(4) y0 = y − yλ − αya = y − 1
λ (ay − (λ+ 1)αya).

(5) Apply Ra to (2). 2

Lemma 2.10

1. ab /∈ Fa or ab = 0 , for any idempotent a and primitive right axis b satisfying the involutory fusion rules.

2. For any primitive left axis a of type λ and any primitive right axis b satisfying the involutory fusion
rules, either ab = 0 or bλ 6= 0 .

3. If a is a primitive axis of Jordan type (λ, δ) with λ 6= δ, and b is an axis, then b2λ,δ = 0.

Proof (1) If ab = γa, then a is an eigenvector of Rb, with eigenvalue γ. If γ = 1, then b is not primitive,
a contradiction. Otherwise, by the fusion rules for b, a = a2 ∈ Fb+A0(Rb). But then ab ∈ Fb. This together
with ab ∈ Fa forces ab = 0.

(2) If bλ = 0, then ab = αba, so we are done by (1).
(3) The proof is exactly as in [5, Lemma 2.4(iv)]. 2

Corollary 2.11

1. A primitive axis a of type (λ, δ) is in the center of A , iff it is of Jordan type with Aλ,δ = 0.

2. Let a 6= b be two primitive axes with ab = ba and a of type (λ, δ) . Then either ab = 0, or λ = δ. In
particular, if a is of Jordan type, then either a commutes with all elements of A or ab = 0 .

Proof (1) (⇒) For any x ∈ A ,

αxa+ λ2xλ = a(ax) = ax = αxa+ λxλ,

implying xλ = 0 since λ 6= 0, 1. Hence xλ,0 = 0 = xλ,δ, and by symmetry x0,δ = 0.

(⇐) x = αxa+ x0,0 for any x in A , implying ax = xa = αxa and also xy = x0,0y0,0 +αxαya, and thus
a(xy) = (ax)y = αxay = αxαya for all x, y .

(2) Let b = αba + b0,0 + bλ,0 + b0,δ + bλ,δ be the decomposition of b with respect to a . Then
αba + λbλ,0 + λbλ,δ = ab = ba = αba + δb0,δ + δbλ,δ implying bλ,0 = b0,δ = 0. If bλ,δ 6= 0, then λ = δ ,
and we are done. Hence bλ,δ = 0 , in which case ab ∈ Fa, so by Lemma 2.10(1), ab = 0. 2

We generalize Seress’ Lemma from [5, Lemma 2.7]:
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Lemma 2.12 (General Seress’ Lemma) If a is a primitive left axis satisfying the left basic fusion rules
then a(xy) = (ax)y + a(x0y), for any x ∈ A and y ∈ Fa+A0(La). In particular, a(xy) ∈ (ax)y + Fa. Here

x = αxa+ x0 +

m∑
i=1

xλi ,

is the left decomposition of x with respect to a.

The symmetric statement holds: If a is a primitive right axis satisfying the right basic fusion rules then
(yx)a = y(xa) + a(y · 0x), for any x ∈ A and y ∈ Fa+A0(Ra). In particular, (yx)a ∈ y(xa) + Fa.

Proof By linearity we need only check for x an eigenvector of La. If x = x0 ∈ A0(La), then a(x0y) =

0 + a(x0y) = (ax0)y + a(x0y). By the basic fusion rules x0y ∈ Fa+A0(La), so a(x0y) ∈ Fa.

If x = xµ ∈ Aµ(La) for µ 6= {0, 1} then xµy ∈ Aµ(La), by the basic fusion rules, hence (axµ)y =

a(xµy) = µxµy. 2

3. Miyamoto involutions
It is easy to check that any Z2 -grading of A induces an involution, i.e. an automorphism of order 2 of A.

Indeed, if A = A+ ⊕ A−, then y 7→ y+ − y− is such an automorphism, where y ∈ A and y = y+ + y− for
y+ ∈ A+, y− ∈ A−.

So if a ∈ A is a primitive axis of type (λ, δ), then we have three such automorphisms of order 2, which,
conforming with the literature, we call the Miyamoto involutions associated with a :

(i) τλ,a = τλ : y 7→ y − 2yλ = αya+ y0,0 + y0,δ − yλ,0 − yλ,δ.

(ii) τδ,a = τδ : y 7→ y − 2 δy = αya+ y0,0 − y0,δ + yλ,0 − yλ,δ.

(iii) τdiag,a = τdiag : y 7→ αya+ y0,0 − y0,δ − yλ,0 + yλ,δ.

In case a is of Jordan type, the first two Miyamoto involutions are the same, and the third is the identity, so
we are left with a single non-trivial Miyamoto involution associated to a, which we write as τa.

Notation 3.1 For any Miyamoto involution τ we write yτ for τ(y). Let X be a set of axes, where each
x ∈ X is primitive of type (λx, δx). We denote by G(X) the subgroup of Aut(A) generated by all the Miyamoto

involutions associated with all the axes in X. We denote X := XG(X) = {xg | x ∈ X, g ∈ G(X)}.

Remark 3.2 Let a be a primitive axis of type (λ, δ). Of course we can recover:

(i) yλ,δ + yλ,0 = 1
2 (y − yτλ).

(ii) yλ,δ + y0,δ = 1
2 (y − yτδ).

(iii) y0,δ + yλ,0 = 1
2 (y − yτdiag),

so each of yλ,δ, y0,δ, and yλ,0 are linear combinations of y , yτλ , yτδ , and yτdiag , as is +αya = y − (yλ,δ +

y0,δ + yλ,0). 3
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Theorem 3.3 Suppose A is generated by a set of axes X, where each x ∈ X is primitive of type (λx, δx).

1. (Generalizing [3, Corollary 1.2, p. 81].) A is spanned by the set X .

2. Let V ⊆ A be a subspace containing X such that xV ⊆ V and V x ⊆ V, for all x ∈ X. Then V = A.

Proof (1) By induction on the length of a monomial in the axes X, it suffices to show that ab is in the span

of X, for a, b ∈ X. Write
b = αba+ b0,0 + bλ,0 + b0,λ + bλ,δ.

Then ab = αba+ λbλ,0 + λbλ,δ. But by Remark 3.2, bλ,0 and bλ,δ are linear combinations of b, bτλ , bτδ , bτdiag .

(2) Let a ∈ X, so that aV ⊆ V and V a ⊆ V. We claim that if v ∈ V, then vµ,ν ∈ V for each
µ ∈ {λ, 0}, ν ∈ {δ, 0}. First, vλ,δ ∈ V since αva + λδvλ,δ = ava = a(va) ∈ V. Hence vλ,0 ∈ V since
av − ava ∈ V, and v0,δ ∈ V since va− ava ∈ V. Finally v0,0 = v − αva− v0,δ − vλ,0 − vλ,δ ∈ V.

Next we claim that V τ = V, for all τ ∈ {τλ,a, τδ,a, τdiag,a}, and all a ∈ X. Indeed, for v ∈ V,

vτλ = v − 2(vλ,0 + vλ,δ), vτδ = v − 2(v0,λ + vλ,δ), and vτdiag = v − 2(vλ,0 + v0,δ), Since all vµ,ν ∈ V, we
see that our claim holds.

Hence, in the notation of (1), V contains X , whose span is A . 2

4. Algebras generated by 2 primitive axes of type (λ, δ) and (λ′, δ′)

In this section, A is an algebra generated by 2 primitive axes a of type (λ, δ) and b of type (λ′, δ′) . When a

and b have Jordan type, we showed in [5] that dim(A) ≤ 3, and, furthermore, we classified the possible algebras
A (see [5, Theorem B]). In [5, Theorem A] we classified all algebras A with dim(A) = 2. Here we continue the
classification of the possible algebras A. Throughout this section we let

σ := ab− δ′a− λb and σ′ := ba− λ′a− δb.

We write
b = αba+ b0,0 + b0,δ + bλ,0 + bλ,δ and a = αab+ a0,0 + a0,δ′ + aλ′,0 + aλ′,δ′

For the decomposition of b (respectively a) with respect to a (resp. b), as in Equation (1.2).

Lemma 4.1 1. We have
σ = γa− λ(b0,δ + b0,0) = γ′b− δ′(a0,0 + aλ′,0).

where γ = αb(1− λ)− δ′, and γ′ = αa(1− δ′)− λ. So

σ ∈ (Fa+A0(La)) ∩ (Fb+A0(Rb)),

2. aσ = γa and σb = γ′b.

3. σ′a ∈ Fa and bσ′ ∈ Fb.

Proof (1) We compute that

σ =(αba+ λ(bλ,0 + bλ,δ))− δ′a− λαba− λ(b0,0 + b0,δ)− λ(bλ,0 + bλ,δ)

= (αb − λαb − δ′)a− λ(b0,0 + b0,δ).
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and
σ = αab+ δ′(a0,δ′ + aλ′,δ′)− δ′

(
αab+ (a0,0 + aλ′,0) + (a0,δ′ + aλ′,δ′)

)
− λb

= (αa − δ′αa − λ)b− δ′(a0,0 + aλ′,0).

(2) This is obvious.
(3) Reverse a and b in (2). 2

Proposition 4.2

1. a(ax) ∈ Fa+ Fax, for all x ∈ A.

2. (xb)b ∈ Fb+ Fxb, for all x ∈ A.

3. (ab)(ab)− a(bab) ∈ V := Fa+ Fb+ Fab+ Fba.

4. a(bab), (bab)a, a(bab)a ∈ V ′ := Fa+ Fb+ Fab+ Fba+ Faba.

5. Let V ′ be as in (4). Then aV ′ ⊆ V ′ ⊇ V ′a.

6. bab ∈ V ′, where V ′ is as in (4).

Proof (1)&(2) Are special cases of Lemma 2.9.
(3) Write x ∼= y if x− y ∈ V. We claim that

a(bσ) ∼= a(bab)− δ′aba (4.1)

(ab)σ ∼= (ab)(ab)− δ′aba (4.2)

For (4.1), we have bσ = b(ab− δ′a− λb), so

a(bσ) = a(bab)− δ′aba− λab ∼= a(bab)− δ′aba.

For (4.2) we have

(ab)σ = (ab)(ab− δ′a− λb) = (ab)(ab)− δ′aba− λ(ab)b ∼= (ab)(ab)− δ′aba.

Now σ ∈ Fa+A0(La), so

a(bab) ∼= a(bσ) + δ′aba (by Equation (4.1))

∼= (ab)σ + δ′aba (by Seress’ Lemma)
∼= (ab)(ab) (by Equation (4.2)).

(4) By (3) and (1),
a
(
(ab)(ab)− a(bab)

)
∈ V ′.

By Lemma 2.9(3), a(a(bab))− λa(bab) ∈ V ′ implying

a((ab)(ab))− λa(bab) ∈ V ′.
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Now aba = αba+ λδbλ,δ, so bλ,δ ∈ V ′. Hence bλ,0 ∈ V ′, because ab = αba+ λbλ,0 + λbλ,δ ∈ V ′. By the
fusion rules, a((ab)(ab)) is an F -linear combination of a, bλ,0 and bλ,δ. Hence a((ab)(ab)) ∈ V ′, so a(bab) ∈ V ′.

By symmetry, (bab)a ∈ V ′, and then clearly a(bab)a ∈ V ′.

(5) This follows easily from (1), (2) and (4).
(6) By (4) and Lemma 2.9(5), (bab)λ,δ ∈ V ′. By (4) and Lemma 2.9(2) and its right counterpart,

(bab)λ,0, (bab)0,δ ∈ V ′.

We have
bab = (αba+ b0 + bλ)(αba+ λbλ)

= α2
ba+ αbλ

2bλ + αbb0a+ λb0bλ + αbbλa+ λb2λ

=
︷ ︸︸ ︷
α2
ba+ λb2λ +

∈A0,δ+Aλ,0+Aλ,δ︷ ︸︸ ︷
αbλ

2bλ + αbb0a+ λb0bλ + αbbλa .

Hence (bab)0,0 = λ(b2λ)0,0. Now By (3) and (4), (ab)2 ∈ V ′, so b2λ ∈ V ′, by Lemma 2.9(2) (with b in place of
y ). Denoting x := b2λ, we can write x = αxa+x0,0+x0,δ. Since V ′a ⊆ V ′, we get xa ∈ V ′, so αxa+δx0,δ ∈ V ′.

It follows that x0,δ ∈ V ′, and consequently (bab)0,0 = λx0,0 ∈ V ′. Hence we see that (bab)µ,ν ∈ V ′, for all
µ, ν ∈ {0, λ, δ}, so bab ∈ V ′. 2

Theorem 4.3 A = Fa+ Fb+ Fab+ Fba+ Faba, and thus has dimension ≤ 5.

Proof Let
V ′ := Fa+ Fb+ Fab+ Fba+ Faba.

By Proposition 4.2, V ′ = Fa + Fb + Fab + Fba + Faba + Fbab. By Theorem 3.3 it suffices to show that
aV ′, bV ′, V ′a, V ′b ⊆ V ′. By symmetry (with respect both to a, b and to working on the left or on the right), it
is enough to show that aV ′ ⊆ V ′, but this is immediate from Proposition 4.2(1). 2

Lemma 4.4 Let V = Fa+ Fb+ Fab. If ba ∈ V , then V = A.

Proof By Proposition 4.2(1), V is closed under La. In particular aba ∈ V, so V is closed under Ra. Similarly
V is closed under Rb by Proposition 4.2(2), so bab ∈ V, and then V is closed under Lb. The Lemma follows
from Theorem 3.3(2). 2

Next we note that

Remark 4.5 For any x ∈ A , Proposition 4.2((1)&(2)) shows that L2
a(x) ∈ FLa(x) + Fa, and R2

a(x) ∈
FRa(x) + Fa.

We recall the 2-sided decomposition x = αxa+ x0,0 + xλ,0 + x0,δ + xλ,δ of equation (1.2).

Proposition 4.6 For x ∈ A, define the vector space

Va(x) = Fa⊕ Fx⊕ Fax⊕ Fxa⊕ Faxa.

Then
Va(x) = Fa⊕ Fx0,0 ⊕ Fxλ,0 ⊕ Fx0,δ ⊕ Fxλ,δ.
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Proof Applying a special case of Proposition 2.1 both on the left and right,

∑2
i,j=0 FLi

aR
j
ax = Fa⊕ Fx0,0 ⊕ Fxλ,0 ⊕ Fx0,δ ⊕ Fxλ,δ.

We conclude with Remark 4.5, which lets us replace L2
a(y) and R2

a(y) by La(y) , Ra(y), and Fa, for any y. 2

As a useful corollary we get

Proposition 4.7 A = Fa+ Fb0,0 + Fbλ,0 + Fb0,δ + Fbλ,δ.

Proof By Theorem 4.3,
A = Fa+ Fb+ Fab+ Fba+ Faba,

so the proposition follows from Proposition 4.6, because A = Va(b). 2

Lemma 4.8 If ab = 0, then ba = 0, and A = Fa+ Fb.

Proof Since ab = 0, we get that αba + λbλ,0 + λbλ,δ = 0. It follows that αb = bλ,0 = bλ,δ = 0. Hence
b = b0,0 + b0,δ. By Proposition 4.7, dim(A) ≤ 3.

If b0,δ = 0, then ba = 0, and we are done. So we may assume that b0,δ 6= 0. Now 0 = b(ab) = (ba)b =

δb0,δb. Hence b0,δb = 0. Thus A0(Rb) = Fa+Fb0,δ is 2 -dimensional. Since ab = 0, we see that a = a0,0+aλ′,0.

If aλ′,0 = 0, then ba = 0. If aλ′,0 6= 0, then Aλ′,0(b) 6= 0, and we get that dim(A) ≥ 4, a contradiction. 2

Lemma 4.9 If ab ∈ Fa+ Fb, then A = Fa+ Fb has dimension 2.

Proof Write ab = αa + βb. If β = 0, then, by Lemma 2.10, ab = 0, so we are done by Lemma 4.8. Hence
β 6= 0. We then see that

αba+ λ(bλ,0 + bλ,δ) = ab = αa+ β(αab+ b0,0 + b0,δ + bλ,0 + bλ,δ),

so b0,0 = 0 = b0,δ. Thus b = αba+ bλ,0+ bλ,δ = αba+ bλ. By Proposition 4.7, dim(A) = 3, and A is spanned by
a, bλ,0, bλ,δ. In particular, A0(La) = 0. Note that b2λ ∈ Fa+ A0(La), so b2λ ∈ Fa. Now ab = αba+ λbλ, hence
bλ ∈ Fa+ Fb. Write bλ = α1a+ β1b, then, as above, using Lemma 2.10, α1 6= 0 6= β1. But now we see that

Fa 3 b2λ = α2
1a+ β2

1b+ α1β1ab+ α1β1ba.

This shows that ba ∈ Fa+ Fb, so A = Fa+ Fb. 2

Theorem 4.10 Assume dim(A) = 3. Then a and b are of Jordan type.

Proof By Lemma 4.9, a, b, and ab are independent; hence σ /∈ Fa+ Fb. But σ = γa− λ(b0,δ + b0,0), so at
least one of b0,0, b0,δ is non-zero. Similarly, by Lemma 4.9, a, b, ba are independent, so σ′ /∈ Fa + Fb, and at
least one of b0,0, bλ,0 is non-zero.

Assume first that b0,0 = 0. Then bλ,0 6= 0 6= b0,δ. Since dim(A) = 3, Proposition 4.7 implies that
bλ,δ = 0. Thus b = αba+ bλ,0 + b0,δ. Suppose αb = 0. Then

b = b2 = b2λ,0 + b20,δ + bλ,0b0,δ + b0,δbλ,0.
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Since bλ,0b0,δ + b0,δbλ,0 ∈ Aλ,δ = 0, and b2λ,0 + b20,δ ∈ Fa + A0,0, we see that b ∈ Fa + A0,0, so ab ∈ Fa. By
Lemma 2.10, ab = 0, a contradiction.

Hence αb 6= 0. But then

(ba)b = (αba+ δb0,δ)(αba+ bλ,0 + b0,δ) = α2
ba+ αbλbλ,0 + αbδ

2b0,δ + δb0,δbλ,0 + δb20,δ

and

b(ab) = (αba+ bλ,0 + b0,δ)(αba+ λbλ,0)

= α2
ba+ αbδb0,δ + αbλ

2bλ,0 + λb2λ,0 + λb0,δbλ,0.

Since (ba)b = b(ab), this implies αbλbλ,0 = αbλ
2bλ,0, so bλ,0 = 0, a contradiction.

Hence b0,0 6= 0. Suppose bλ,0 6= 0. Then b = αba+ b0,0 + bλ,0. But then ba = αba, and we saw that this
implies ba = 0, a contradiction. Thus bλ,0 = 0. Symmetrically b0,δ = 0, so a is of Jordan type. By symmetry
so is b. 2

5. A few observations and some questions.

In this section A is generated by a set of axes X, where each x ∈ X is primitive of type (λx, δx). Recall the

notation X from 3.1.

Lemma 5.1 Let a ∈ X.

1. For any z ∈ A, there is a finite subset Y ⊆ X such that z0,0 ∈
∑

x∈Y Fx0,0. Here z0,0, x0,0 ∈ A0,0(a).

2. To determine whether (A0,0(a))
2 ⊆ A0,0(a), it is enough to check that (B0,0(a))

2 ⊆ B0,0(a), for any

subalgebra B of A generated by a, x, x′, with x, x′ ∈ X.

Proof (1) This is obvious. Just write z =
∑

x∈Y γxx, for some finite subset Y ⊆ X. Then z0,0 =
∑

x∈Y γxx0,0.

(2) Let y′, y ∈ A0,0. Using (1) write

y =
∑
x∈Y

γxx0,0, y′ =
∑

x′∈Y ′

γ′
x′x′

0,0,

with Y, Y ′, finite subsets of X. Then

yy′ ∈
∑

x∈Y,x′∈Y ′ Fx0,0x
′
0,0.

The assertion of (2) is now obvious. 2

Lemma 5.2 Suppose that whenever B ⊆ A is generated by 2 primitive axes of type (λ, δ) and (λ′, δ′), then
dim(B) ≤ 3. Then all axes in A are of Jordan type.

Proof This follows immediately from Theorem 4.10 and Theorem [5, Theorem A]. 2

2380



ROWEN and SEGEV/Turk J Math

Some questions

1. Suppose A is generated by axes a and b of respective types (λ, δ) and (λ′, δ′) . Is it true that dim(A) ≤ 3?

(see Lemma 5.2). We have recently shown that dim(A) 6= 4, so the only remaining case is whether one
can have dim(A) = 5. Added in proof: The authors answered this question affirmatively.

2. Suppose that each axis x ∈ X is of (Jordan) type (λx, δx). Is it true that (A0,0(x))
2 ⊆ A0,0(x)? (By

Lemma 5.1 it is enough to consider triples of axes).

3. Suppose |X| = 3. Does it follow that dim(A) is finite?
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